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These are the notes for the course M1-Topologie Algébrique, Master en Math-
ématiques at the Sorbonne University (2022-2023).

The lectures will follow closely the notes by Ilia Itenberg (in french).

The present notes are intended as complementary study material, written in english.
If you are an ERASMUS student, feel free to ask me for other studying materials in
english.

If you have any comments, suggestions, questions, corrections, please write to me:
marco.robalo at sorbonne-universite.fr

All the exercises (TD) are available in the links below (in french) but the most im-
portant are also incorporated in the text, in english.

• Feuille 1
• Feuille 2
• Feuille 3
• Feuille 4
• Feuille 5

There is no claim of original content in this notes (except the mistakes!). These
notes are essentially a compilation of materials from the following references:

• Main reference: Le Polycopie d’Ilia Itenberg (in french)

• Michèle Audin - Notes revêtements et groupe fondamental.

• Notes by Pierre Schapira, General Topology and Algebra and Topology,
Chapter 7

• Munkres, Topology (2nd edition)

• Emily Riehl, Categories in Context - Chapters 1 to 4 and these notes.

• Hatcher, Algebraic Topology, Chapters 0 and 1.

• P. May, A concise course in algebraic topology - Chapters 1 to 3

• Analysis Situs

• R. Brown, Topology and Groupoids, Chapter 10

• T. Szamuely Galois groups and fundamental groups - Chapter 2

https://webusers.imj-prg.fr/~ilia.itenberg/enseignement/topologie_algebrique.pdf
https://dropsu.sorbonne-universite.fr/s/mF4nsWtcXELgnRq
https://dropsu.sorbonne-universite.fr/s/FtXaKF4DLtkgmqk
https://dropsu.sorbonne-universite.fr/s/ZprtR42kELWkexK
https://dropsu.sorbonne-universite.fr/s/N9JHJK4AnTAWN4A
https://dropsu.sorbonne-universite.fr/s/9SQtia69ZFKJ4XE
https://webusers.imj-prg.fr/~ilia.itenberg/enseignement/topologie_algebrique.pdf
https://www.math.univ-toulouse.fr/~gavrilov/enseignement/TopoAlg/courstopalgMAudin.pdf
https://webusers.imj-prg.fr/~pierre.schapira/LectNotes/Topo.pdf
https://webusers.imj-prg.fr/~pierre.schapira/LectNotes/AlTo.pdf
https://webusers.imj-prg.fr/~pierre.schapira/LectNotes/AlTo.pdf
https://math.jhu.edu/~eriehl/context.pdf
https://math.jhu.edu/~eriehl/161/topologies.pdf
https://pi.math.cornell.edu/~hatcher/AT/AT+.pdf
https://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf
https://analysis-situs.math.cnrs.fr/-Groupe-fondamental-.html
https://groupoids.org.uk/pdffiles/topgrpds-e.pdf
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CHAPTER I

Introduction

In today’s lecture we will make some experiments.

I.1. World’s with different shapes

Exercice I.1.1. Click on the picture and play this snake game trying to cross the
walls

Is the planet where the snake game takes place, a sphere like our planet?

Solution I.1.2. Check the solution here.

Remark I.1.3. Many video games take place in a doughnut-like planet but you
will miss this if you are not topology-aware. Here is another example from Chrono
Trigger.

Exercice I.1.4. What is the shape of the planet where the first level of Pacman
takes place?
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https://officesnake.com
https://en.wikipedia.org/wiki/Torus#/media/File:Torus_from_rectangle.gif
https://en.wikipedia.org/wiki/Chrono_Trigger
https://en.wikipedia.org/wiki/Chrono_Trigger
https://imgur.com/a/fUD7n
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Exercice I.1.5. Try to describe the shape of the planet where the next snake game
takes place:

Exercice I.1.6. Imagine now that the snake game takes place in the region delimited
in the picture below where if you cross a border of a given color, you re-appear in
the other border of the same color, exactly as in the world of the original snake
game. What is the shape of the snake planet this time?

https://pacman.cc
https://ubavic.rs/snake/snake.html
https://www.youtube.com/watch?v=G1yyfPShgqw
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Question I.1.7. In both cases of Exercice I.1.1, Exercice I.1.5 and Exercice I.1.6,
how can the snake itself detect/measure the shape of the world it lives in without
any references to the outside world? In this course we will learn some algebraic tools
to make this possible.

Exercice I.1.8. Consider the double-pendulum as in the following video:

It has two degrees of freedom: the angle α around the vertical axis of the first
arm and the angle β of the second arm around the main arm. The position of the
pendulum is therefore given by two angles (α, β). What is the shape of the space of
all positions?

Solution I.1.9. This is yet another presentation of the torus. Indeed, there is a
whole circle of possibilities for the first angle α. In topology we usually denote the
circle of radius 1 by S1. At each choice of angle α, we then have a second whole
circle of possibilities, corresponding to the angle β. It follows that the collection
of all pairs (α, β) is an element in the product space S1 × S1. We will define the
product topology in the next lecture. Here’s a picture of the situation: the larger
circle represents the choice of the angle α and for every such choice, we have a
smaller circle, corresponding to the choice of β:

At the end of the second week you should be able to show that the presentation
of the torus as a result of gluing the sides of a square as in the Exercice I.1.1 is
equivalent to the product topological space S1 × S1.

https://www.youtube.com/watch?v=U39RMUzCjiU
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I.2. Strings,Words and Labyrinths

Exercice I.2.1 (This puzzle and the pictures are taken from this book which is
highly recommended!). Imagine you have picture frame hung by one string. Nailed
to the wall are two pins. How can you wrap the string around the two nails (figure
below) such that the picture does not fall, but as soon as either of the nails are
removed the picture will fall? (as an extension, what about a situation with N =
100 pins, where the frame is hung but will again fall as soon as you remove any one
of the nails?)

Solution I.2.2. The solution to this puzzle is somehow the universal example of
how we will use algebra to solve problems in topology. Here’s what we can do. Con-
sider the first nail. If we wrap the string around it clockwise, we denote it with the
letter a. If we wrap it counter-clockwise, we denote it by a−1. For the second nail
we use the letter b and b−1. Now, the different ways to wrap the string around the
two nails will correspond to words written in the alphabet a, a−1, b and b−1. But
there is more to it: if we wrap the string around the first nail clockwise (ie, if we
write a) and then wrap it again counter-clockwise, (ie, a−1), the net result is that
we didn’t wrap anything at all! Ie, the word a−1a is identified with the empty word
which we will simply denote as ∅. The same goes for the words aa−1, bb−1 and b−1b.

Notice that the operation of making consecutive wraps around the nails corresponds
to the operation of concatenating words in the alphabet {a, b, b−1, a−1}.

Let us write π :=< a, b > for the free group generated by the symbols a and b. By
definition this is exactly the set of all words written using the alphabet {a, b, b−1, a−1}
with the relations a−1a = aa−1 = bb−1 = b−1b = ∅. The group operation is given by
concatenation of words. For instance, the word

(1) a−1b−1ab

is an element of π and corresponds to start by wrapping the string clockwise around
the second nail, then clockwise around the first nail, then counter-clockwise around
the second, and finally counter-clockwise around the first. By convention we read
the word from the left to the right. Here’s a picture of this situation:

https://www.physics.harvard.edu/news/new-book-prof-cumrun-vafa
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Let us now suppose that we take away the second nail. In this case all instances of
b and b−1 will disappear. For instance, the previous word becomes

a−1a

But this is the empty word and therefore, corresponds to wrapping and un-wrapping
and therefore to doing nothing. In this case, this means that if we take away the
second nail, the picture frame will fall.

Here’s another example. Consider the word

aaba−1

and again take away the second nail. This eliminates all the b’s from the words, and
we get simply the word

aaa−1 = a

This means that the picture frame will still hold since there is a wrapping that
survives. It is easy now to understand the general mechanism: the frame will hold
every time there is at least one wrapping around the first nail that survives.

Remark I.2.3. Notice that the group π introduced in the Solution I.2.2 is not
abelian. Indeed, in a abelian group, we should always have the relation

ab = ba

Or equivalently,

∅ = b−1a−1ba

The fact that the word (1) in the Solution I.2.2 is not the empty word means that
the group π is definitively non-abelian.

Definition I.2.4. Let (G, ◦, e) be a group with operation ◦ and unit element e. For
elements g, h ∈ G, the element [g, h] := ghg−1h−1 is called the commutator of g
and h. An element of G of the form [g, h] is called a commutator. We denote by
[G,G] ⊆ G the smallest subgroup of G containing all commutators.
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Remark I.2.5. [G,G] ⊆ G is a normal subgroup. Indeed, assume that c ∈ [G,G]
and let g ∈ G. We want to show that gcg−1 is again in [G,G]. But gcg−1c−1 is a
commutator, so it must belong to [G,G]. Since c is a commutator, and [G,G] is a
subgroup, it is close for the group operation, and therefore (gcg−1c−1).c must also
belong to [G,G]. But (gcg−1c−1).c = g.c.g−1.

It follows that the quotient G/[G,G] is a group.

Proposition I.2.6. The quotient group Gab := G/[G,G] is abelian. Moreover, it is
the universal abelian group built out of G, in the sense that if f : G→ H is a group
homomorphism, with H abelian, then f factors canonically in a unique way through
Gab:

G
f
//

��

H

Gab

==

Proof. We start by showing that the quotient Gab := G/[G,G] is an abelian
group. Let us denote by [g] the image of g ∈ G in the quotient. We must show
that [g].[h] = [h].[g] for every g, h in G. In other words, that [ghg−1h−1] = 0 in the
quotient. But this is precisely the quotient relation.

Now suppose that f : G→ H is a group homomorphism with H abelian. It follows
the commutator group of H, [H,H] = {0} is the trivial subgroup and therefore H ≃
Hab. By definition of group homomorphism, f must send commutator subgroups to
commutator subgroups and therefore descend to the quotients

G
f
//

��

H

∼
��

Gab // Hab

□

Definition I.2.7. The group Gab of the Proposition I.2.6 is called the abelianization
of G

Example I.2.8. The abelianization of the group π of the Solution I.2.2 is the free
abelian group with two generators a and b, ie

πab = a.Z⊕ b.Z
For instance, the wrapping corresponding to a word such as ababbaa−1 ∈ π is sent
to the element 2a+3b, obtained simply by counting the occurrences of each symbol
and canceling everytime we have inverses. In conclusion, the frame will hold if after
eliminating the second nail, the coefficient attached to a in πab is non-zero.
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Exercice I.2.9. Considering wrapping the frame following the prescription

ababa−1ba−1a−1

What happens when we take away the second pin?

Here is another example of how to turn a topological problem into an algebraic one:

Exercise I.2.10. [The Infinite Labyrinth]
Watch this video (in french).

and draw the shape of the labyrinth corresponding to the subgroup < rr, bb, rb >
(with the the notations used in the video).

Remark I.2.11. Notice that in the Exercise I.2.10, the group associated to the
simplest labyrinth ( the double loop)

is the free group generated by the two symbols r and b. It is exactly the same group
(up to isomorphism) as the group π from the Solution I.2.2. In this case what the
video suggests is some form of correspondence

{subgroups of π} ↔ { shapes of the labyrinth "covering" the double loop}

The video illustrates an example of how this correspondence works in the example

< r, bb, brb−1 > ←→

https://www.youtube.com/watch?v=4GIE0UCNI-c
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However, this example has a particularly nice feature that hides the real form of
the correspondence: in this example we don’t see how the subgroup we get depends
on the choice of the room we use as reference. This is because this is a normal
subgroup! Here’s an example where this dependency shows up:

(Picture taken from Hatcher’s book)

These two examples differ by the choice of the reference room. The two subgroups
we get differ by conjugation with the path b connecting the two different rooms.
Indeed, write

H1 :=< a2, b2, aba−1, bab−1 > H2 :=< a, b2, ba2b−1, baba−1b−1 >

and notice that b.H1.b
−1 = H2 (check this on the generators!).

In fact, the real content of the correspondence is of the form

{Conjugacy classes of subgroups of π} ↔ { Labyrinths "covering" the double loop}

The last main theorem in this course (Theorem VI.4.14) is a generalization of this
example, replacing the simplest double loop labyrinth by any space X, the group π
by the so-called fundamental group of the space X and the different possible shapes
of the labyrinth covering the double loop by the different covering spaces of X.

Example I.2.12. Let us try to repeat the Exercise I.2.10 this time with a simpler
labyrinth, namely, a room where there is simply an entrance door and an exit door.

The simplest possibility is that everytime we go out through the red door with come
in through the blue door. In this case, the labyrinth is a single circle

https://pi.math.cornell.edu/~hatcher/AT/AT+.pdf
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The first main theorem in these lectures (Theorem V.2.2) is that the group π
associated to this labyrinth is the free group with one generator a corresponding to
going around the loop one time clockwise, ie

π ≃ (Z,+)

determined by

an 7→ n

In this case we can start imagining the other possible shapes of the labyrinth and
match them with subgroups of π ≃ Z as we did in Exercise I.2.10:

• There are two different rooms and taking the red door takes us to the blue
door of the second room and taking the red door in the second room takes
us back to the blue door in the first:

• There are three different rooms and the last one brings us back to the first

• · · ·
• There are n different rooms and the last one brings us back to the first.

• Every room is a different room. We never come back to the starting one.
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In terms of subgroups, these correspond exactly to the different subgroups given by
multiples of n, for each n

nZ := {a ∈ Z : n|a} ⊆ Z

The case with infinitely many rooms corresponds to the trivial subgroup {0}



CHAPTER II

Quick review of general topology

II.1. Topological Spaces

Goal II.1.1. Our goal in this chapter is to define a useful notion of topological space
accommodating the questions and examples of the first lecture. By the end of this
chapter we will have precise definitions for the whole zoo: the circle, sphere, torus,
square, gluings, quotient, product space, loops, paths, topological equivalence, etc.

Warning II.1.2. This first chapter covers more materials than the lectures. You
should use it as a complement for both the main course and the exercise sessions.

In lack of a better strategy, a topological space will be defined as a set with extra
structure. The purpose of this extra structure is to give us a way of saying that two
points/elements of the set are close to each other. We will do this in a somehow
minimalist way, avoiding to talk about distances. In this sense, we will be authorized
to talk about open subsets - which we think of as regions of the set. We control how
the points are close or far to each other, by looking at the open subsets they share
in common.

Notation II.1.3. Let X be a set. We denote by P (X) the set of all subsets of X.

Definition II.1.4. Let X be a set. A topology on X is a collection τ of subsets of
X, ie, τ ⊆ P (X), satisfying the following properties:

• Both the empty subset ∅ and X belong to τ ;
• For any family of subsets belonging to τ , their union belongs to τ ;
• For any finite family of subsets belonging to τ , their intersection belongs

to τ

In this case we call the pair (X, τ) a topological space.
As an abuse of notation, and whenever it is clear, we will simply write X to denote
a topological space (X, τ)

Terminology II.1.5. The elements of τ are called open subsets and their comple-
ments closed subsets . The elements of X are called points. If x ∈ X and U is an
open subset containing x we call U an open neighborhood of x.

11
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Exercice II.1.6. Translate the three properties of open sets into properties of
closed subsets: closure under finite unions and arbitrary intersections.

Example II.1.7.

(i) Let X = {0, 1} be a set with two elements. Then the collection of subsets
τ := {{0}, X, ∅} forms a topology on X. Indeed,

∅
⋂
{0} = ∅ ∈ τ, ∅

⋃
{0} = {0} ∈ τ, X

⋂
{0} = {0} ∈ τ

X
⋃
{0} = X ∈ τ

In this topology we cannot isolate the element 0 from the element 1 by
open subsets: every open subset that contains 1 also contains 0.

(ii) The set of real numbers R with topology where the open sets are unions of
open intervals, ie, intervals of the form ]a, b[ with a < b, a, b ∈ R. Let us
check the axioms: first R and ∅ are both open by definition. Secondly, since
open subsets are by definition arbitrary unions of open intervals, they are
stable under unions. Let us now observe that finite intersections of open
intervals are open intervals. We can see this in the simplest case of a double
intersection:

]a, b[∩]c, d[=]sup(a, c), inf(b, d)[

and proceed by induction. Assume now U =
⋃

i]ai, bi[ and V =
⋃

j]cj, bj[
are arbitrary unions of open intervals. Then their intersection is

U
⋂

V = (
⋃
i

]ai, bi[)
⋂

(
⋃
j

]cj, bj[)

which by the distributive property of unions over intersections (∗), gives

=
⋃
i.j

Ä
]ai, bi[

⋂
]cj, bj[

ä
=
⋃
i.j

]sup(ai, cj), inf(bi, dj)[

which is again open, since it is an arbitrary union of open intervals.

We denote this topological space simply by R.

(iii) The set of real numbers R with the discrete topology, where we declare
every subset to be open. In this case, for instance, the singleton {0} is
open, something which brings us away from our standard intuition. We
denote this topological space by Rdisc

(∗)A
⋂
(B
⋃
C) = (A

⋂
B)
⋃
(A
⋂
C). More general, this also works with infinite unions. Prove

it!
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(iv) The set of real numbers R with the trivial topology, where we declare
only two open subsets: R and ∅. This indeed satisfies the axioms of Defini-
tion II.1.4 but it is so stupid that for instance we cannot isolate the points
0 and 0.001. We denote this topological space by Rtriv.

(v) TD Exo 1,
Feuille 1

The set of real numbers R with the Zariski topology, where we declare a
subset to be open if its complement is finite.

(vi) TD Exo 1,
Feuille 1

The set of real numbers R with the Arrow topology, where τ consists of R,
∅ and all subsets of the form ]a,+∞[ with a ∈ R.

Exercice II.1.8. As in previous example, define the discrete and trivial topologies
on any set X.

Exercise II.1.9. List all the possible topologies on a set with two elements. Now
with three elements.

Exercise II.1.10. Show that the intersection of topologies is a topology.

Proposition II.1.11. Let X be a topological space and A ⊆ X a subset. Then
A is open if and only if for every point x ∈ A there exists an open subset U with
x ∈ U ⊆ A.

Proof. If A is open we can take U = A. Assume now the condition. Then
for every x ∈ A we can find Ux open subset with x ∈ Ux ⊆ A. It follows that⋃

x∈A Ux = A and A is open as a consequence of the axioms. □

Definition II.1.12. Let (X, τ) be a topological space. We say that a subcollection
β ⊆ τ forms a basis of the topology τ if every element of τ can be written as a union
of elements in β.

