LU1MA001

9.4 QCM: Intégrales

Exercice 9.4.1

\(\int _{0}^1 t\cos (t)dt=\)

  1. \(-\sin (t).t^2\)

  2. \(t.\cos (t)-\sin (t)\)

  3. \(t.\sin (t)+\cos (t)\)

  4. \(-\cos (1)-\sin (1)-1\)

  5. \(\cos (1)+\sin (1)-1\)

Exercice 9.4.2

Une primitive de \(\frac{1}{1+x^2}\) est

  1. \(\ln (1+x^2)\)

  2. \((1+x^2)^{1/2}\)

  3. \(\frac{1}{1+x^3}\)

  4. \(\arcsin (x)\)

  5. \(\arctan (x)\)

Exercice 9.4.3

\(\int _{\frac{\pi ^2}{4}}^{\pi ^2} \frac{\sin (\sqrt{x})}{\sqrt{x}}=\)

  1. 0

  2. \(-1\)

  3. \(-2\)

  4. 1

  5. 2

Exercice 9.4.4

\(\int _{0}^{1} \frac{4x+2}{x^2+x+1}=\)

  1. 0

  2. \(2\)

  3. \(\ln (2)\)

  4. \(3\ln (2)\)

  5. \(2\ln (3)\)

Exercice 9.4.5

Une primitive de \(\sin (x).\sqrt{\cos (x)}\) est

  1. \(\log (\cos (x))\)

  2. \(\frac{1}{\cos (x)}\)

  3. \(\frac{1}{3}\cos (x)^\frac {1}{2}\)

  4. \(\frac{1}{3}\sin (x)^\frac {1}{2}\)

  5. \(\frac{-2}{3}\cos (x)^\frac {3}{2}\)

Exercice 9.4.6

\(\mathrm{lim}_{x\to 0}\, \frac{x}{2+\sin (\frac{1}{x})}=\)

  1. \(+\infty \)

  2. \(\frac{1}{2}\)

  3. \(0\)

  4. n’existe pas.

  5. \(-1\)