9.4 QCM: Intégrales
\(\int _{0}^1 t\cos (t)dt=\)
\(-\sin (t).t^2\)
\(t.\cos (t)-\sin (t)\)
\(t.\sin (t)+\cos (t)\)
\(-\cos (1)-\sin (1)-1\)
\(\cos (1)+\sin (1)-1\)
Une primitive de \(\frac{1}{1+x^2}\) est
\(\ln (1+x^2)\)
\((1+x^2)^{1/2}\)
\(\frac{1}{1+x^3}\)
\(\arcsin (x)\)
\(\arctan (x)\)
\(\int _{\frac{\pi ^2}{4}}^{\pi ^2} \frac{\sin (\sqrt{x})}{\sqrt{x}}=\)
0
\(-1\)
\(-2\)
1
2
\(\int _{0}^{1} \frac{4x+2}{x^2+x+1}=\)
0
\(2\)
\(\ln (2)\)
\(3\ln (2)\)
\(2\ln (3)\)
Une primitive de \(\sin (x).\sqrt{\cos (x)}\) est
\(\log (\cos (x))\)
\(\frac{1}{\cos (x)}\)
\(\frac{1}{3}\cos (x)^\frac {1}{2}\)
\(\frac{1}{3}\sin (x)^\frac {1}{2}\)
\(\frac{-2}{3}\cos (x)^\frac {3}{2}\)
\(\mathrm{lim}_{x\to 0}\, \frac{x}{2+\sin (\frac{1}{x})}=\)
\(+\infty \)
\(\frac{1}{2}\)
\(0\)
n’existe pas.
\(-1\)