Example II.1.13. Open intervals of R form a basis for the topology of R.

Proposition II.1.14. Let X be a set and let β be a collection of subsets of X
satisfying the two conditions:

(i) For each x ∈ X, there exists at least one element B of β containing x;

(ii) If x belongs to the intersection of two elements B1 and B2 in β, then there
exists a third basis element B3 containing x such that B3 ⊆ B1

⋂
B2.

Then, the collection of subsets τβ defined by
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(∗) U ∈ τβ if and only if for every x ∈ U , there exists B ∈ β such that
x ∈ B ⊆ U .

forms a topology with β as a basis. We call it the topology generated by β.

Proof. Let us start by showing that τβ forms a topology if the two conditions
(i) and (ii) are verified.

• The empty set ∅ is in τβ because it satisfies the condition in (∗) vacuously.

• X satisfies the condition in (∗) because of (i) ;

• Let Ui be a family of subsets of X satisfying (∗). It is automatic that their
union satisfies X.

• Let U1 and U2 be subsets of X satisfying the condition in (∗). Let x ∈
U1

⋂
U2. Since U1 satisfies (∗), there exists B1 ∈ β with x ∈ B1 ⊆ U1.

Similarly, since U2 satisfies (∗), there exists B2 ∈ β with x ∈ B2 ⊆ U2.
Therefore x ∈ B1

⋂
B2. By (ii), there exists B3 with x ∈ B3 ⊆ B1

⋂
B2 ⊆

U1

⋂
U2. So U1

⋂
U2 ∈ τβ. We can proceed by induction for finitely many

intersections.
To conclude let us show that β is a basis for the topology τβ. Notice that since
elements of β satisfy the condition (∗), we have β ⊆ τβ. Since τβ is a topology, the
union of elements of β is in τβ. Finally, given U ∈ τβ, we can choose for each x ∈ U
an element Bx ∈ β with x ∈ Bx ⊆ U . Therefore, U =

⋃
x∈U Bx. □

Construction II.1.15. Let X be a set and β a collection of subsets of X satisfying
only the condition (i) in Proposition II.1.14. Let us form I(β) the collection of all
finite intersections of elements in β. Then I(β) satisfies conditions (i) and (ii) in Pro-
position II.1.14. Indeed, condition (i) is a consequence of the same assumption for β
and condition (ii) is because we have saturated β to include all its finite intersections:
if S1 := B1

⋂
· · ·
⋂
Bn and S2 := C1

⋂
· · ·
⋂
Cm with B1, · · ·Bn, C1, · · ·Cm ∈ β, then

S1

⋂
S2 =

Ä
B1

⋂
· · ·
⋂

Bn(
ä⋂Ä

C1

⋂
· · ·
⋂

Cm

ä
being a finite intersection of elements of β, is also in I(β) so we can take S3 :=
S1

⋂
S2. Therefore the collection of subsets τI(β) forms a topology. In this case we

say that β is a subbasis for the topology and τI(β) is the topology generated by β.

Exercise II.1.16. Let X be a topological space and β a collection of subsets of
X. Then we can form the intersection of all topologies that contain β (see the
Exercise II.1.10 above)

τβ :=
⋂

β⊂τ,τ topology

τ
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This forms a topology without any conditions on β. The problem of this topology
is that we do not have a useful criterium to understand what are the open subsets.
Show that when β satisfies the conditions of a basis, then this definition of τβ
coincides with the one of the Proposition II.1.14.

Example II.1.17. The collection of open intervals of the form ]a,+∞[ and ]−∞, b[
gives a subbasis for the standard topology in R.

Proposition II.1.18. Let X be a set and τ1 and τ2 topologies on X. Assume τ1
is generated by a basis β1 and τ2 is generated by a basis β2. Assume that for every
x ∈ X and for every B2 ∈ β2 containing x, there exists B1 ∈ β1 with x ∈ B1 ⊆ B2.
Then τ2 ⊆ τ1.

Proof. By definition, elements of τ2 are obtained as unions of finite intersections
of elements of β2. Since τ1 is a topology, to show that τ2 ⊆ τ1, by the axioms, it
suffices to show that β2 ⊆ τ1.
Let B2 ∈ β2. Then using the assumption, we can pick for every x ∈ B2 an element
Bx ∈ β1 with x ∈ Bx ⊆ B2. Therefore, B2 =

⋃
xBx, so B2 ∈ τ1.

□

Definition II.1.19. Let (X, d) be a metric space. Then the collection βballs of open
balls, ie, all subsets of the form

B(x, r) := {y ∈ X : d(x, y) < r}

with x running through the all points of X and r ∈ R, with r > 0, satisfy the
conditions (i) and (ii) of Proposition II.1.14. First, notice that for any x ∈ X,
x ∈ B(x, ϵ) for any ϵ > 0. Secondly, notice that if y ∈ B(x, ϵ), then we can set
δ := ϵ− d(x, y) and have y ∈ B(y, δ) ⊆ B(x, ϵ).

Finally, given x ∈ B(y1, r1)
⋂
B(y2, r2), then by the argument before, we δ1 > 0

with x ∈ B(x, δ1) ⊆ B(y1, r1) and δ2 > 0, with x ∈ B(x, δ2) ⊆ B(y2, r2). Choosing
δ be the smallest of δ1 and δ, we conclude

B(x, δ) ⊆ B(y1, r1)
⋂

B(y2, r2)
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We call the topology τβballs
the standard topology on (X, d).

Example II.1.20. Let n ≥ 1. The set Rn := R× · · · × R︸ ︷︷ ︸
n

with the standard

euclidean distance

d(x, y) :=
»

(x1 − y1)2 + · · · (xn − yn)2

is a metric space. The induced topology with a basis given by open balls, makes it
a topological space. We denote it simply by Rn.

Definition II.1.21. Let X be a set and let τ1 and τ2 be topologies on X. We say
that τ1 is finer than τ2 if τ2 ⊆ τ1, ie, τ1 is obtained from τ2 by adding extra open
subsets. In this case we also say that τ2 is coarser than τ1.

Proposition II.1.22. Let (X, τ) be a topological space and S ⊆ X a subset. Then
the collection of subsets of S defined by

τ|S := {S ∩ U : U ∈ τ}
defines a topology on S.

Proof. Let us check the axioms:
• S = S ∩X with X ∈ τ , so S ∈ τ|S;
• ∅ = S ∩ ∅ with ∅ ∈ τ , so ∅ ∈ τ|S;
• Given a family {S ∩ Ui}i∈I with Ui ∈ τ for each i ∈ I, then(⋃

i

S ∩ Ui

)
= S ∩

(⋃
i

Ui

)
so that (

⋃
i S ∩ Ui) ∈ τ|S since (

⋃
i Ui) ∈ τ .

• Given a finite family {S ∩ Ui}i∈I with Ui ∈ τ for each i ∈ I, then(⋂
i

S ∩ Ui

)
= S ∩

(⋂
i

Ui

)
so that (

⋃
i S ∩ Ui) ∈ τ|S since (

⋂
i Ui) ∈ τ because the family is finite.

□

Definition II.1.23. The topology of the Proposition II.1.22 is called the induced
or subspace topology. If S ⊆ X is a subset equipped with a subspace topology, we
call it a subspace.
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Exercise II.1.24. Let X be a topological space and U an open subset. Show that
the induced topology on U corresponds exactly to the collection of open subsets of
X contained in U .

Example II.1.25. We consider R and the closed subset [0, 1]. We endow [0, 1] with
the induced topology. In this case the subset [0, 1

2
[ is an open subset for the induced

topology, since it is obtained as an intersection [0, 1]∩]− 1, 1
2
[. However, [0, 1

2
[ is not

an open subset of R.

Example II.1.26 (The circle and the spheres). The n-dimensional sphere Sn is
the subset

Sn := {(x1, · · · , xn, xn+1) :
»
x21 + · · ·+ x2n + x2n+1 = 1)} ⊆ Rn+1

endowed with the subspace topology. The circle is S1.

Example II.1.27. The closed disk Dn is the subspace of Rn defined by

Dn := {x ∈ Rn : d(x, 0) ≤ 1}

with the subspace topology.

Example II.1.28. Let us describe Z as a subset of R endowed with the induced
topology. Open subsets for the induced topology are of the form Z ∩ U where U
is an open in R. It is therefore enough to check what happens when U is an open
interval ]a, b[. In particular, given an interger n, we can consider the open interval
]n− 1

4
, n+ 1

4
[ to get

Z
⋂

]n− 1

4
, n+

1

4
[= {n}

an open subset of Z for the induced topology. This is true for every n.

In conclusion, the induced topology on Z coincides with the discrete topology of the
Example II.1.7:

Definition II.1.29. Let X be a topological space and A ⊂ X a subset. We define:

• The closure of A, denoted A, the smallest closed subset that contains A,
ie

A :=
⋂

A⊆F :F is closed

F
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• The interior of A, denoted Int(A) to be the biggest open subset contained
in A, ie

Int(A) :=
⋃

U⊆A:U is open

U

• The boundary of A, ∂A := A \ Int(A).

• A is dense if A = X

Exercise II.1.30. Let X be a topological space and A, B subsets. Show that:

(i) Int(A) ⊆ A ⊆ A
(ii) A is open if and only if Int(A) = A.
(iii) A is closed if and only if A = A.
(iv) Int(A) = X \X \ A.
(v) A = X \ Int(X \ A)
(vi) x ∈ A if and only if every neighborhood of x intersects A
(vii) A

⋃
B = A

⋃
B

(viii) Int(A
⋂
B) = Int(A)

⋂
Int(B)

Exercise II.1.31. Describe an open subset A of R2, different from R2 but with
Int(A) = R2.

II.2. Continuous Maps

Definition II.2.1. cl Let (X, τX) and (Y, τY ) be topological spaces. We say that a
map of sets f : X → Y is continuous if for every open subset U ∈ τY , the pre-image
f−1(U) is an open in X, ie, τX .

Remark II.2.2. Let (X, τX) and (Y, τY ) be topological spaces. A map f : X → Y is
continuous if and only if the pre-image of closed subsets are closed. Indeed, assume
f is continuous and V is closed in Y . Then by definition Y \ V is open. Therefore
f−1(Y \ V ) = X \ f−1(V ) is open, so f−1(V ) is closed. Vice-versa, assume that f−1

sends closed subsets to closed subsets. The symmetry of the argument by taking
complements concludes the proof.

Proposition II.2.3. The following conditions are equivalent for a set-theoretic map
f : X → Y between two topological spaces

(i) f is continuous;

(ii) for each x and for each open neigh. V of f(x) there exists an open neigh.
U of x with U ⊆ f−1(V ) (ϵ− δ characterization)

Proof. This is a consequence of the characterization of open subsets in Pro-
position II.1.11. □
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Proposition II.2.4. The composition of continuous maps is again continuous.

Proof. Indeed, if f : X → Y and g : Y → Z are continuous, given U ∈ τZ
an open in Z, g−1(U) is open in Y and therefore, by definition of continuity in
Definition II.2.1, f−1(g−1(U)) is an open in X. To conclude we only need to observe
that f−1(g−1(U)) = (g ◦ f)−1(U). □

Remark II.2.5. Let X and Y be topological spaces. Assume the topology in Y
is of the form τβ for β as in the Proposition II.1.14. Then a map f : X → Y is
continuous if and only if the f−1(B) is open in X for every B ∈ β. This follows
because every open subset in Y is obtained as a union of elements of β, and taking
set-theoretic pre-images commutes with unions.

In the same way, if the topology in Y is of the form τI(β) for β as in the Construc-
tion II.1.15, then a map f : X → Y is continuous if and only if the f−1(B) is open
in X for every B ∈ β. This follows because every open subset in Y is obtained as
a union of finite intersections of elements of β, and taking set-theoretic pre-images
commutes with unions and finite intersections.

Exercise II.2.6. A continuous map f : X → Y is said to be open if for every open
subset U of X, its image f(U) is open in Y . Show that if β is a basis for the topology
of X, then f is open if and only if f(B) is open for every B ∈ β.

Example II.2.7. The complex exponential function exp : C→ C∗ sending z 7→ ez is
continuous with respect to the subspace topology on C∗. Thanks to Remark II.2.5
this can be proved using the familiar ϵ − δ definition of continuity. We can even
prove something better - we can show it is holomorphic. Any holomorphic function
is continuous. We refer to your complex analysis course.

Example II.2.8. Let (X, d) be a metric space. Then the topology of the Defini-
tion II.1.19 is the coarsest topology on X such that the maps d(x,−) : X → R≥0

are continuous for every x ∈ X, where R≥0 is endowed with the subspace topology
as open balls are by definition, inverse images of open intervals under this map. We
conclude with the Remark II.2.5.

We now explain some rules to construct continuous maps.

Proposition II.2.9 (Constant maps). Let X and Y be topological spaces and f :
X → Y a set map. Then if f is constant with values y, f is continuous.

Proof. Let V be an open in Y . Then f−1(V ) is either empty of X depending
on V containing y or not. □

Proposition II.2.10. [Restricting the domain] Let f : X → Y be a continuous map
and A ⊆ X a subspace. Then the restriction f|A : A→ Y where A is equipped with
the subspace topology, is continuous.
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Proof. Let V be an open in Y . Then f−1
|A (V ) = f−1(V )

⋂
A is open in the

subspace topology. □

Proposition II.2.11. [Restriction the range] Let f : X → Y be a continuous map
and Z ⊆ Y a subspace containing the image f(X). Then the restriction f : X → Z
is continuous.

Proof. This follows because for any open subset U of Z we have f−1(U
⋂
f(X)) =

f−1(U) and by assumption f is continuous. □

Remark II.2.12. The inclusion of a subspace A ⊆ X is continuous.

Proposition II.2.13. [gluings: local formulation of continuity] Let X be a topo-
logical space written as a union of open subsets Uα. Show that a map X → Y is
continuous if and only if each restriction f|Uα

is continuous.

Proof. Let V be an open subset of Y . Then, since X =
⋃
Uα we have

f−1(V ) =
⋃
α

f−1(V ) ∩ Uα

It is therefore enough to show that each f−1(V )∩Uα is open in Uα. But by definition,
f−1(V ) ∩ Uα = f−1

|Uα
(V ) and by assumption, f|Uα

is continuous. □

Exercise II.2.14. [gluing continuous maps along closed subsets]TD, Exo 5,
Feuille 1

Let X be a to-
pological space and F1, F2 ⊆ X two closed subsets such that X = F1 ∪ F2. Let
f1 : F1 → Z and f2 : F2 → Z be continuous maps such that f1 and f2 agree on
F1 ∩F2. Show that f1 and f2 glue to a well-defined unique continuous map X → Z.

Definition II.2.15. We say that a continuous map f : X → Y is a homeomorph-
ism, if there exists a continuous map g : Y → X such that f ◦ g = IdY and
g ◦ f = IdX . In other words, if the map f admits an inverse and the inverse is also
continuous. Two topological spaces X and Y are said to be homeomorphic if there
exists a homeomorphism between them.

Example II.2.16.

• The set of complex numbers C together with the distance function |z− z′|
is a metric space. The natural identification of C with R2 via

z = a+ ib 7→ (a, b)

defines a homeomorphism, with R2 equipped with the euclidean distance.

• The tangent map ]− π
2
, π
2
[→ R is a homeomorphism with inverse given by

the function arctan.
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• The real exponential map R→ R>0 is an homemorphism with inverse given
by the real logarithm.

• Let a ≤ b. Then the interval [a, b] is homeomorphic to [0, 1]. Indeed,
the affine function [0, 1] → [a, b] sending x 7→ (b − a)x + a has inverse
y 7→ 1

b−a
y − a

b−a
.

Exercise II.2.17. Let ]a, b[ be an open interval in R. Show that it is homeomorphic
to R.

Example II.2.18. The homeomorphism of the Example II.2.16, restricts to a
homeomorphism between S1 ⊆ R2 and the subspace of complex numbers z with
|z| = 1. For the 1-dimensional circle, it will be convenient to take this as a defini-
tion instead.

Example II.2.19. The space of real numbers can be seen as a subspace of the com-
plex numbers via the continuous inclusion x 7→ 2πix. Using the Proposition II.2.11
and Proposition II.2.10, the complex exponential of the Example II.2.7 restricts
to a continuous map R→ S1 via x 7→ e2πix = cos(2πx) + i sin(2πx).

Example II.2.20. Here is an example of a continuous map that admits a set-
theoretic inverse but the inverse is not continuous. Take the topological spaces
Rdisc and Rtriv as in the Example II.1.7. Notice that the set-theoretical identity
Id : R → R defines a continuous map Rdisc → Rtriv. Indeed, the pre-image of any
open set for the trivial topology (either R or ∅) are open for the discrete topology
(where all subsets are open). Therefore this map is a continuous bijection. However,
its inverse - the identity map - does not define a continuous map Rtriv → Rdisc since
for instance, the inverse image of the singleton {0} is not empty for the trivial
topology.

Exercise II.2.21. Show that the open ball B(0, 1) in R2 is topologically isomorphic
to R2. Hint: use the map (x, y) 7→ ( x

2
√

1−||(x,y)||2
, y

2
√

1−||(x,y)||2
) with inverse given by

(x, y) 7→ ( x
2
√

1+||(x,y)||2
, y

2
√

1+||(x,y)||2
).

Exercise II.2.22. Let N = (0, 0, 1) denote the North pole in the sphere S2. The
stereographic projection from the north pole is described in the video below
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Show that it is given by the formula

S2 \ {N} ⊆ R3 → R2

(x, y, z) 7→ (
x

1− z
,

y

1− z
)

and its inverse by

v⃗ = (a, b) ∈ R2 7→ (
2a

1 + ||v⃗||2
,

2b

1 + ||v⃗||2
,
1− ||v⃗||2

1 + ||v⃗||2
)

Show these formulas define a homeomorphism from S2 \ {N} to R2.

Here’s another video illustrating this:

II.3. Compact Spaces

Definition II.3.1. A topological space X is said to be Hausdorff (séparé in french)
if for every pair of points x, y in X, there exists open neighborhoods U and V with
x ∈ U and y ∈ V and such that U ∩ V = ∅.

https://www.youtube.com/watch?v=0oO4bhMoREU
https://youtu.be/VhggKwRmhy4?t=101
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Example II.3.2. The topological space from the Example II.1.7-(i) is not Haus-
dorff since we can not isolate 0 and 1 by disjoint open subsets.

Remark II.3.3. Let X be a topological space and A ⊆ X a subspace. If X is
Hausdorff then so is A

Exercise II.3.4. TD, Exo 3,
Feuille 1

Show that a topological space X is Hausdorff if and only if the
diagonal of ∆ := {(x, x) : x ∈ X} ⊆ X × X is a closed subset for the product
topology.

Exercise II.3.5. TD, Exo 6,
Feuille 1

Show that in a Hausdorff space, the singletons {x} are closed
subsets.

Proposition II.3.6. Let (X, d) be a metric space. Then the induced topology is
Hausdorff.

Proof. Let x and y ∈ X and let ϵ := 1
2
d(x, y). We want to show that B(x, ϵ)

and B(y, ϵ) are disjoint. Suppose z exists in their intersection. Then d(x, z) < ϵ and
d(y, z) < ϵ. By the triangle inequality for d, we have

d(x, y) ≤ d(x, z) + d(z, y) < ϵ+ ϵ = d(x, y)

which is a contradiction.
□

Exercise II.3.7. (line with double origin) We consider the set of all real numbers
different from zero R \ {0} and formally add to it two elements 0A and 0B,ie, we
define

X := R \ {0}
⋃
{0A, 0B}

.
We consider the collections of subsets

β1 := { all open intervals of R which do not contain zero }

β2 := { all subsets of the form ]− a, 0[∪{0A}∪]0, a[, a > 0 }

β3 := { all subsets of the form ]− a, 0[∪{0B}∪]0, a[, a > 0 }
and defined

β = β1
⋃

β2
⋃

β3

(i) Check β satisfies the conditions of the Proposition II.1.14 and therefore
generates a topology τβ

(ii) Show that each of the spaces X \ {0A} and X \ {0B} is topologically
isomorphic to R
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(iii) Show that τβ does not separate the points 0A and 0B, namely, that it is
impossible to find an open subset containing 0A that does not intersect an
open subset containing 0B.

In the next example we finally define the circle and spheres as topological spaces:

Example II.3.8. The n-dimensional sphere Sn of the Example II.1.26 are closed
subsets. Indeed, let d denote the standard euclidean metric in Rn and let fn :
Rn → R be the function sending x 7→ d(x, 0) = ||x||. By Example II.2.8 this
function is continuous with R also endowed with the standard topology. By the
Proposition II.3.6, singletons are closed in R. In particular, {1} ⊆ R is a closed
subset. By Remark II.2.2, Sn−1 = f−1

n {{1}} is a closed subset of Rn. In particular,
Sn−1 is Hausdorff.

Exercise II.3.9.TD, Exo 4,
Feuille 1

Is the property of being Hausdorff stable under:

• Unions?
• Intersections?
• closure?
• interiors?
• boundary?
• passing a closed subspace?

Exercise II.3.10. Let X be a set. When is the trivial topology on X, Hausdorff?

Definition II.3.11. LetX be a topological space. An open covering ofX is a family
(possibly infinite) of open subsets U := {Uα}α∈A whose union is X, ie, ∪αUα = X.
A subcover of U is a open covering of X - U′ - with U′ ⊆ U.

Definition II.3.12. A topological space X is said to be quasi-compact if for every
open cover U := {Uα}α∈A of X we can always extract a subcover U′ which is finite.

Definition II.3.13. Let X be a topological space. We say that a subset A ⊆ X is
quasi-compact if it is quasi-compact for the subspace topology.

Remark II.3.14. Following the definition Definition II.3.13, an open covering for
a subspace A ⊆ X consists of a collection of subsets of X, {Ui}i∈I , where each Ui is
open in X and such that A =

⋃
i(A∩Ui), ie, A ⊆

⋃
i Ui. Then A is quasi-compact if

for any collection {Ui}i∈I of opens in X with A ⊆
⋃

i Ui we can find a subcollection
{Ui1 , · · ·Uin} with A ⊆

⋃n
k=1 Uik .



II.3. COMPACT SPACES 25

Exercise II.3.15. TD, Exo 4,
Feuille 1

Is the property of being quasi-compact stable under:

• Unions?
• Intersections?
• closure?
• interiors?
• boundary?
• passing a closed subspace?

Proposition II.3.16. Consider the closed interval [0, 1] as a subspace of R. Then
[0, 1] is quasi-compact.

Proof. Let U := {Ui}i∈I be a cover of [0, 1]. Assume that [0, 1] is not quasi-
compact. Then at least one of the intervals [0, 1

2
] or [1

2
, 1] is not contained in a finite

subcover of U since if they were both, we would have a contradiction with [0, 1]
not being quasi-compact. Lets pick one of these halves (one that is contained in a
finite subcover), and write it as [a1, b1]. Re-applying the same argument, we can cut
this half again in two and at least one of the parts will not be contained in a finite
subcover of U since if they were both, we would again find a contradiction. Call
[a2, b2] one of the sides which is not contained in a finite subcover of U. By induction
we can build this way a sequence of nested intervals [an, bn] of length 1

2n
, none of which

is contained in a finite subcover of U. We remark that the infinite intersection⋂
n[an, bn] is non-empty and consists of a single point: indeed, the sequence {an}

is increasing and bounded by 0 on the left and 1 on the right. Therefore by the
axioms of the real numbers, it admits a supremum sup. Similarly, the sequence
{bn} is decreasing and bounded by 0. It admits an infimum inf. By construction,
[sup, inf] ⊆

⋂
n[an, bn] and since the length of the intervals goes to zero with 1

2n
→ 0,

we must have sup = inf. Call this point p.

Since p ∈ [0, 1] and U is a covering family, there must exist i0, such that p ∈ Ui0 .
By definition of open sets for the standard topology, there must exist ϵ > 0 such
that p ∈ B(p, ϵ) ⊆ Ui0 . Using the Archimedean property, choose N > 0 such that
ϵ > 1

2N
. Since p ∈ [aN , bN ], it follows that

p ∈ [aN , bN ] ⊆ B(p, ϵ) ⊆ Ui0

But this contradicts the fact that [aN , bN ] by construction is not contained in a finite
subcover of U. □
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Example II.3.17. The interval [0, 1[ is not quasi-compact. Indeed, take the open
cover {Un}n∈N where Un := [0, 1− 1

n
[. The union

⋃
n Un = [0, 1[ but the cover does

not admit a finite subcover. Indeed, for any finitely many elements in the cover
Un1 , · · ·Unk

, take n = max(n1, · · ·nk) and take N = n + 1. Then 1 − 1
N

is not
contained in any of the U1, · · · , Uk.

Definition II.3.18. A topological space X is said to be compact if it is quasi-
compact and Hausdorff.

Exercise II.3.19.TD, Exo 6,
Feuille 1

(a,b) (i) Let X be quasi-compact. Show that that if F ⊆ X is a closed subset then
F is quasi-compact.

(ii) Let X be a Hausdorff space. Suppose F ⊆ X is quasi-compact and suppose
x is a point of X \ F . Show that there exists disjoint open sets U and V
of X with F ⊆ U and x ∈ V .

(iii) Let X be a Hausdorff space. Suppose F ⊆ X is quasi-compact. Then F
is closed. (Hint: use (ii)).

Exercise II.3.20.TD, Exo 6,
Feuille 7 (c)

Let f : X → Y be a continuous surjection. Show that if X
quasi-compact then so is Y .

Exercise II.3.21.TD, Exo 6,
Feuille 7 (c)

Let f : X → Y be a continuous bijection. Show that if Y
Hausdorff then so is X.

Proposition II.3.22.TD, Exo 6,
Feuille 7 (c)

Let f : X → Y be a continuous bijection. If X is quasi-
compact and Y is Hausdorff then f is a homeomorphism.

Exercise II.3.23. A topological group is a group G endowed with a topology that
renders the maps G×G→ G given by (x, y) 7→ x.y and G→ G given by x 7→ x−1,
continuous.

(i) Let H ⊆ G be a subgroup. Then if H is open, it is closed.
(ii) G is Hausdorff if and only if the singleton {e} is closed.

Example II.3.24. The unit square [0, 1]× [0, 1] and the disk D2 are homeomorphic
with respect to the subspace topologies induced from R2.

II.4. Sequences and Continuity

Definition II.4.1. Let (X, τ) be a topological space. We say that a sequence
(an)n∈N converges to an element x ∈ X if for every open subset U of X containing x
there exists an integer N > 0 such that all the terms of the sequence of order n ≥ N
are inside U .

Exercise II.4.2. Show that if X is Hausdorff, if a sequence has a limit then this
limit is unique.
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Exercise II.4.3. Let X be a topological space. Let A ⊆ X.
(i) Show that if there is a sequence of points in A converging to x then x ∈ A.

(ii) Show that the converse holds if X is metrizable, ie, the topology of X is
induced by a distance function.

Exercise II.4.4. Let f : X → Y be a map of sets between topological spaces.
(i) Show that if f is continuous then for every sequence of points xn in X

converging to x the sequence f(xn converges to f(x)inY .

(ii) Show that the converse holds if X is metrizable.

II.5. Constructions: Products, Quotients, Gluings, Function Spaces

Products.

Construction II.5.1. Let (X, τX) and (Y, τY ) be topological spaces. Consider the
set theoretic product X × Y . We define β ⊂ P (X × Y ) the collection of open boxes

βbox := {U × V : U ∈ τX , V ∈ τY }

Lemma II.5.2. The collection βbox of the Construction II.5.1 satisfies the condi-
tions (i) and (ii) of the Proposition II.1.14.

Proof. (i) Let (x, y) ∈ X×Y . Since τX is a topology, there exists U ∈ τX
with x ∈ U . Same argument gives us V ∈ τY with y ∈ V . Therefore
U × V ∈ βbox contains (x, y).

(ii) Let U1, U2 ∈ τX and V1, V2 ∈ τY . Notice that set-theoretically

(U1 × V1)
⋂

(U2 × V2) = (U1 ∩ U2)× (V1 ∩ V2)

Since U1, U2, V1, V2 are opens in a topology, by the axioms we have U1∩U2 ∈
τX and V1 ∩ V2 ∈ τY so that (U1 ∩ U2)× (V1 ∩ V2) ∈ βbox

□

Definition II.5.3. Let (X, τX) and (Y, τY ) be topological spaces. The topological
space obtained by endowing the set X × Y with the topology generated by βbox is
called the product space. This topology is called the product topology.

Proposition II.5.4. Let (X, τX) and (Y, τY ) be topological spaces. Then the product
topology coincides with the coarsest topology rendering the two canonical projections
πX : X × Y → X and πY : X × Y → Y , continuous.

Proof. Let us denote by π ⊆ P (X × Y ) the collection

π := {π−1
X (U) : U ∈ τX}

⋃
{π−1

Y (V ) : V ∈ τV }
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Then βbox coincides with the collection I(π) obtained by adjoining to π all finite
intersections of elements of π as in the Construction II.1.15. This follows from the
formula

U × V = π−1
X (U)

⋂
π−1
Y (V )

for U ∈ τX and V ∈ τY . In particular π is a subbasis for the product topology and
it follows from the Remark II.2.5 that the two projections are continuous. □

Exercise II.5.5.TD. Ex. 2
Feuille 1

A map of topological spaces Z → X ×Y is continuous if and only
if the composition with the two projections πX and πY are continuous.

Exercise II.5.6 (Tube Lemma). Let X and Y be topological spaces with Y quasi-
compact. Let N be an open subset of X × Y containing a subset of the form
{x} × Y . Then there exists an open neighborhood W of x in X such that W × Y
is still contained in N

Exercise II.5.7. Let X and Y be quasi-compact topological spaces. Then X × Y
is quasi-compact. (Hint: Use the Exercise II.5.6).

Exercise II.5.8. Let X and Y be quasi-compact topological spaces. Then X × Y
is Hausdorff if and only if both X and Y are Hausdorff.

Example II.5.9. Let n ≥ 2. The standard euclidean topology on Rn := R× · · · × R︸ ︷︷ ︸
n

of the Example II.1.20 coincides with the product topology. We use the criterium
of the Proposition II.1.18 to show that the two topologies coincide. The standard
euclidean topology has a basis βballs given by the collection of open balls. The
product topology has a basis βbox given by the collection of open boxes. Let x =
(x1, · · · , xn) ∈ Rn. Given ϵ > 0 and taking δ such that δ

√
n < ϵ the open box

]−x1−δ, x1+δ[× · · ·×]xn−δ, xn+δ[ is contained in the open ball B(x, ϵ). Conversely,
if x = (x1, · · · , xn) belongs to an open box U1 × U2 × · · · × Un, we can always find
δ > 0 such that x ∈] − x1 − δ, x1 + δ[× · · ·×]xn − δ, xn + δ[⊆ U1 × · · · × Un. In
this case, by taking an open ball B(x, ϵ) of radius ϵ smaller than δ.

√
n, we will have

x ∈ B(x, ϵ) ⊆ U1 × · · · × Un.
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Example II.5.10. The subspace topology on {(x1, · · · xn) ∈ Rn : 0 ≤ xi ≤ n,∀i ∈
{1, · · · , n}} ⊆ Rn coincides with the product topology [0, 1]n. By induction from
the Proposition II.3.16, it is quasi-compact.

Example II.5.11. The spheres Sn−1 can be described as closed subspaces of the
product interval [−1, 1]n which is quasi-compact as a consequence of the Example II.5.10
(since [0, 1] and [−1, 1] are homeomorphic). It follows from the Exercise II.3.19 that
the spheres are also quasi-compact, and therefore compact (since we already knew
they were Hausdorff).

Definition II.5.12. The n-dimensional torus Tn is the product space S1 × · · · × S1︸ ︷︷ ︸
n

.

In particular, it is Hausdorff.

Disjoint unions.

Reminder II.5.13. If X and Y are sets, we consider their disjoint union

X
∐

Y := (X × {0})
⋃

(Y × {1})
We denote by iX : X → X

∐
Y and iY : Y → X

∐
Y the two inclusions. A pair

of maps of sets f : X → Z and g : Y → Z, uniquely defines a map X
∐
Y → Z

sending an element a ∈ X
∐
Y to f(a) if a belongs to X and a to g(a) if a belongs

to Y
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Construction II.5.14. If (X, τX) and (Y, τY ) are topological spaces, we can endow
the disjoint union of the Reminder II.5.13 with a topology. Namely, we consider

τ := {A ∈ P (X
∐

Y ) : i−1
X (A) ∈ τX , and i−1

Y (A) ∈ τY }

The compatibility of taking inverse images, with unions and intersections, guarantees
that this forms a topology which renders the two inclusions iX : X → X

∐
Y and

iY : Y → X
∐
Y continuous. We call X

∐
Y the disjoint union space.

Example II.5.15. Let X and Y be topological spaces. Then iX(X) ⊆ X
∐
Y is

both open and closed in X
∐
Y . Indeed, set-theoretically we have i−1

X (iX)(X)) = X
which is open in X and i−1

Y (iX)(X)) = ∅ which is open in Y .

Exercise II.5.16. Let X, Y, Z be topological spaces. Show that that a map Ψ :
(X
∐
Y, τ) → (Z, τZ) is continuous if and only if the two compositions Ψ ◦ iX and

Ψ ◦ iY are continuous.

Exercise II.5.17. Let X, {Yi}i∈I be topological spaces. Show that the canonical
map induced by the inclusions Yi →

∐
I Yi

X × (
∐
i

Yi)→
∐
i

(X × Yi)

is a homeomorphism.

Quotients.

Reminder II.5.18. Let X be a set. An equivalence relation on X is a subset
R ⊆ X ×X satisfying the following three properties:

• Identities: R contains the diagonal subset ∆;
• Symmetry: if (x, y) ∈R, then (y, x) ∈R;
• Transitivity: if (x, y) ∈R and (y, z) ∈R, then (y, x) ∈R;

Given an equivalence relation R on X we can form the quotient set X/R of all
equivalence classes [x] where [x] = [y] if and only if (x, y) ∈R. In denote by

π : X → X/R

the map of sets sending x ∈ X to its class [x].

Example II.5.19. Let f : X → Y be a map of sets. Then the subset R ⊆ X ×X
defined by

R = {(x, y) : f(x) = f(y)}
defines an equivalence relation on X. By the nature of this relation, the map f :
X → Y factors through the quotient set
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X

π
��

f

""

X/R
f̃

// Y

by f̃([x]) = f(x).

The map f̃ is injective: if f̃([x]) = f̃([y]), then f(x) = f(y) so by definition [x] = [y].

The map f̃ is surjective if and only if f is surjective. Indeed, for any composition
of maps of sets u = v ◦ h, with h surjective, then u is surjective if and only if v is
surjective.

In particular, all surjective maps of sets are quotient maps.

Exercise II.5.20. Let X be a set.

(i) Let {Ri}i∈I be a family of equivalence relations on X. Show that the in-
tersection

⋂
iRi ⊆ X ×X defines an equivalence relation on X.

(ii) Let S ⊆ X ×X be a subset. Define < S >⊆ X ×X as follows: (x, y) ∈<
S > if and only if there exists x0, x1, · · ·xn, xn+1 ∈ X , with x0 = x, xn+1 =
y such that, either
• xi = xi+1

• (xi, xi+1) ∈ S
• (xi+1, xi) ∈ S

Show that < S > defines an equivalence relation on X.

(iii) Show that if R is any equivalence relation with S ∈R then < S >⊆R.

(iv) Conclude that

< S >=
⋂

S⊆R:R is an equivalence relation

R

We call < S > the equivalence relation generated by S. It is the finest
equivalence relation containing S

Construction II.5.21. (Quotient topology) Let (X, τ) be a topological space and
let R be an equivalence relation on the setX. The topology ofX produces a topology
in X/R where declare that a subset V ⊆ X/R is open if and only if π−1(V ) is open
in X. The fact that this defines a topology is immediate from the properties of
the operation π−1 and from the properties of opens in X. Moreover, this topology
makes π continuous by definition.
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Definition II.5.22. Let X be a topological space, R an equivalence relation. We
say that an open subset U of X is saturated if and only if U = p−1(p(U)).

Remark II.5.23.TD, Exo
8-(ii),

Feuille 1

Let X be a topological space, R an equivalence relation. Then
the map π is open (image of open subsets is open) if and only if every open subset
is saturated.

Proposition II.5.24.TD, Exo
8-(iii),

Feuille 1

Let X and Z be a topological spaces and let R be an equi-
valence relation on the set X. Then a map u : X/R → Z is continuous if and
only if the composition u ◦ π : X → Z is continuous. Moreover, continuous maps
f̃ : X/R → Z are in bijection with continuous maps f : X → Z which identify the
equivalence classes, ie, f(x) = f(y) if and only if x ∼ y.

Example II.5.25.TD, Exo 13,
Feuille 1

Consider the exponential map exp : R → S1 of the Ex-
ample II.2.19. For every x ∈ R and for every n ∈ Z, we have

e2π(x+n) = e2πx

Let us define an equivalence relation R on the real line by declaring x ∼ y if
and only if y − x ∈ Z. This satisfies the symmetry and transitivity relations.
Therefore, we can form the quotient space R/R of the Construction II.5.21 and by
the Proposition II.5.24, exp factors through a continuous map

R
exp

""��

R/R
ẽxp
// S1

The map ẽxp is a continuous bijection. Let us prove that it is injective. Suppose

ẽxp([x]) = ẽxp([y])

ie,

exp(2πi x) = exp(2πiy)

Since the exponential is a map of groups, this is equivalent to

e2πi(x−y) = 1

therefore x− y ∈ Z so that [x] = [y].

For surjectivity, it is the fact that every point of the circle can be written in expo-
nential form via Euler’s formula.

Exercise II.5.26.TD, Exo 10,
Feuille 1

Let X be a topological space and R an equivalence relation.
Then:
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(i) Show that if R ⊆ X × X is closed and π : X → X/R is open, then the
quotient is Hausdorff.

(ii) Show that if R ⊆ X × X is closed and X is compact (quasi-compact
Hausdorff), then X/R is compact.

Exercise II.5.27. Show that the group (Rn,+, 0) is a topological group.

Exercise II.5.28. Consider the additive group (C,+, 0) and the multiplicative group
C∗ with the subspace topology from C. Show that they are both topological groups.
Check that the exponential map is a map of topological groups.

Exercise II.5.29. TD, Exo 12,
Feuille 1

Let G be a topological group and H a subgroup. Then the
relation g1 ∼ g2 if and only if g−1

2 g1 ∈ H, defines an equivalence relation RH in G
(check this!). Show that the quotient G/H is Hausdorff if and only if the subgroup
H is closed in G.

Exercise II.5.30. TD, Exo 12,
Feuille 1

Let G be a topological group and H a subgroup. Then the
relation g1 ∼ g2 if and only if g−1

2 g1 ∈ H, defines an equivalence relation RH in G
(check this!). Show that the quotient G/H is Hausdorff if and only if the subgroup
H is closed in G.

Exercise II.5.31. Let G be a topological group and H is a subgroup which is closed
and normal. Show that G/H is a topological group and the quotient map is a map
of topological groups.

Exercise II.5.32. The quotient R/R of the Example II.5.25 is Hausdorff. Indeed,
this quotient can also be identified, by construction, with the quotient R/Z for the
closed additive subgroup Z ⊆ R.

Example II.5.33. TD, Exo 13,
Feuille 1

Consider R with the equivalence relation R of the Example II.5.25
Let us consider the closed interval [0, 1] ⊂ R as a closed subspace. The equivalence
relation R on R restricts to an equivalence relation R′ on [0, 1], consisting of

R′ := {(0, 1), (1, 0)}
⋃

∆

identifying the extremities 0 and 1 of the interval to the same point, ie, [0] = [1]
in the quotient. The inclusion [0, 1] ⊆ R being compatible with the equivalences
relations, passes to the quotient

[0, 1] //

��

R

��

[0, 1]/R′ ϕ
// R/R
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ϕ is a continuous bijection. Continuity is a consequence of the universal property.
For injectivity, notice that if ϕ([x]) = [x] = ϕ([y]) = [y] in R/R with x, y ∈ [0, 1],
then there exists n such that x = y + n. Since by assumption both x and y are
in [0, 1], this can only mean x = 0 and y = 1 or x = 1 and y = 0. In both cases
[x] = [y] in [0, 1]/R′. Surjectivity is a consequence of the fact that any x ∈ R can
be written as x = y + n for some y ∈ [0, 1].

In particular, since [0, 1] is quasi-compact (Proposition II.3.16), by the Exercise II.3.20,
[0, 1]/R′ is quasi-compact.

By the Exercise II.5.32, R/R is Hausdorff. Therefore, by the Proposition II.3.22,
the dotted map is a homeomorphism.

Returning to the exponential map, we obtain

[0, 1] //

��

R

��

exp

!!

[0, 1]/R′ ∼
// R/R // S1

We claim that the continuous composition

[0, 1]/R′ ∼
// R/R // S1

is an homemorphism. Indeed, since S1 is Hausdorff, by the same arguments as above,
it is enough to remark that this composition is a bijection because both maps are
bijections.

This example gives another a characterization of the circle, this time as a quotient
space.

Exercise II.5.34. This exercise constructs the torus as in the snake game Exer-
cice I.1.1 and explains why it is homemorphic to the torus as a product of circles,
as seen in the Exercice I.1.8.

Consider the squareX := [0, 1]×[0, 1] as a subspace of R2 with the standard topology,
pictured as

(0, 0)

(0, 1) (1, 1)

(1, 0)

We consider the equivalence relation R forcing the identifications of the snake game
Exercice I.1.1. First, a point of the form (0, y) should be identified with the point
(1, y)
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(0, 0)

(0, 1) (1, 1)

(1, 0)

(0, y) (1, y)

Secondly, a point of the form (x, 0) should be identified with the point (x, 1)

(0, 0)

(0, 1) (1, 1)

(1, 0)(x, 0)

(x, 1)

More precisely, R ⊆ X ×X is defined by the union of

{((x, y), (z, w)) : x = 0, y = w, z = 1}

{((x, y), (z, w)) : x = z, y = 0, w = 1}
and the diagonal ∆. This defines an equivalence relation on X. Denote by X/R
the quotient space. Show that

(i) X/R is quasi-compact.
(ii) The inclusion X ⊆ R2 renders the equivalence relation R compatible with

the equivalence relation associated to the additive subgroup Z2 ⊆ R2.
(iii) The induced map quotient X/R→ R2/Z2 is a continuous bijection.
(iv) R2/Z2 is Hausdorff
(v) The quotient map X/R→ R2/Z2 is an homemorphism.
(vi) The map (exp, exp) : R2 → S1 × S1 descends to the quotient R2/Z2 and

induces a homeomorphism.

Warning II.5.35. The product of quotient maps is not a quotient map in general.
See the Example 7, page 143 in Munkres Topology book. See also the discussion
below in the Exercise II.5.65.

Exercise II.5.36. Use n copies of the exponential function to show that the quotient
Rn/Zn is homeomorphic to the product (S1)×n . Suggestion: use the cubes [0, 1]n as
above.

Exercise II.5.37. Consider the disk X = D2 with the equivalence relation identi-
fying its boundary ∂X = S1 to a single point. Show that the quotient space is
homeomorphic to the 2-sphere S2.

Exercise II.5.38. TD, Exo 8,
Feuille 3

The real projective espace of dimension n, RP n is the quotient
of Rn+1 \ {0} by the equivalence relation x ∼ y iff there exists λ ∈ R∗ with x = λy.

(i) Show that RP n is Hausdorff.
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(ii) Show that RP n is homeomorphic to the quotient of the sphere Sn by the
antipodal relation , ie, x ∼ −x. Conclude that RP n is compact.

(iii) Show that RP 1 is homeomorphic to S1.
Here’s a video illustrating the real projective plane (n=2):

Exercise II.5.39. The Mobius band M is the quotient of R2 by the relation gen-
erated by (x, y) ∼ (x+ 1,−y).

(i) Show that M is Hausdorff.
(ii) Show that M is homeomorphic to the quotient of [0, 1] × [0, 1] by the

relation (0, y) ∼ (1, 1− y). Conclude that M is compact.

Exercise II.5.40.TD, Exo 8,
Feuille 4

The Klein bottle K is the quotient of R2 by the equivalence
relation given by the identifications (x, y) ∼ (x+ 1, y) and (x, y) ∼ (−x, y + 1).

(i) Show that K is Hausdorff.
(ii) Show that K is homeomorphic to the quotient of [0, 1] × [0, 1] by the

equivalence relation (0, y) ∼ (1, y) for all y ∈ [0, 1] and (x, 0) ∼ (1 − x, 1)
for all x ∈ [0, 1].

(iii) Conclude that K is compact.

Exercise II.5.41. Let X be a topological space and let G be a group acting on X.
We define a relation on X by declaring that x ∼ y if there exists g ∈ G such that
y = g(x).

(i) Show that this defines an equivalence relation on X;
(ii) Let p : X → X/G denote the quotient map. Show that if U is an open

subset in X, then p−1p(U) =
⋃

g∈G g(U).
(iii) Conclude that the quotient map is an open map.

Gluings. Now that we know about the existence of quotient spaces and disjoint
unions, we can define gluings in general. Given two topological spaces X and Y we
would like to glue them along a common subspace Z. We can do something slightly
more general:

https://www.youtube.com/watch?v=lEvJqGvY24c


II.5. CONSTRUCTIONS: PRODUCTS, QUOTIENTS, GLUINGS, FUNCTION SPACES 37

Construction II.5.42 (Gluing). Let f : Z → X and g : Z → Y be continuous
maps. We consider the disjoint union X

∐
Y endowed with the finest equivalence

relation R such that f(z) ∼ g(z) for all z ∈ Z. In the notations of the Exer-
cise II.5.20, we set S := {(f(z), g(z)) : z ∈ Z} and R :=< S >. We denote the
quotient space by

X
∐
Z

Y := (X
∐

Y )/R

by iX : X → X
∐
Y → X

∐
Z

Y and iY : X → X
∐
Y → X

∐
Z

Y the maps induced by

the two canonical inclusions. It follows from the quotient relations that the diagram
commutes

Z
g
//

f

��

Y

iY

��

X
iX
// X
∐
Z

Y

Proposition II.5.43. [Universal property of the gluing] Let T be a topological space
with two maps u : X → T and v : Y → T such that u ◦ f = v ◦ g. Then by
the universal property of the quotient topology there exists a unique continuous map
Ψ : X

∐
Z

Y → T such that u = Ψ ◦ iX and v = Ψ ◦ iY . Moreover, a map Ψ with this

property is continuous if and only if both u and v are continuous.

Proof. This is a combination of the universal property of disjoint unions with
the universal property of quotient spaces. □

Definition II.5.44. Consider Y = ∗ and f : Z ↪→ X the inclusion of a subspace.
Then we write X/Z := X

∐
Z

Y for the result of the gluing. We call it the collapsed

space, since Z becomes a single point in X/Z.

Example II.5.45. Let X be a topological space. The cone of X is the collapsed
space C(X) := [0, 1]×X/{1} ×X.

Example II.5.46. Let X be a topological space. The suspension of X is the col-
lapsed space S(X) := [0, 1]×X/({1} ×X ∪ {0} ×X).

Example II.5.47. Consider the case where Z = ∅. Then the gluing X
∐
Z

Y is the

disjoint union space X
∐
Y since no relations are forced.

Example II.5.48. Let X be a topological space with U and V open subsets such
that U

⋃
V = X. Then the diagram of inclusions
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U
⋂
V //

��

V

��

U // X

exhibits X as the gluing of U and V along the intersection. This is a direct con-
sequence of Proposition II.2.13.

Example II.5.49. In this example we explain how the 2-sphere can be obtained as
a gluing of two disks. Before addressing the proof, there’s a video to explain what
we are trying to do.

Let us formalize this. Consider the 2-sphere S2 ⊆ R3. Write DN and DS for the
northern and southern hemispheres.

DN := {(x, y, z) ∈ S2 : z ≥ 1}

DS := {(x, y, z) ∈ S2 : z ≤ 1}
Their intersection is the equator circle

DN ∩DS = {(x, y, z) ∈ S2 : z = 0} = {(x, y, z) : x2 + y2 = 1, z = 0}
As in the Exercise II.2.22 DN is homeomorphic to the closed 2-disk D2 via the. In
the same way, DS is also homeomorphic to the 2-disk via the stereographic projection
from the north pole. The intersection of the two hemispheres is homeomorphic to
the circle S1. Using these identifications, we can fit S2 in a commutative square

S1 //

��

DN

��

DS
// S2

where the maps correspond to the inclusions of the subspaces. This diagram exhibits
S2 as the gluing of the two hemispheres, ie, the induced map

https://youtu.be/VhggKwRmhy4?t=55
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Ψ : DN

∐
S1

DS → S2

is a homeomorphism. To see this we start by constructing a set-theoretic map
ϕ : S2 → DN

∐
S1

DS by

ϕ(x, y, z) =

®
iN(x, y, z) if (x, y, z) ∈ DN

iS(x, y, z) if (x, y, z) ∈ DS

where iN : DN → DN

∐
S1

DS and iS : DS → DN

∐
S1

DS are the canonical maps. Clearly

this agrees on the intersection of the two hemispheres because of the definition of
the equivalence relation. Notice that the restriction of ϕ to DN is the inclusion iN
and ϕ restricted to DS is iS. Therefore, since DN and DS are closed subsets, ϕ is
continuous because of the Exercise II.2.14. Notice that

Ψ ◦ ϕ(x, y, z) =
®
Ψ(iN(x, y, z)) = (x, y, z) if (x, y, z) ∈ DN

Ψ(iS(x, y, z)) = (x, y, z) if (x, y, z) ∈ DS

since the compositions Ψ ◦ iS and Ψ ◦ iN are the inclusions of the two hemispheres.

Finally, we also remark that the composition

ϕ ◦Ψ : DN

∐
S1

DS → S2 → DN

∐
S1

DS

is the identity. Indeed, by the universal property, it suffices to check that ϕ◦Ψ◦iN =
iN and ϕ◦Ψ◦iS = iS. But Ψ◦iS and Ψ◦iN are the canonical inclusions of the northern
and southern hemispheres, so the definition of ϕ by cases guarantees ϕ ◦Ψ ◦ iN = iN
and ϕ ◦Ψ ◦ iS = iS.

In conclusion, ϕ ◦Ψ and Ψ ◦ ϕ are the identity maps.

Definition II.5.50. Let X and Y be topological spaces and Z = ∗. The maps
f : Z → X and g : Z → Y correspond to a point x ∈ X and a point y in Y . In this
case the gluing is called the wedge sum and denoted by X ∨ Y .

Example II.5.51. The wedge of two circles S1 ∨ S1 recovers the space

of the Exercise I.2.10.
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Exercise II.5.52. Let X be a topological space. Show that the suspension S(X)
(see Example II.5.46) can be obtained as a gluing of two copies of the cone of C(X)
along X

Exercise II.5.53.TD, Exo 11,
Feuille 1

Consider X and Y topological spaces with A ⊆ X a subspace
and f : A → Y a continuous map. Show that if A is closed in X and both X and
Y are Hausdorff, then A identifies with a subspace of X

∐
A

Y

Function spaces (optional, not part of the program).

Reminder II.5.54. Let X, Y be sets. Then the collection of maps of sets X → Y
forms itself a set, which we will denote as Hom(X, Y ). This set has a particular nice
feature: to give a map of sets Ψ : Z → Hom(X, Y ) is the same thing as giving for
every element z ∈ Z, a map Ψz : X → Y ,ie, for every element x ∈ X, an element
Ψz(x) ∈ Y . We can arrange this as a function on pairs (z, x) 7→ Ψz(x), or simply, a
map of sets Z × X → Y . Inversely, every map of sets ϕ : Z × X → Y determines
for each z ∈ Z a map ϕ(z,−) : X → Y , ie, a map Z → Hom(X, Y )

We would like to have a similar mechanism for topological spaces, namely, given two
topological spaces, X and Y , construct a new topological space, denoted Map(X, Y )
whose points are continuous maps X → Y and such that continuous maps Z →
Map(X, Y ) are in bijection with continuous maps Z×X → Y by the same principle
as above. This is not always possible, but in some cases, it is:

Notation II.5.55. Let X and Y be topological spaces. We denote by C(X, Y ) the
set of all continous maps from X to Y .

Construction II.5.56 (Compact-open topology). Let X and Y be topological
spaces. Given a compact subset K of X and an open subset U of Y , we denote
by

W (K,U) := {f ∈ C(X, Y ) : f(K) ⊆ U}

and consider the collection of subsets of C(X, Y ) given by

β := {W (K;U) : K compact in X,U open in Y }

The collection β verifies the condition for a subbasis of a topology as in Construc-
tion II.1.15:

(i) Indeed, for any continuous map f : X → Y , choose K = ∅ and U = Y .
Then f ∈ W (K,U) = C(X, Y )

We denote by Map(X, Y ) the topological space obtained by endowing the set C(X, Y )
with the topology generated by the subbasis β as in Construction II.1.15. We call
it the compact-open topology
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Definition II.5.57. A space X is said to be locally compact if it is Hausdorff and
every point has a compact neighborhood, ie, for every point x ∈ X there exists an
open neighborhood U and a compact subset K such that x ∈ U ⊆ K.

Remark II.5.58. Every compact space is also locally compact. Indeed, take U = X
for every point.

Example II.5.59. The spaces Rn are locally compact. Indeed, any point lies in a
basis element ]a1, b1[× · · ·×]an, bn[ which is inside the compact subspace [a1, b1] ×
· · · × [an, bn]

Exercise II.5.60 (One point compactification). TD1, Exo
16, Feuille 1

Let X be a locally compact space.

(i) Let “X denote the set obtained by adjoining to X a point ∞. Define
τ ⊆ P (“X) by

τ := {U : U open in X} ∪ {(X \K) ∪ {∞} : K is compact in X }

(a) Show that τ forms a topology on “X.
(b) Show that “X is compact.

(ii) Show that if Y is any other compact space containing X as a subspace
and such that Y \ X consists of a single point, then Y is canonically
homeomorphic to “X through an isomorphism that preserves X. (We call“X the one-point compactification of X)

(iii) Use the stereographic projection to show that R̂n is homeomorphic to Sn.
(iv) Show that the one-point compactification of the Mobius band is the real

projective plane.

Exercise II.5.61. We define the complex projective space of dimension n - CP n-
to be the quotient of Cn \ {0} by the equivalence relation given by x ∼ y if and only
if there exists λ ∈ C∗ such that x = λ.y. Show that CP 1 is homeomorphic to the
2-sphere S2.

Lemma II.5.62. Let X be a locally compact space. Then for every point x ∈ X
and every open neighborhood U of x there exists an open neighborhood V such that
x ∈ V ⊆ V ⊆ U with V compact.

Proof. Let x ∈ X and U be an open neighborhood of x. Let “X denote the
one-point compactification of X (Exercise II.5.60), which exists since X is locally
compact. Let C = “X \ U . Since U is also open in “X by definition of the one-point
compactification, C is closed in “X. Since “X is compact, C is quasi-compact subspace
(by the Exercise II.3.19). By the Exercise II.3.19-(ii), we can find open disjoint
subsets V and W , with x ∈ V , and C ⊆ W . Then, V is compact in “X and disjoint
from C. Therefore V ⊆ U . □
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Lemma II.5.63. Let X be a locally compact space, then the evaluation map E :
Map(X, Y ) ×X → Y defined set-theoretically by (f, x) 7→ f(x), is continuous with
respect to the compact-open topology.

Proof. Let T be an open in Y . By the Proposition II.1.11. to show that
E−1(T ) is open it is enough to show that for (f, x) ∈ E−1(T ) there exists an open
subset S of Map(X, Y ) × X such that (f, x) ∈ S ⊆ E−1(T ). In other words,
E(S) ⊆ T . Since X is locally compact Hausdorff, by the Lemma II.5.62, given
U = f−1(T ) there exists an open V with x ∈ V ⊆ V ⊆ U with V compact. Form
S := U ×W (U, T ) which is open in the box topology. We notice that (f, x) ∈ S
since x ∈ U and U ⊆ f−1(T ), ie, f(U) ⊆ T . Also, notice that by definition of the
pre-image we have S ⊆ E−1(T ).

□

Proposition II.5.64.TD, Exo 6,
Feuille 2

Assume X is locally compact. Then a map Z → Map(X, Y )
is continuous if and only the the composition with the evaluation map Z × X →
Map(X, Y )×X → Y is continuous.

Proof. As a consequence of the Lemma II.5.63, if X is locally compact, the
evaluation map is continuous. Therefore, if Z → Map(X, Y ) is a continuous map,
the composition

Z ×X → Map(X, Y )×X → Y

is continuous.
Conversely, assume that Ψ : Z × X → Y is a continuous map. We want to show
that the induced map ϕ : Z → Map(X, Y ) is continuous. By the Remark II.2.5, it
is enough to show that the pre-image of an open subset W (K,V ) in Map(X, Y ) is
open in Z. By definition

ϕ−1(W (K,V )) = {z ∈ Z : ϕz(K) ⊆ V } = {z ∈ Z : {z} ×K ⊆ Ψ−1(V )}
Since Ψ is continuous by assumption, Ψ−1(V ) is open in Z ×X. In particular
Ψ−1(V ) ∩ Z ×K
is an open subset of Z ×K (with the subspace topology). The tube lemma (Exer-
cise II.5.6) applied to {z} ×K ⊆ Z ×K implies that there exists an open neigh-
borhood A of z in Z such that the whole A × K is still inside Ψ−1(V ). It follows
that A ⊆ ϕ−1(W (K,V )).

□

Exercise II.5.65. Let Z be a locally compact space and let X be a topological
space with an equivalence relation R ⊆ X ×X. Endow X ×Z with the equivalence
relation R ×∆Z ⊆ X ×X × Z × Z. Use the universal property of mapping spaces
to show that the canonical map

(X/R)× Z → (X × Z)/(R×∆Z)

is a homeomorphism.
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Remark II.5.66. The Warning II.5.35 shows that in general the product of quo-
tient maps is not a quotient map. However, when one of the spaces is locally
compact, the result holds as shown by the Exercise II.5.65. In fact, to make this
result hold in full generality one needs to work with a smaller class of topological
spaces, namely, those called compactly generated. Locally compact spaces belong
to this class. We will not show it in this course, but for the purpose of algebraic
topology any space can be replaced by one that is compactly generated without
losing information. For more details see P. May’s book (chapter 5) referenced in the
bibliography.

II.6. Connected spaces

Proposition II.6.1. Let Z be a topological space. The following conditions are
equivalent:

(i) There exists a non-empty subset U ⊆ Z which is both open and closed in Z;

(ii) There exists U and V open subsets of Z such that U ∩ V = ∅, U ∪ V = Z;

(iii) The same as in (ii) but U and V closed.

(iv) There exists topological spaces U and V and a homeomorphism Z ≃ U
∐
V .

(v) There exists a non-constant continuous map Z → {0, 1} where {0, 1} is
equipped with the discrete topology.

Proof.

• (i) ⇒ (ii): Let U be as in (i). Take V = Z \ U . Both U and V are
open because U is both open and closed. Finally, U

⋂
(Z \ U) = ∅ and

U
⋃
(Z \ U) = Z.

• (ii)⇔ (iii): Take complementary subsets.

• (ii) ⇔ (iv): By Exercise II.5.16 the two inclusions U ↪→ Z and V ↪→ Z
induce a continuous map

U
∐

V → Z

This is a continuous bijection. It remains to compare the topology. Let W
be open in Z. Then the two intersections U

⋂
W and V

⋂
W are open by

the axioms. Conversely, assume that both U
⋂
W and V

⋂
W are open.

Then we have

(W
⋂

U)
⋃

(W
⋃

V ) = W
⋂

(U
⋃

V ) = W
⋂

Z = W
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which by the axioms for a topology, is also open.

• (ii)⇒ (v). Given U and V as in (ii), define f : Z → {0, 1} by

f(z) =

®
1 z ∈ U
0 z ∈ V

This function is continuous since f−1({1}) = U and f−1({0}) = V are
open.

• (v) ⇒ (ii). Given such a continuous function, set U := f−1({1}) and
V := f−1({0}). It follows that U and V are both non-empty (because the
function is non-constant), open and disjoint and their union is Z.

□

Definition II.6.2. We say that a topological space is disconnected if it satisfies
one of the equivalent conditions of the Proposition II.6.1. We say that a space is
connected if it is not disconnected. We says that a subspace is connected if it is
connected for the induced topology.

Remark II.6.3. In particular, a spaceX is connected if and only if every continuous
function X → {0, 1} is constant. In particular, if X is connected, every function to
a discrete space must be constant.

Proposition II.6.4. The space R is connected.

Proof. Suppose R is not connected. Then there exists a subset A which is sim-
ultaneously open, closed and non-empty and different from R. Let x ∈ R \A. Then
since R =] −∞, x] ∪ [x,+∞], one of the intersections [x,+∞[∩A or ] −∞, x] ∩ A
has to be non-empty. Without loss of generality, assume it is [x,+∞[∩A that is
non-empty. Notice that [x,+∞[ is the complement of the open subset ] −∞, x[ so
it is closed. Since A is closed, [x,+∞[∩A is also closed. However, since x does not
belong to A, [x,+∞[∩A =]x,+∞[∩A which is also open since A is open. It follows
that [x,+∞[∩A is both open and closed. Now, [x,+∞[∩A is non-empty and admits
a lower bound by x. Therefore, it has a greatest lower bound s = inf([x,+∞[∩A).
Since [x,+∞[∩A is closed, s ∈ [x,+∞[∩A. But at the same time since [x,+∞[∩A
is open, there exists ϵ > 0 such that ]s − ϵ, s + ϵ[⊆ [x,+∞[∩A. Take z such that
s− ϵ < z < s. But then z ∈ [x,+∞[∩A and z < s contradicting the fact that s was
the greatest lower bound.

□

Example II.6.5. The space R \ {0} is not connected. Indeed, we can write it as a
disjoint union

R \ {0} =]−∞, 0[
⋃

]0,+∞[
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In particular, this example shows that the closure of a subspace A in X might be
connected without A being connected.

Proposition II.6.6. Let A ⊆ B ⊆ A ⊆ X and assume that A is connected for the
subspace topology. Then B is connected for the subspace topology

Proof. Assume there exists open subsets U and V in X with B ⊆ U ∪ V and
U ∩V = ∅. We shall show that either B ∩U or B ∩V is empty. By definition of the
subspace topology, both U ∩ A and V ∩ A are open in A. But then since A ⊆ B,
we find

A = (A ∩ U) ∪ (A ∩ V )

and

(A ∩ U) ∩ (A ∩ V ) = ∅
Since A is assumed to be connected, it follows that either A ∩ U is empty or A ∩ V
is empty. Assume it is A∩U that is empty. It follows that A ⊆ X \U . Since X \U
is closed, by definition of the closure as the intersection of all closed subsets that
contain A, we have A ⊆ X \ U . Therefore B ⊆ X \ U so that B ∩ U is empty.

□

Remark II.6.7. The proof of Proposition II.6.4 also works to show that any open
interval of R is connected. The Proposition II.6.6 now shows that any interval is
connected.

Exercise II.6.8. Let A be a connected subspace of R. Show that A is an interval

Remark II.6.9. The Proposition II.6.6 shows that the closure of a connected sub-
set is connected.

Proposition II.6.10. Let f : X → Y be a continuous map and assume that X is
connected. Then f(X) is connected.

Proof. We prove by contradiction. Suppose f(X) is not connected for the
subspace topology, ie, there exists non-empty open subsets V1, V2 of Y with V1∩V2 =
∅ and such that f(X) ⊆ V1 ∪ V2. Then f−1(V1), f−1(V2) are such that

f−1(V1)
⋂

f−1(V2) = f−1(V1 ∩ V2) = f−1(∅) = ∅

f−1(V1)
⋃

f−1(V2) = f−1(V1 ∪ V2) = f−1(f(X)) = X

showing that X is not connected. □

Proposition II.6.11 (Intermediate Value theorem). Let f : X → R be a continuous
map with X connected. Let x, y ∈ X and let r ∈ R such that f(a) ≤ r ≤ b. Then
there exists z ∈ X with r = f(z).
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Proof. Since X is connected, by Proposition II.6.10, f(X) ⊆ R is a connected
subspace. Let

A = f(X)∩]−∞, r[ , B = f(X)∩]r,+∞[

Then A and B are disjoint by design. They are also non-empty since f(a) ∈ A and
f(b) ∈ B. Each is open in f(X) by definition of the subspace topology.
Notice that by construction also

f(X) = A ∪B ∪ (f(X) ∩ {r})
Suppose there does not exist z with f(z) = r. Then the intersection f(X) ∩ {r} is
empty and we have

f(X) = A ∪B
with A and B disjoint. This would imply that f(X) is disconnected, which is a
contradiction.

□

Proposition II.6.12. Let X be a topological space and R an equivalence relation.
Then the quotient space X/R is connected.

Proof. Indeed, apply Proposition II.6.10 to the quotient map π and use that
π is surjective. □

Exercise II.6.13. Let X → Y be a homeomorphism. Then X is connected if and
only if Y is connected.

Proposition II.6.14. The union of a collection of connected subspaces of X that
have a point in common, is connected.

Proof. Let {Ai} be a family of connected subsets ofX and denote by Y =
⋃

I Ai

their union. Let p ∈
⋂

iAi.

Assume by contradiction that Y is not connected, ie, there exists non-empty opens
U and V with Y = U

⋃
V and U

⋂
V = ∅. The point p is in one of the subsets U

or V . Assume it is in U . Since Ai is connected, it must lie entirely in either in U or
in V . Since p ∈ U , Ai must lie in U , ie Ai ⊆ U . This argument applies to each i, so
that Y =

⋃
iAi ⊆ U , implying that V is empty, which is a contradiction.

□

Corollary II.6.15. A finite product of connected spaces is connected

Proof. Let us do the proof for the product X × Y . Fix a point (a, b) in the
product and consider the subset of the product given by

Tx := X × {b}
⋃
{x} × Y
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This is a subset of X × Y which is the union of two connected subsets: X × {y} is
connected because it is homeomorphic to X and {x} × Y is connected because it is
homeomorphic to Y . Their intersection is non-empty, consisting of the single point

X × {y}
⋂
{x} × Y = {(x, y)}

Therefore, by Proposition II.6.14 this union is connected.

Now form the union
⋃

x∈X Tx. Each Tx is connected and the intersection
⋂

x∈X Tx is
given by the horizontal line X×{b}. In particular, the intersection is non-empty, say
(a, b) ∈

⋂
x∈X Tx. Again by the Proposition II.6.14, the union

⋃
x∈X Tx is connected.

But this union is precisely X × Y □

Example II.6.16. The spaces Rn are all connected for n ≥ 0.

Definition II.6.17. Let X be a topological space and x ∈ X. The union of all
connected subsets of X which contain x is called the connected component of x.

Remark II.6.18. It follows from the Proposition II.6.14 that a connected com-
ponent of a point x is connected.

Remark II.6.19. Any connected component of X is closed in X. Indeed, if C ⊆ X
is the connected component of x, it is connected (by the Remark II.6.18), so C is
also connected by Remark II.6.9 and contains x. But C is the union of all connected
subsets that contain x so C ⊆ C. Therefore C = C.

Remark II.6.20. A connected component is not necessarily open. Here’s an ex-
ample. Take X = {0} ∪ { 1

n
: n ∈ N∗} ⊆ R as a subspace of the real numbers for

the induced topology. Notice that each of the 1
n

are isolated points, in the sense
that { 1

n
} is both open and closed for the induced topology. Let A be the connected

component of 0. If some of the 1
n

belongs to A. Then A = A\{ 1
n
}∪{ 1

n
} is a disjoint

union of open subsets contradicting the fact that A is connected. Therefore A = {0}
is the connected component of 0. But this set is not open for the induced topology
since any neighbourhood of 0 for the induced topology intersects points of the form
1
n
. See Exercise II.1.30-(vi).

Definition II.6.21. Let X and Y be topological spaces. We say that a function
X → Y is locally constant if for every point x ∈ X there exists an open neighbhour-
hood U such that f|U : U → Y is constant.

Proposition II.6.22. If X is connected then every locally constant map is constant.

Proof. Assume X is connected. Fix x0 ∈ X and consider

U = {x ∈ X; f(x) = f(x0)} = f−1({f(x0)})

V = {x ∈ X; f(x) ̸= f(x0)} = X \ f−1(f(x0))
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Clearly U ∩ V = ∅. We claim that both U and V are open. Let x ∈ U . Since f is
locally constant, there exists an open neighbourhood W of x such that f is constant
in U , with value y. But since x ∈ U , we must have y = f(x0) and in this case
W ⊆ U . The same argument applies for x ∈ V .

Since X is connected, this is a contradiction, so V must be empty and therefore f
is constant.

Conversely, assume that every locally constant map is constant. Let □

Exercise II.6.23.TD, Exo
12-(4),

Feuille 1

Let G be a topological group and e ∈ G the unit. Show that the
connected component G0 of e in G is

• a closed subgroup
• a normal subgroup

Exercise II.6.24.TD, Exo 4,
Feuille 1

Is the property of being connected stable under:
• Unions?
• Intersections?
• closure?
• interiors?
• boundary?
• passing a closed subspace?

Exercise II.6.25.
Show that the Klein bottle is connected (see Exercise II.5.40).



CHAPTER III

Paths and Homotopies

III.1. Operations on Paths

Notation III.1.1. Throughout these notes we denote by I the closed interval [0, 1].

Definition III.1.2. Let X be a topological space. A path on X is a continuous
map γ : I → X. We say that γ(0) = x is the starting point of γ and y = γ(1) is the
ending point. We say that γ is a path from x to y.

Example III.1.3. Let X = R2 and consider the path γ : [0, 1]→ X given by

γ(t) = (cos(2πt), sin(2πt))

Remark III.1.4. Since the interval I is connected (Remark II.6.7), the Proposi-
tion II.6.10 guarantees that γ(I) ⊆ is connected.

Construction III.1.5. Let γ : I → X be a path from x to y. Then the map
I → X given by the formula γrev(t) := γ(1− t) is a path from y to x. Indeed, it is
continuous since it is obtained as a composition of γ with the map I → I given by
t 7→ 1− t. We call γrev the reverse path of γ.

49
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Here’s a video illustrating this:

Construction III.1.6.
Given paths γ : I → X and β : γ → X where the end point of γ is the starting
point of β, ie, β(0) = γ(1), we can form a new path obtained by following γ twice
as fast and then β also twice the speed. Namely, we define β ∗ γ : I → X by the
formula

(β ◦ γ)(t) :=
®
γ(2t) 0 ≤ t ≤ 1

2

β(2t− 1) 1
2
≤ t ≤ 1

We observe that β ∗ γ is continuous as a consequence of the Exercise II.2.14. We
call β ∗ γ the concatenation of β with γ.

Here’s a video with an animation:

https://www.youtube.com/watch?v=ftBSgQk5_Oc
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III.2. Path-Connected Spaces

Definition III.2.1. Let X be a topological space. One says that X is path-con-
nected if every pair of points x, y can be connected by a continuous path, ie, there
exists γ : I → X with γ(0) = x, γ(1) = y.

Exercise III.2.2. Let X be a topological space and R an equivalence relation.
Show that if X is path-connected then so is X/R.

We turn to the relation between the notion of being connected and path-connected:

Proposition III.2.3. If X is path-connected then X is connected.

Proof. Let x ∈ X. For any other point y ∈ X there exists a path γy con-
necting x to y. Therefore, we can write X =

⋃
y∈X γy(I). Each γy(I) is connected

because of the Proposition II.6.10. Therefore, we managed to write X as a union
of connected subsets, with the point x in common. The conclusion follows from
Proposition II.6.14. □

The converse fails:

Example III.2.4. Consider the union

X = {(0, 0)}
⋃
{(x, y) ∈ R2 : y = sin(

1

x
), x > 0}

endowed with the subspace topology.

https://www.youtube.com/watch?v=w1YcPYBzRSE
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(Pictures taken from here)

• X is connected: Indeed the space A = {(x, y) ∈ R2 : y = sin( 1
x
), x > 0} is

the image of the continuous map sin(1/t) : R>0 → R. By Proposition II.6.4
we know that R is connected, so using the homeomorphism given by the
real logarithm log : R>0 ≃ R, we establish that R>0 is connected. By Pro-
position II.6.10 is connected. The set X is such that A ⊆ X ⊆ A with A
connected. By the Proposition II.6.6, X is connected.

• X is not path-connected: Assume there exists a continuous path γ with
γ(0) = (0, 0) and γ(1) lying over the graph. Let π1 : R2 → R denote the
projection onto the x-coordinate. At some time t0, the path γ must jump
from having 0 as x-coordinate, to having a strictly positive x-coordinate.

t0 := inf{t ∈ [0, 1] : π1(γ(t)) > 0}

Notice that the inf exists since this set by assumption is non-empty and
by design is bounded below by t = 0.

For t < t0, π1(γ(t)) = 0. By limit-point left-continuity of the path, it
follows that π1(γ(t0)) = 0 so γ(t0) ∈ {0} × [−1, 1].

At the same time, since γ is continuous at t0, using the ϵ− δ-definition of
continuity we see that for ϵ = 1

2
, there exists δ > 0 such that

∀t : t0 ≤ t < t0 + δ ⇒ d(γ(t), (0, 0)) <
1

2

ie, for all t slightly bigger than t0, γ(t) should be in a small ball of radius
1
2
:

https://kconrad.math.uconn.edu/blurbs/topology/connnotpathconn.pdf
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By definition of t0 as the infimum, there exists t0 + δ > t1 > t0 with
π1(γ(t1)) > 0. By continuity, the image π1(γ([t0, t1])) is a connected inter-
val in R, [0, a], with 0 = π1(γ(t0)) and a := π1(γ(t1)). But as we can see
from the picture, in order to progress to the right of the graph, the path
will need to escape from the ball infinitely many times reaching sin = 1
and sin = −1. This occurs for values of x arbitrary small inside the ball,
infinitely many times. In particular, we see that for values π1(γ(t)) (such
as the ones between t0 and t1), we can never get the whole interval [0, a]
- In order to get it we would need to reach values of the sinus functions
outside the ball.

This has a fix:

Definition III.2.5. Let X be a topological space. One says that X is locally path
connected if the topology admits a basis by path-connected open neighborhoods.

Proposition III.2.6. If X is locally path-connected and connected, then X is path-
connected.

Proof. Assume X is non-empty. Let x ∈ X. Let A denote the subset of X
of points y such that there exists a path from x to y. First of all A is non-empty
because X is locally path-connected.
We show that A is open: since X is locally path-connected, for every y ∈ A there
exists an open neighborhood Uy of y which is path-connected. Therefore, any point
in z ∈ Uy can be connected to x by concatenation of a path from x to y and a path
from y to z. It follows that all points in Uy are by definition of A, still inside A.
This shows that A is open.
We now show that A is closed. Let z ∈ A and let Uz be a path-connected open
neighborhood of z. By the Exercise II.1.30-(vi) the intersection A ∩ Uz is non-
empty. Let y ∈ A ∩ Uz. Therefore, z can be connected to x by a path that passes
trough the intermediate point y. It follows that z ∈ A by the definition of A.
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Since X is connected, it cannot have A both non-empty. open and closed unless
A = X

□

Warning III.2.7. A path-connected space is not necessarily locally path-connected.
The standard example is the "topologist’s sinus curve" (Circle de Varsovie)

Here’s an explicit construction of this space: take in R2 the graph Γ of the function
R \ Z→ R sending x 7→ sin( 1

x−[x]
) where [x] means the integer part of x:

Finally, take E := Γ the closure of Γ. This is equal to

E = Γ ∪

( ⋃
n∈bbZ

{{n} × [−1, 1]}

)
Now we consider the quotient space obtained by identifying (x, y) ∼ (x′, y′) if and
only if x′−x ∈ Z and y′ = y. The quotient E/ ∼ is the topologists circle represented
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in the picture above.

Proposition III.2.8. Let X be a topological space. Let x, y ∈ X. The relation
x ∼ y if and only if there exists a path from x to y, is an equivalence relation on the
set of points of X.

Proof. Obviously x ∼ x, since we can always take the constant path cx : I → X
defined by cx(t) = x for all t. Symmetry is a consequence of the Construction III.1.5.
Trransitivity is a consequence of the Construction III.1.6. □

Construction III.2.9. Let X be a locally path connected topological space. Then
the two notions of connectedness coincide (Proposition III.2.6 and Proposition III.2.3).
We denote by π0(X) the quotient of the set of points of X by the path-connected
relation of the Proposition III.2.8. If f : X → Y , we have a well-defined map of
sets

π0(f) : π0(X)→ π0(y)

sending the [x] 7→ [f(x)]. This is indeed well-defined on equivalence classes of points:
if γ is a path from x to y, then f ◦ γ is a path from f(x) to f(y).
Moreover, if g : Y → Z is another continuous map, we have π0(g◦f) = π0(g)◦π0(f).

Exercise III.2.10. TD, Exo 4,
Feuille 1

Is the property of being path-connected stable under:

• Unions?
• Intersections?
• closure?
• interiors?
• boundary?
• passing a closed subspace?

Exercise III.2.11. TD, Exo 11,
Feuille 1

Consider X and Y topological spaces with A ⊆ X a subspace
and f : A→ Y a continuous map.

(i) Show that if X and Y are connected and A is non-empty, then X
∐
A

Y is

connected.
(ii) Show that the same holds replacing connected by path-connected.

III.3. Homotopies

Definition III.3.1. Let f, g : X → Y be continuous maps. We say that f and g are
homotopic if there exists a continuous map H : I ×X → Y , such that H(0,−) = f
and H(1,−) = g.

Remark III.3.2. We can think of a homotopy as a continuous 1 -parameter family
of maps ht : H(t,−) : X → Y with h0 = f and h1 = g.
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Remark III.3.3. If X is locally compact, Proposition II.5.64 tells us that a homo-
topy I×X → Y from f to g is the same thing as a continuous map I → Map(X, Y )
sending 0 to f and 1 to g, ie a path in Map(X, Y ) from f to g.

Definition III.3.4. We say that a continuous map f : X → Y is null-homotopic if
it is homotopic to a constant map.

Example III.3.5. Any two continuous maps f, g : X → Rn are homotopic via

H(t, x) := (1− t)f(x) + t.g(x)

In particular, any continuous map X → Rn is null-homotopic.

Construction III.3.6. [Reverse homotopy] If f is homotopic to g then g is homo-
topic to f . Indeed, let H : I ×X → Y be a homotopy from f to g. We consider the
reverse homotopy Hrev : I ×X → Y defined by the formula

Hrev(t, x) := H(1− t, x)

which is obtained by composing H with the continuous map I→ I sending t 7→ 1− t.

Construction III.3.7. [Vertical Concatenation of Homotopies] If f is homotopic
to g and g is homotopic to h then f is homotopic to h. Let H be a homotopy from
f to g and K from g to h. We set

(K ◦v H)(t, x) =

®
H(2t, x) 0 ≤ t ≤ 1

2

K(2t− 1, x) 1
2
≤ t ≤ 1

This is again a continuous function.
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Proposition III.3.8. The relation "f is homotopic to g" is an equivalence relation
on the set of continuous maps X → Y .

Proof. We check the three axioms for an equivalence relation:

• f is homotopic to f via the homotopy obtained by composing f with the
canonical projection πX : I ×X → X.
• Symmetry is a consequence of the Construction III.3.6.
• Transitivity is a consequence of the Construction III.3.7.

□

Homotopies behave well under composition of continuous maps:

Proposition III.3.9. Let f, g : X → Y , h : Z → X and k : Y → W be continuous
maps. Assume f and g are homotopic. Then:

• k ◦ f and k ◦ g are homotopic
• f ◦ h and g ◦ h are homotopic.

Proof. Let H : I ×X → Y be a homotopy from f to g:

• We obtain a homotopy from k ◦ f to k ◦ g by composing k ◦H : I ×X →
Y → W .
• We obtain a homotopy from f ◦ h to g ◦ f by composing H : I ×X → Y

with the continuous map I × Z → I ×X given by idI × h.
□

Proposition III.3.10. Let f, g : Z → X × Y be continuous maps. Then f and g
are homotopic if and only if both projections πX ◦ f, πX ◦ g (respectively πY ◦ f and
πY ◦ g) are homotopic.
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Proof. Suppose f and g are homotopic via H : I × Z → X × Y , then the
two projections πX ◦H and πY ◦H provides the required homotopies between the
projections. Conversely, assume that we have H1 : I ×Z → X a homotopy between
πX ◦ f and πX ◦ g and H2 : I × Z → Y a homotopy between πY ◦ f and πY ◦ g.
By the universal property of product space, the map (H1, H2) : I × Z → X × Y is
continuous and provides the required homotopy between f and g □

Definition III.3.11. Let X be a topological space and A a subspace. Let f, g :
X → Y be continuous maps with f(a) = g(a)∀a ∈ A. We say that f and g are
homotopic relative to A if there exists a homotopy H : I×X → Y from f to g, that
fixes A for all t ∈ I, ie

H(t, a) = H(0, a)

for all t ∈ I and a ∈ A.

Exercise III.3.12. Let X and A be as in Definition III.3.11. Show that the
construction of reverse homotopies Construction III.3.6 and vertical compositions
Construction III.3.7 make, as in the Proposition III.3.8, the notion of homotopy
relative to A an equivalence relation.

III.4. Homotopy Types and Homotopy equivalences

Definition III.4.1. Let f : X → Y be a continuous map. We say that f is an ho-
motopy equivalence if there exists g : Y → X and homotopies H1 and H2 rendering,
respectively g ◦ f homotopic to idX and f ◦ g homotopic to idY . When two spaces
are homotopy equivalence we say they have the same homotopy type.

Remark III.4.2. Every homeomorphism is a homotopy equivalence. Indeed, if
f : X → Y is a homeomorphism with inverse g : Y → X, then we can pick the
homotopies H : I ×X → X and H ′ : I × Y → Y given by the projection maps.

Remark III.4.3. The composition of homotopy equivalences is a homotopy equi-
valence. This is a direct consequence of Proposition III.3.9.

A particular type of homotopy equivalence is when we can collapse a space onto a
smaller subspace:

Definition III.4.4. Let X be a topological space and A a subspace with inclusion
i : A ↪→ X. A retraction of X onto A is a continuous map r : X → A such that
r◦i = idA. A deformation retraction of X onto A is a homotopy H : I×X → X such
that H(0,−) = idX : X → X, H(1,−)(X) = A, and for every t, H(t,−) : X → X
satisfies H(t,−)|A = idA. In other words, H is a homotopy relativity to A from the
identity of X to a retraction.

Remark III.4.5. If H is a deformation retraction of X onto A then the inclusion
A ↪→ X is an homotopy equivalence. Indeed, let f1 := H(1, 0) : X → X. By
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definition of deformation retract, f1 factors as a map f1 : X → A and we have
f1 ◦ i = idA. At the same time, the inclusion i ◦ f1 : X → A → X give by f1 is
homotopic to the identity of X via H

Exercise III.4.6. TD, Exo
5.1, Feuille 2

Show that C\{0, 1} deformation retracts onto the space X given
by the union of the circles centered at 0 and 1 of radius 1

2
.

Exercise III.4.7. TD, Exo
5.2, Feuille 2

Let X be a topological space and A and B two subspaces. Show
that we can have A and B homotopy equivalent without X \ A and X \ B being
homotopy equivalent.

Exercise III.4.8. TD, Exo
5.4, Feuille 2

Show that a punctured torus is homotopy equivalent to a wedge
of two circles.

Exercise III.4.9. TD, Exo
3.1, Feuille 2

Let E be a linear subspace of Rn of dimension k < n. Show that
Rn \ E is homotopy equivalent to Sn−k−1

Definition III.4.10. One says that a topological space X is contractible if it is
homotopy equivalent to a point, ie, there exists a homotopy equivalence f : {x0} →
X and g : X → {x0}. In this case the composition g ◦ f is automatically equal to
the identity id{x0}.

Exercise III.4.11. Show that a space X is contractible if and only if its identity
map idX is null-homotopic

Example III.4.12. The Example III.3.5 shows that Rn is contractible for every
n ≥ 0. Indeed, the homotopy H : I × Rn → Rn given by H(t, x) = t.x gives a
homotopy between the identity at t = 1 and the constant map 0 ∈ Rn, at t = 0. In
fact, since the point 0 ∈ Rn is fixed by the homotopy, this is deformation retract of
the inclusion {0} ⊆ Rn.

Example III.4.13. The homotopy H of the Example III.3.5 restricts to the open
interval ] − 1, 1[ and to the closed [−1, 1] and shows that both are contractible.
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In particular, since they are both homotopy equivalent to a point, they are homo-
topy equivalent. As a consequence, for any a < b, the intervals ]a, b[ and [a, b] are
homotopy equivalent (use the homeomorphisms of the Example II.2.16).

Example III.4.14. The circle S1 is not contractible (proving this is somehow the
goal of the next chapter ). The inclusion {1} ↪→ S1 admits a canonical retraction
sending every point of the circle to 1. However, since the circle is not contractible,
this cannot be a deformation retraction.

Example III.4.15. The sphere S2 is not contractible. Proving this is beyond the
scope of this course. See the Remark V.3.23.

Example III.4.16. The homotopy H of the Example III.3.5 restricts to the n-
dimensional disk H : I ×Dn → Dn showing that Dn is contractible.

Exercise III.4.17.TD, Exo
1.2, Feuille 2

Let Y be a contractible space. Show that any two continuous
maps X → Y are homotopic.

Exercise III.4.18.TD, Exo
1.3, Feuille 2

Show that a space X is contractible if and only if for any to-
pological space Y , any continuous map X → Y is null-homotopic. Show that X is
contractible if and only if for every topological space Z, any continuous map Z → X
is null-homotopic.

Exercise III.4.19.TD, Exo
2.1, Feuille 2

The Mobius band has a deformation retraction to its equator
circle:

Write this deformation retraction explicitly.

Exercise III.4.20.TD, Exo
2.2, Feuille 2

Show that if X1 and X2 are homotopy equivalent, and Y1 and
Y2 are homotopy equivalent, then X1 × Y1 and X2 × Y2 are homotopy equivalent.

https://www.youtube.com/watch?v=l0xLgyAxi0A
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Exercise III.4.21. TD, Exo
2.3, Feuille 2

If C is contractible then X × C has the homotopy type of X.

Exercise III.4.22. TD, Exo
2.4, Feuille 2

Let f : X → Y and assume f is homotopic to a map g : X → Y
which is a homotopy equivalence. Show that f is a homotopy equivalence.

Example III.4.23. The inclusion Sn−1 ⊆ Rn \{0} admits a deformation retraction.
Indeed, the homotopy

H(t, x) := tx+ (1− t) x

||x||
is continuous away from x = 0, fixes the sphere for all t (since if x ∈ Sn−1, ||x|| = 1
we have H(t, x) = x) and for t = 1, H(1, x) = x

||x|| ∈ S
n−1.

Exercise III.4.24. TD, Exo6,
Feuille 2

Let X be a topological space and x ∈ X. Let PxX denote the
set of all paths in X starting at x. Endow PxX with the subspace topology from
the space Map([0, 1], X) of the Proposition II.5.64.

(i) Show that the map PxX → X sending a path γ to its end point γ(1), is
continuous.

(ii) Show that PxX is contractible.

Exercise III.4.25. TD, Exo 8,
Feuille 3

Show that RP 2 minus a point, deformation retracts into the
image of ∂D2 in the quotient. Check carefully the continuity of the retract.

Exercise III.4.26. Let X be a topological space. Show that the cone C(X) is
contractible.

Exercise III.4.27. Show that a retraction of a contractible space is contraction.





CHAPTER IV

Category Theory

IV.1. Categories and Functors

Goal IV.1.1. In this chapter we will axiomatize some of the features observed in
the previous for topological spaces. For our purposes, category theory is a conveni-
ent language and an organizational principle. The abstraction of this chapter will
become more meaningful in the next chapter when we introduce the fundamental
group and prove the Van Kampen theorem.

We avoid set-theoretical issues:

Definition IV.1.2. A category C consists of

• a collection of objects, denoted Obj(C);
• for every pair of objects, X, Y , a set of morphisms HomC(X, Y ). We will

write elements f ∈ HomC(X, Y ) as arrows f : X → Y ;
• For every object X, a distinguished morphism IdX ∈ HomC(X,X) called

the identity of X
• For every triple of objects, X, Y, Z, a composition law

◦ : HomC(X, Y )× HomC(Y, Z)→ HomC(X,Z)

satisfying the following properties:

• The composition law is associative;
• The elements IdX are unit elements for the composition.

Example IV.1.3. The category where objects are sets, morphisms are set-theoretic
maps, identities IdX : X → X are given by the identity maps of sets. and the
composition law is the standard composition of maps. We will denote it by SETS.

Example IV.1.4. The category where objects are topological spaces, morphisms
are continuous maps, the identity IdX : X → X is given by the identity map and
the composition law is the standard composition of maps (since the composition of
continous maps is continuous). We will denote it by TOP.

Example IV.1.5. For any category C with an object X ∈ C, the collection of
morphisms X → Y forms a category, with morphisms u : (f1 : X → Y1) → (f2 :
X → Y2) given by morphisms u : Y1 → Y2 such that the diagram

63
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X
f1
//

f2 ��

Y1

u

��

Y2

commutes, forms a category. We denote it by CX/. and call it the category of objects
under X.

Example IV.1.6. The category of pointed spaces TOP∗ where objects are pairs
(X, x) with x is a point in X, and morphisms f : (X, x) → (Y, y) are continuous
maps f : X → Y satisfying the condition f(x) = y. This coincides with the category
TOP∗/ of the Example IV.1.5.

Example IV.1.7. The category with one object 0 and a single morphisms given by
the identity. We denote it by [0].

Example IV.1.8. The category with two objects 0 and 1, the identity of 0, the
identity of 1 and and one single arrow from 0 to 1 is called the interval category.
We denote it by [1].

Exercice IV.1.9. Show that collection of all integers Z forms a category with ob-
jects given by the integers and Hom(n,m) = {∗} if a ≤ b and ∅ otherwise.

Exercice IV.1.10. Let k be a field. Show that the collection of vector spaces over
k together with linear mappings, forms a category, denoted VECTk.

Exercice IV.1.11. Show that the collection of all associative monoids together with
monoid homomorphisms forms a category, denoted MONOIDS.

Exercice IV.1.12. Show that the collection of all groups together with group ho-
momorphisms forms a category, denoted GROUPS.

Exercice IV.1.13. Show that the collection of all commutative rings together with
ring homomorphisms forms a category, denoted CRINGS.

Example IV.1.14. The homotopy category, HO(TOP), whose objects are topo-
logical spaces, and whose morphisms are homotopy classes of continuous maps.
Composition is well-defined as a consequence of the Proposition III.3.9.

The notion of functor allows us to navigate between different categories:

Definition IV.1.15. Let C and D be categories. A functor F : C → D consists of
the following data:
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• A map of sets F : Obj(C)→ Obj(D), denoted X 7→ F (X);

• For every pair of objects X, Y in C, a map of sets F : HomC(X, Y ) →
HomD(F (X), F (Y ));

such that:

(i) F preserves identities, ie, for every object X ∈ C, we have F (IdX) =
IdF (X);

(ii) F preserves compositions, ie, F (g ◦ f) = F (g) ◦ F (f)for all morphisms
f : X → Y and g : Y → Z in C

Example IV.1.16. Let C be a category. Then the identity assignment sending an
object X to itself and a morphism f : X → Y to itself, defines a functor C → C.
We denote it by IdC and call it the identity functor.

Example IV.1.17. Let C be a category. The datum of an objectX in C is equivalent
to the data of a functor [0] → C. The datum of a morphism f : X → Y in C is
equivalent to the specification of a functor d : [1] → C, where d(0) = X, d(1) = Y ,
d(0→ 1) = f .

Remark IV.1.18. Functors can be composed. If F : C → D and G : D → E are
functors, then the compositions of the maps G ◦ F on objects and on morphisms
defines a new functor C→ E.

Example IV.1.19. Let C be a category with X an object. The assignment CX/. →
C sending an object of CX/. given by X → Y , to the object Y of C, defines a functor
t : CX/. → C called the target functor.

Exercice IV.1.20. Show that the collection of all categories together with functors
as morphisms forms itself a category, denoted CATS.

Example IV.1.21. The assignment sending a topological space (X, τ) to its under-
lying set X by forgetting the topology, defines a functor

TOP→ SETS

called the forgetful functor.

Example IV.1.22. The assignment sending a group to its underlying monoid for-
getting the existence of inverses, defines a functor

GROUPS→ MONOIDS

also called the forgetful functor.
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Example IV.1.23. The assignment sending a pointed space (X, x) to its underlying
space X forgetting the marked point defines a functor

TOP∗ → TOP

Example IV.1.24. The assignment sending a commutative ring (R, .,+) to its
underlying abelian group (R,+) by forgetting the ring structure, defines a functor

CRINGS→ ABGROUPS

also called the forgetful functor.

Example IV.1.25. Let M be an associtative monoid. Then we can construct a
category BM as follows: BM contains a single object, denote •M and endomorphisms
given by

HomBM(•M , •M) :=M

Compositions are defined by the associative monoid law in M . The unit of M plays
the role of the identity morphism of •M .

The construction sending M 7→ BM is functorial, ie, if M → N is a monoid homo-
morphism, then we have a well-induced functor BM → BN of categories. Moreover,
this assignment sends compositions of monoid homomorphisms to compositions of
functors. Overall, this means that the construction M 7→ BM is part of a functor

B : MONOIDS→ CATS

Example IV.1.26. Let TOPlpc denote the category of locally path-connected spaces.
The assignment sending a locally path connected space (X, τ) to its set of connected
components π0(X) defines a functor

π0 : TOP
lpc → SETS

This is the Construction III.2.9.

IV.2. Isomorphisms

Definition IV.2.1. Let C be a category. A morphism f : X → Y in C is said to:
(i) have a left inverse if there exists r : Y → X such that r ◦ f = idX . In this

case we call r a retraction of f .

(ii) have a right inverse if there exists s : Y → X such that f ◦ s = idY . In this
case we call s a section of f .

(iii) be an isomorphism if there exists another morphism g : Y → X in C such
that f ◦ g = idY and g ◦ f = idX , ie, f has a right and left inverse (which
necessarily coincide).

Example IV.2.2. Isomorphisms of topological spaces are precisely homeomorph-
isms as defined in Definition II.2.15.
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Example IV.2.3. Isomorphisms in the category HO(TOP) are homotopy equival-
ences.

Example IV.2.4. Let us denote by J the category with two objects 0 and 1, their
identities and a unique map 0→ 1, a unique map 1→ 0 such that the compositions
0 → 1 → 0 and 1 → 0 → 1 are the identity morphisms. For any category C, the
data of a functor J → C is equivalent to the data of a isomorphism f : X → Y in C.

Exercise IV.2.5. Let C be a category. Show that following are equivalent conditions
for a morphism f : X → Y in C:

(i) f : X → Y is an isomorphism;

(ii) for every object ZinC, the composition maps

HomC(Y, Z)→ HomC(X,Z)

sending u : Y → Z to u ◦ f , is a bijection.

(iii) for every object ZinC, the composition maps

HomC(Z,X)→ HomC(Z, Y )

sending u : Z → X to f ◦ u, is a bijection

Definition IV.2.6. Let C be a category and X an object in C. An isomorphism
f : X → X is called an automorphism. We denote by AutC(X) the subset of
HomC(X,X) spanned by automorphisms.

Remark IV.2.7. Automorphisms form a group under composition.

Remark IV.2.8. Let C be a category and let x and y be two objects in C and
f : x→ y an isomophism. Then f induces an isomorphism of groups

AutC(x, x)→ AutC(y, y)

sending an automorphism g of x to the conjugation (f ◦ g ◦ f−1). Its inverse sends
an automorphism u of y to the conjugation (f−1 ◦ u ◦ f).

This is a map of groups with respect to the composition in C: indeed, if g1 and g2
are automorphisms of x, then

f ◦ (g1 ◦ g2) ◦ f−1 = (f ◦ g1 ◦ f−1) ◦ (f ◦ g2 ◦ f−1)

Moreover, given the identity idx of x, we have

f ◦ (idx) ◦ f−1 = f ◦ f−1 = idy
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Exercise IV.2.9. We say that a functor f : C → D is conservative if whenever a
morphism u : X → Y in C is such that f(u) : F (X) → F (Y ) is an isomorphism in
D, then u is an isomorphism in C.

(i) Show that the functor from commutative rings to abelian groups that for-
gets the ring structure is conservative.

(ii) Is the functor from topological spaces to sets that forgets the topology
conservative? Hint: check the Example II.2.20.

IV.3. Natural transformations

Motivation IV.3.1. Let VECTfin
C denote the category of finite dimensional complex

vector spaces. The dual of a vector space V is the C-vector space V ∨ of linear forms
λ : V → C. A linear map V → W induces a linear map in the opposite direction
W∨ → V ∨ and this is compatible with compositions. When V is finite dimensional,
the dual of the dual of V , ie (V ∨)∨ is isomorphic , but not equal, to V : the map

ηV : V → (V ∨)∨

sending v ∈ V to the linear form ηV (v) : V
∨ → C given by λ 7→ ηV (v)(λ) := λ(v),

defines an isomorphism of C-vector spaces. Indeed, we check that

(i) ηV is indeed C-linear: ηV (v1 + v2)(λ) = λ(v1 + v2) = λ(v1) + λ(v2) for all
v1, v2 ∈ V and ηV (a.v)(λ) = λ(a.v) = aλ(v) for all a ∈ C and v ∈ V ;

(ii) If V is finite dimensional, then dimCV = dimCV
∨. This a well-known

result in linear algebra. if {v1, · · · , vn} forms a basis of V , there exists a
dual basis λ1, · · · , λn : V → C with the property λi(vj) = δi,j and extended
by linearity. In particular,

dimCV = dimCV
∨ = dimC(V

∨)∨

(iii) ηV is injective: Let v ∈ V such that ηV (v) = 0. Assume that v ̸= 0. Then
we can complete {v} to a basis {v, v2, · · · , vn}. By the same argument as
in the previous item, this admits a dual basis λ1, · · · , λn, with λ1(v) =
ηV (v)(λ) = 1. This is a contradiction.

Therefore ηV is an isomorphism.

Definition IV.3.2. Let C be a category. We define its opposite category Cop to
be the category with the same objects but with the direction and composition of
morphisms reversed:

HomCop(X, Y ) := HomC(Y,X)

Compositions are defined using the law in C.

Remark IV.3.3. Notice that (Cop)op = C.
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Example IV.3.4. The construction sending a finite dimensional C-vector space V
to its dual V ∨ defines a functor

((−)∨)∨ : VECTfin
C →

Ä
VECTfin

C

äop
In particular, taking duals twice, we obtain a composite functor

VECTfin
C →

Ä
VECTfin

C

äop
→
ÄÄ

VECTfin
C

äopäop
= VECTfin

C

sending V 7→ (V ∨)∨. This is not the identity functor of VECTfin
C . The following

definition provides a way of saying that this composite functor is isomorpic to the
identity functor.

Definition IV.3.5. Let F,G : C → D be functors. A natural transformation η :
F → G consists of a collection of morphisms ηX : F (X)→ G(X)in D, one for every
object X ∈ C, such that for every morphism f : X → Y in C, the diagram

F (X)
ηX
//

F (f)

��

G(X)

G(f)

��

F (Y )
ηY
// G(Y )

commutes.

We say that η is a natural isomorphism if the morphisms ηX are isomorphisms for
every X.

Example IV.3.6. Let us come back to the Example IV.3.4. The maps ηV of the
Motivation IV.3.1 define a natural isomorphism of functors

Id→ ((−)∨)∨ :

Let us check this: given a map of vector spaces f : V → W we need to check the
commutativity of the diagram

V //

��

(V ∨)∨

��

W // (W∨)∨

One composition gives

v // [ηV (v) : λ ∈ V ∨ 7→ λ(v)]

��

[ℓ ∈ W∨ 7→ ℓ ◦ f ∈ V ∨ 7→ (ℓ ◦ f)(v) = ℓ(f(v))]

The other composition gives
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v

��

f(v) // [ηW (v) : ℓ ∈ W∨ 7→ ℓ(f(v))]

so they agree.

Remark IV.3.7. Let C and D be categories and consider functors F,G,H : C→ D
together with natural transformations η : F → G and ψ : G → H. Then we can
form the composed natural transformation ψ ◦ η : F → H given for each X ∈ C by
the map ψX ◦ ηX .

Definition IV.3.8. Let C and D be categories. The collection of functors C → D
forms a category with morphisms given by natural transformations of functors. Com-
positions are defined as in the Remark IV.3.7. This category, denoted Fun(C,D) is
called the functor category.

IV.4. Equivalences of Categories

Definition IV.4.1. Let C and D be categories. An equivalence of categories consists
of the following data:

• a functor F : C→ D
• a functor G : D→ C
• Natural isomorphisms η : IdC ≃ G ◦ F and ψ : IdD ≃ F ◦G

Terminology IV.4.2. We say that F : C→ D is an equivalence of categories if there
exists G : D→ C and natural isomorphisms η and ψ as in the Definition IV.4.1.

Definition IV.4.3. We say that a functor F : C → D is fully faithful if for every
pair of objects X and Y in C, the map

HomC(X, Y )→ HomD(F (X), F (Y ))

is a bijection.

Definition IV.4.4. We say that a functor F : C→ D is essentially surjective if for
every object Y ∈ D there exists an object X in C and an isomorphism F (X) ≃ Y
in D.

Theorem IV.4.5. (∗) A functor F : C → D is an equivalence of categories if and
only if F is fully faithful and essentially surjective.

We will not provide proof for this theorem here.

(∗)Uses the axiom of choice.
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Example IV.4.6. Consider the category J of the Example IV.2.4. The functor
i0 : [0]→ J selecting the object 0 ∈ J defines an equivalence of categories. Indeed,

{Id0} = Hom[0](0, 0)→ HomJ(i0(0), i0(0)) = {Id0}
is bijective meaning that i0 is fully faithful. Moreover, i0 is essentially surjective:

• 0 = i0(0);
• 1 ≃ i0(0) via the unique isomorphism in J .

A similar argument can be used to show that the functor i1 : [0] → J selecting the
object 1 in J and its identity, is also an equivalence of categories.

Exercise IV.4.7. If F : C→ D and G : D→ E are equivalences of categories, then
the composition G ◦ F : C→ E is an equivalence of categories.

Exercise IV.4.8. Let F : C → D , G : D → C form an equivalence of categories.
Let E be a category. Show that composition with F and G induce an equivalence of
functor categories

Fun(C,E)→ Fun(D,E)

Definition IV.4.9. Let C be a category. The isomorphism relation defines an equi-
valence relation on the set of objects of C. We denote by π0(C) the quotient set.

Remark IV.4.10. Let F : C→ D be an equivalence of categories. Then F induces
a bijection π0(C) ≃ π0(D).

Remark IV.4.11. Equivalences of categories are something else than isomorphisms
in CATS. By definition F : C → D is an isomorphism of categories if there exists
G : D → C such that G ◦ F and F ◦ G are equal to the identity functors. This is
equivalent to ask for F to induce a bijection both on objects and morphisms.
The notion of equivalence of categories is more flexible in the sense that the com-
posites G ◦ F andF ◦ G do not have to be the identities on the nose, but rather
isomorphic. The example Example IV.4.6 illustrates this. Indeed, notice that the
two categories [0] and J are equivalent but not isomorphic since [0] has a smaller
set of objects.

We will now show that natural isomorphisms are to categories what homotopies are
to topological spaces, with the role of the closed interval [0, 1] played by the category
J . In particular, equivalences of categories are similar to homotopy equivalences of
spaces. To explore this link, we start with the following observation:

Construction IV.4.12. Let C and D be categories. Then we have a natural eval-
uation functor

ev : C× Fun(C,D)→ D

defined on objects by sending an object (X,F : C→ D) in the product to the object
F (X) in D. On morphisms, if f : X → Y is a morphism in C and η : F → G
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is a natural transformation, ev(f, η) is defined to be the composite G(f) ◦ ηX =
ηY ◦ F (f) : F (X) → G(Y ). We leave it as an exercise to verify that this defines a
functor.

Proposition IV.4.13. Let C, D, and E be categories. Then the assignment

HomCATS(E,Fun(C,D))→ HomCATS(E× C,D)

defined by sending

E
α
// Fun(C,D) 7→ E× C

α×IdC
// Fun(C,D)× C

ev
// D

is a bijection.

Proof. Left as an exercise. □

Corollary IV.4.14. Let E = [1] in the Proposition IV.4.13. Then we get a bijec-
tion

HomCATS([1],Fun(C,D))→ HomCATS([1]× C,D)

Let F,G : C → D be functors. This bijection establishes a 1-to-1 correspondence
between the following data:

• A natural transformation η : F → G;
• A functor H : [1]× C→ D such that the composition

[0]× C
i0×IdC

// [1]× C
H

// D

is equal to F and the composition

[0]× C
i1×IdC

// [1]× C
H

// D

is equal to G.

Using a similar argument, we show that

Corollary IV.4.15. Let E = J in the Proposition IV.4.13. Then we get a bijection

HomCATS(J,Fun(C,D))→ HomCATS(J × C,D)

Let F,G : C → D be functors. This bijection establishes a 1-to-1 correspondence
between the following data:

• A natural isomorphism η : F → G;
• A functor H : J × C→ D such that the composition

[0]× C
i0×IdC

// J × C
H

// D

is equal to F and the composition

[0]× C
i1×IdC

// J × C
H

// D

is equal to G.
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In particular, we see that the category J plays the role of the closed interval [0, 1]
in the definition of homotopy for topological spaces.

IV.5. Constructions: Products, Quotients, Pushouts, Internal-Homs

In the previous lecture we discussed some operations on topological spaces, such as
products, quotients, gluings, etc. All these make sense in a general category and it
is sometimes better to understand them in their full generality. To understand that,
we will need to become familiarized with the terminology of universal properties.
In vague terms, the universal property of a construction is whatever remains if we
manage to formulated it using exclusively the language of objects, morphisms and
compositions:

Products.

Example IV.5.1. Given two sets X and Y we can form the product set X×Y . By
definition, this is the set of pairs (x, y) where x ∈ X and y ∈ Y . But how can this
formulated using only categorical terminology (objects, morphisms, etc)? To start
with, the set X × Y comes equipped with two natural morphisms πX : X × Y → X
and πY : X × Y → Y sending respectively (x, y) 7→ x and (x, y) 7→ y.

What we want to isolate now is the defining properties of (X × Y, πX , πY ) in in the
eyes of all other sets, ie, as an object of SETS

Notice that if Z is another set with maps f : Z →X and g : Z → Y , we can define
a map Ψf,g : Z → X × Y via the formula

z 7→ (f(z), g(z))

The composition πX ◦ Ψf,g recovers f and the composition πY ◦ Ψf,g recovers g.
Inversely, given any map Ψ : Z → X ×Y we can define maps f and g by composing
with the two projections. These procedures are inverse to each other and establish
a bijection

HomSETS(Z,X × Y ) ≃ HomSETS(Z,X)× HomSETS(Z, Y )

Remark IV.5.2. It seems that in the previous example we are just walking in circles
since the we ended up with a formulation of the product of sets that also uses the
product of sets. Indeed, for sets this is redundant, but in general categories, is very
useful as the following definition shows.

Definition IV.5.3. Let C be a category and X and Y objects. We say that the
product of X and Y exists in C if there exists an object X × Y and morphisms
πX : X × Y → X and πY : X × Y → Y such that for any third object Z ∈ C,
composition with πX and πY induces a bijection of sets

HomC(Z,X × Y ) ≃ HomC(Z,X)× HomC(Z, Y )

defined by
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f 7→ (πX ◦ f, πY ◦ f)

Under this bijection, by construction if Z = X × Y , the identity IdX×Y is sent to
the pair consisting of the two projections (πX , πY ).

Remark IV.5.4. Diagrammatically, the bijection in Definition IV.5.3 reads as
follows: a pairs of functions (f, g)

Z
f

��

g

~~

X Y

corresponds to a unique dotted map that renders the diagram commutative

Z

f

��

��
g

��

X × Y

πY
##

πX
{{

X Y

Remark IV.5.5. Notice that to formulate the notion of products in a category C
we need to know a priori that products of sets exist.

Proposition IV.5.6. Let C be a category and X and Y objects. If the product of
X and Y exists in C then it is unique up canonical to isomorphism.

Proof. Indeed, suppose that we have two candidates for the product, say (X×1

Y, π1
X , π

1
Y ) and (X×2Y, π2

X , π
2
Y ), with the respective projections. Then in particular,

since we are assuming that (X ×2 Y, π2
X , π

2
Y ) has the property defining the product

as explained in the Remark IV.5.4, we have a canonical factorization δ

X ×1 Y

π1
Y

��

δ
��

π1
X

��

X ×2 Y

π2
Y ##

π2
X{{

X Y

But since we are also assuming that (X ×1 Y, π1
X , π

1
Y ) is a product, the symmetry of

the argument gives us a factorization ϕ the other way
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X ×2 Y

π2
Y





ϕ
��

π2
X

��

X ×1 Y

π1
Y

��

δ
��

π1
X

��

X ×2 Y

π2
Y ##

π2
X{{

X Y

It is now clear from this diagram that under the bijection in Definition IV.5.3 the
composition δ◦ϕ is sent to the two projections (π2

X , π
2
Y ) and by the bijection formula

defining the product., corresponds to identity map. The symmetry of the argument
interchanging the role of product 1 and product 2 implies that ϕ ◦ δ must also be
the identity.

□

Remark IV.5.7. It is important to remark that the product, if it exists, is not
simply an object of C. The data of the two projection maps is equally important as
part of the definition, without whom the definition does not make sense.

Proposition IV.5.8. TOP admits finite products.

Proof. This is an easy consequence of the Exercise II.5.5. Indeed, this result
tells us that the bijection given by the universal property of products of sets

Hom(SETS)(Z,X × Y ) ≃ HomSETS(Z,X)××HomSETS(Z, Y )

is still a bijection when restricted to the subsets spanned by those maps that are
continuous:

Hom(TOP)(Z,X × Y )
∼
//

� _

��

HomTOP(Z,X)××HomTOP(Z, Y )
� _

��

Hom(SETS)(Z,X × Y )
∼
// HomSETS(Z,X)××HomSETS(Z, Y )

□

Remark IV.5.9. By construction, the forgetful functor TOP→ SETS sends products
of spaces to products of sets. We say that it commutes with products.

Exercise IV.5.10. Show that he category CATS has products. If C and D are
categories, the product category C × D has objects given by Obj(C) × Obj(D) and
morphisms given by

HomC×D((X1, Y2), (X2, Y2)) := HomC(X1, X2)× HomD(Y1, Y2)
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Compositions are defined coordinatewise.

The projection functors C × D → C and C × D → D are defined in the obvious
way. We leave it as an exercise to complete the proof that this indeed verifies the
universal property of products.

Coproducts. We now turn to the notion of coproducts which capture the prop-
erties of disjoint unions of sets:

Definition IV.5.11. Let C be a category and X,Y objects in C. The coproduct of
X and Y , if it exists, consists of an object X

∐
Y of C together with two morphisms

iX : X → X
∐
Y and iY : Y → X

∐
Y satisfying the following property: for every

object Z in C the composition with the two maps

(Ψ : X
∐

Y → Z) 7→ (Ψ ◦ iX ,Ψ ◦ iY )

defines a bijection

HomC(X
∐

Y, Z) ≃ HomC(X,Z)× HomC(Y, Z)

Example IV.5.12. The category SETS admits coproducts given by disjoint unions
of sets. See Reminder II.5.13.

Remark IV.5.13. Diagrammatically, the bijection in Definition IV.5.11 reads as
follows: a pairs of functions (f, g)

X

f   

Y

g
��

Z

corresponds to a unique dotted map that renders the diagram commutative

X

f

��

iX

##

Y
iY

{{

g

��

X
∐
Y

��

Z

Exercise IV.5.14. Show that coproducts are unique up to canonical isomorphism.

Proposition IV.5.15. The category TOP has finite coproducts given by disjoint
unions. Moreover, the forgetful functor TOP→ SETS commutes with coproducts.
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Proof. This is a consequence of the definition for the disjoint union topology
of the Construction II.5.14. For the universal property we argue as in Proposi-
tion IV.5.8 using Exercise II.5.16.

□

Here’s another important example whose relevance will become clear later:

Proposition IV.5.16. The category GROUPS admit coproducts.

Proof. Suppose G and H are two groups. To construct their coproduct in
GROUPS we need to produce three items:

• a new group G
∐
H;

• a group homomorphism iG : G→ G
∐
H

• a group homomorphism iH : G→ G
∐
H

all of these, satisfying the universal property defining coproducts in Definition IV.5.11:
given any third group P the composition with iG and IH

HomGROUPS(G
∐

H,P )→ HomGROUPS(G,P )× HomGROUPS(H,P )

must be a bijection. Diagrammatically, as in Remark IV.5.13, this means that
given group homomorphisms f and g

G

f ��

H

g
~~

P

we must be able to construct a unique dotted group homomorphism rendering the
commutativity of

(2) G

f

��

iG

##

H
iH

{{

g

��

G
∐
H

Ψ
��

P

In order to motivate the construction of G
∐
H, let us observe that whatever P is,

in the situation above we can multiply in P elements coming from G (via f) with
elements coming from H (via g). For instance, if a1 and a2 are elements of G and
b1 and b2 elements of H, in P we can form the product

f(a1).g(b1).f(a2).g(b2)

There is a priori no reason why we should be able to simplify expressions such as this
one, since there is a priori no relation between f and g. However, not all expressions
are of this form. For instance, the product
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f(a1).f(a2).g(b1).g(b2)

can be simplified as

f(a1.a2).g(b1.b2)

Following this observation start by considering the set of all words in the alphabet
using the symbols given by the elements of G and H

W (G,H) := {x1x2 · · ·xn : xi ∈ G or xi ∈ H}
By definition, a word is finite. We can consider the quotient set W (G,H)/ ∼ under
the equivalence relation defined as follows: whenever two elements of G (resp. H)
appear consecutively in a word, we replace them by the value of their respective
multiplication in G (resp. H). For instance, the word with three letters

a1a2b1
with a1, a2 in G and b1in H is equivalent to the word with two letters

(a1.Ga2)b1
where a1.Ga2 is the multiplication in G.

To conclude, we must also force the equivalence of the empty word, with the word
consisting of the neutral element of G and with the word consisting of the neutral
element of H:

∅ ∼ eG ∼ eH
We leave it as an exercise to show that this defines an equivalence relation.

The set W (G,H)/ ∼ carries a natural group structure given by word concatenation.
We leave this as an exercise to the reader. Showing the associativity of concatena-
tions is the most tedious part. Finally, w set

G
∐

H := (W (G,H)/ ∼, concatenation)

We now define iG to be the map G→ G
∐
H sending an element a of G to the words

with a single letter a By the nature of the concatenation law, and the equivalence
relation on words, this defines a group homomorphism. Similarly for iH .

Finally, it remains to check that the triple (G
∐
H, iG, iH) satisfies the universal

property of coproducts. Back to the diagram (2) we can now define the dotted map
Ψ: on a word x1x2 · · ·xn we define

Ψ(x1x2 · · · xn) := (f or g)(x1).P (f or g)(x2).P · · · (f or g)(xn)
using f or g depending if the letter comes from an element of G or H, respectively.
This defines a group homomorphism with the required universal property.
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□

Terminology IV.5.17. The coprodut in GROUPS is also called the free product of
groups and sometimes denoted as ∗

Exercise IV.5.18. Describe the free product Z ∗ Z

Exercise IV.5.19. Show that ABGROUPS admits products and coproducts and
that they are naturally isomorphic, given by direct sums

⊕
.

Exercise IV.5.20. Show that in the CRINGS coproducts are given by tensor products
over Z. Use this to show that the forgetful functor of the Example IV.1.24, does
not preserve coproducts.

Quotients relations.

Example IV.5.21. One can reformulate the universal property of the quotient of a
set X by an equivalence relation R of the Reminder II.5.18 in the following form:
for any set Z, composition with the quotient map π : X → X/R induces a bijection

HomSETS(X/R, Z) ≃ HomR
SETS(X,Z)

where HomR
SETS(X,Z) is the subset of HomSETS(X,Z) of all set-theoretic maps

identifying two points in the equivalence relation, ie, f(x) = f(y) if (x, y) ∈R.

We can re-write this diagrammatically as follows: consider the diagram

R ⊆ X ×X
π1

//

π2
// X

The condition that for a map f : X → Z to be in HomR
SETS(X,Z), can be re-written

as the fact that f ◦ π1 = f ◦ π2, ie, f equalizes the two projections.

R ⊆ X ×X

f◦π1=f◦π2
&&

π1

//

π2
// X

f
��

Z

The universal property of the quotient set then says that there exists a unique dotted
arrow

R ⊆ X ×X

f◦π1=f◦π2
%%

π1

//

π2
// X

f
��

π
// X/R

||

Z
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Definition IV.5.22. Let C be a category and consider a diagram of the form

Y
f
//

g
// X

Let Z be an object in C. We denote by Homf,g
C (X,Z) the set of morphisms u : X →

Z such that u ◦ f = u ◦ g. We say the diagram admits a coequalizer in C if there
exists an object X/Y together with a map π : X → X/Y with π ◦ f = π ◦ g and
such that for any object Z in C composition with π induces a bijection

HomC(X/Y, Z) ≃ Homf,g
C (X,Z)

Remark IV.5.23. Diagrammatically, this means

Y

u◦f=u◦g
��

f
//

g
// X

u

��

π
// X/Y

||

Z

Fiber products.

Example IV.5.24. Let

E

f
��

X
g
// Y

be maps of sets. We denote by E ×
Y
X the subset of the product set X × E formed

by those elements (x, e) such that f(e) = g(x). For any commutative square of sets

P
u
//

v
��

E

f
��

X
g
// Y

the commutativity of the diagram guarantees that the induced map P → X × E
factors through the subset E ×

Y
X in a unique way

P

""

u

((
v

��

E ×
Y
X

��

// E

��

X
g

// Y

Equivalently, the composition with the two inclusions E×
Y
X → E and E×

Y
X → X

induces a bijection
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HomSETS(P,E ×
Y
X) ≃ HomSETS(P,E) ×

HomSETS(P,Y )
HomSETS(P,X)

Definition IV.5.25. Let C be a category. Let

E

f
��

X
g
// Y

be a diagram in C. We say that the pullback exists if there exists an object E ×
Y
X

together with morphisms pX : E ×
Y
X → X and pE : E ×

Y
X → E rendering the

diagram

E ×
Y
X

pE
//

pX

��

E

f

��

X
g

// Y

commutative and such that for any object P in C, composition with pE and pX
induce a bijection of sets

HomC(P,E ×
Y
X) ≃ HomC(P,E) ×

HomC(P,Y )
HomC(P,X)

Remark IV.5.26. In other words, for every commutative square

P
u
//

v
��

E

f
��

X
g
// Y

there exists a unique morphism rendering the commutativity of

P

""

u

((
v

��

E ×
Y
X

pX

��

pE
// E

��

X
g

// Y

Example IV.5.27. The category SETS has pullbacks. This is a reformulation of
the Example IV.5.24.

Example IV.5.28. Pullbacks exists in TOP. Indeed, given a diagram of continuous
maps
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E

f
��

X
g
// Y

the set-theoretic pullback E×
Y
X can be endowed with the subspace topology inside

the product topology on E ×X. We leave the details as an exercise to verity that
this has the required universal property.

Pushouts.

Definition IV.5.29. Let C be a category and consider a pair of morphisms in C as

Z
g
//

f
��

Y

X

We say that the pushout exists, if there exists an object X
∐
Z

Y and morphisms

iX : X → X
∐
Z

Y and iY : X → X
∐
Z

Y in C, rendering the diagram commutative

Z
g
//

f

��

Y

iY

��

X
iX
// X
∐
Z

Y

and satisfying the following universal property: for any object P , composition with
iX and iY induces a bijection

HomC(X
∐
Z

Y, P ) ≃ HomC(X,P ) ×
HomC(Z,P )

HomC(Y, P )

Remark IV.5.30. Diagrammatically, this means that for every object P and every
commutative diagram

Z
g
//

f
��

Y

u

��

X
v
// P

there exists a unique morphism X
∐
Z

Y → P making the diagram
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Z
g
//

f

��

Y

iY

��
u

��

X
iX
//

v

((

X
∐
Z

Y

!!

P

commute

Example IV.5.31. The category TOP has all pushouts. This has been shown in
the Proposition II.5.43 as a consequence of the existence of quotient spaces and
disjoint unions.

In fact, the proof that TOP has pushouts is a consequence of a more general fact:

Exercise IV.5.32. Let C be a category that admits finite coproducts and coequal-
izers. Then C admits pushouts.

Exercise IV.5.33. Prove that the category of pointed spaces TOP∗ (see the Ex-
ample IV.1.6) has coproducts given by the wedge sum of pointed spaces (Defini-
tion II.5.50).

Proposition IV.5.34. The category GROUPS admits pushouts.

Proof. Consider a diagram of groups

K

f
��

g
// H

G

We obtain its pushout as the quotient of the coproduct in GROUPS (see Proposi-
tion IV.5.16) G

∐
H by the equivalence relation generated by the identification of

two words if one is obtained from the other by replacing a letter f(k) by a letter
g(k) for k ∈ K.

The quotient G
∐
K

H := G
∐
H/ ∼ acquires a group structure given by concatenation

of words and the quotient map is a map of groups.

The two canonical maps iG : G → G
∐
K

H and iH : H → G
∐
K

H are given the com-

position of the two inclusions G→ G
∐
H and H → G

∐
H with the quotient map.
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We leave it as an exercise to show that this defines the universal property, as a com-
bination of the universal property of the quotient group and the universal property
of coproducts.

□

Exercise IV.5.35. Let C be a category. Consider a commutative diagram in C of
the form

K1
u

∼
//

g1

!!

f1

��

K2

g2

!!
f1

��

H1
v

∼
// H2

G1
w

∼
// G2

where u, v, w are isomorphisms. Show that the pushouts of the two diagrams

K1

f1
��

g1
// H1

G1

K2

f2
��

g2
// H2

G2

are isomorphic.

Exercise IV.5.36. Compute the pushout Z/3 ∗
Z

Z/2 in GROUPS.TD, Exo
5.1, Feuille 5

Definition IV.5.37. Let

Z1
g1
//

f1
��

Y1

u1

��

X1
v1
// P1

, Z2
g2
//

f2
��

Y2

u2

��

X2
v2
// P2

be commutative squares in a category C. A morphism between commutative squares,
is the data of morphisms z : Z1 → Z2, y : Y1 → Y2, x : X1 → X2 and p : P1 → P2

such that the diagram
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Z1
g1

//

z

!!

f1

��

Y1
y

  
u1

��

Z2
g2

//

f2

��

Y2

u2

��

X1
v1

//

x

!!

P1

p

  

X2
v2

// P2

commutes

Definition IV.5.38. Consider a map of commutative squares as in the Defini-
tion IV.5.37. We say that it is a retract, if each map z, x, y, p has a retract,
respectively, rz, rx, ry and rp and together they form a morphism of commutat-
ive squares, ie, the diagram

Z2
g2

//

rz

!!

f2

��

Y2
ry

  
u2

��

Z1
g1

//

f1

��

Y1

u1

��

X2
v2

//

rx

!!

P2

rp

  

X1
v1

// P1

also commutes. In this case we say that the first square is a retract of the second.

Exercise IV.5.39. Let C be a category. Show that if a commutative square is a
retract of a pushout square in C, then it is also a pushout square.

Internal-Homs.

As in Reminder II.5.54 and Proposition II.5.64 we would like to say that in a
general category C, given two objects X and Y there exists an object Map(X, Y )
representing morphisms from X to Y .

Definition IV.5.40. Let C be a category with finite products. Let X and Y be
objects in C. We say that the internal-hom of X and Y exists in C, if there exists an
object Map(X, Y ) in C together with an evaluation map E : Map(X, Y ) × X →Y
satisfying the following universal property: for every object Z ∈ C, the composition
with the evaluation map induces a bijection of sets



86 IV. CATEGORY THEORY

HomC(Z,Map(X, Y )) ≃ HomC(Z ×X, Y )

Example IV.5.41. The category SETS admits all internal-homs. This is the Re-
minder II.5.54.

Warning IV.5.42. The category TOP does not admit internal-homs in general.
We have seen that Map(X, Y ) has the correct universal property when X is locally
compact. In general in algebraic topology one works with a class of spaces so-
called compactly generated that enlarges that of locally-compact spaces and where
internal-homs always exists. From a point of view of homotopy theory, there is no
loss of information in restricting to such spaces (†). One of the advantages of working
with compactly generated spaces is that we eliminate the pathological behavior of
the Warning II.5.35: a product of quotient maps of compactly generated spaces is
again a quotient map.

Example IV.5.43. The category ABGROUPS admits internal-homs Map(M,N)
given by endowing the set of group homomorphisms Hom(M,N) with the addition
law induced from N : (f + g)(m) := f(m) + g(m).

Example IV.5.44. The category CATS admits internal-homs given by functor cat-
egory Fun(C,D). This is the Proposition IV.4.13.

(†)See Hovey’s book on Model Categories.



CHAPTER V

Fundamental Group

Goal V.0.1. In this chapter we return to topology and introduce the fundamental
group of a space and prove the Van Kampen theorem. The categorical abstraction
of the previous chapter will finally pay-off.

V.1. The fundamental group

Definition V.1.1. Let γ, β : I → X be two paths in X with γ(0) = β(0) = x
and γ(1) = β(1) = y. We say that they are homotopic as paths if there exists a
homotopy H : I × I → X with :

• H(t, 0) = γ(0), H(t, 1) = β(t) for all t ∈ I
• H(0, s) = x and H(1, s) = y for all s ∈ I.

The second condition means that the endpoints of the path remain fixed throughout
time. We call such H a homotopy of paths.

Example V.1.2. Consider X = R2, γ the path of the Example III.1.3 γ(t) =
(cos(2πt), sin(2πt)) and α the constant path at (1, 0). Then the map H : I× I → X
given by

H(t, s) = (1− s)γ(t) + s.α(t)

gives an homotopy of paths between γ and α since

H(0, s) = (1− s)(γ(0)) + s.α(0) = (1− s)(1, 0) + s.(1, 0) = (1, 0)

87
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H(1, s) = (1− s)(γ(1)) + s.α(1) = (1− s)(1, 0) + s.(1, 0) = (1, 0)

Remark V.1.3. The notion of homotopy of paths coincides with the notion of
homotopy relatively to the boundary ∂I as in Definition III.3.11. In particular,
the homotopy relation on paths forms an equivalence relation: reversing homotopies
gives the symmetry and vertical concatenation of homotopies gives transitivity.

Notation V.1.4. Let X be a topological space and x, y ∈ X. We write hPath(x, y)
to describe the set of equivalence classes of paths starting at x and finishing at y
under the homotopy equivalence relation:

hPath(x, y) := {γ : I → X : γ is continuous, and γ(0) = x, γ(1) = y}/ ∼homotopy

Given a path γ : I → X with γ(0) = x and γ(1) = y, we write [γ] for its represent-
ative in hPath(x, y)

Construction V.1.5 (Horizontal concatenation of homotopies). Let X be a to-
pological space and consider paths γ, γ′, β, β′ : I → X with γ(1) = β(0) and
γ′(1) = β′(0). Assume that γ and γ′ are homotopic and that β and β′ are homotopic.
Then the paths β′ ∗ γ′ and β ∗ γ are homotopic via the horizontal concatenation of
homotopies



V.1. THE FUNDAMENTAL GROUP 89

H2 ◦h H1(t, s) =

®
H1(2t, s) (t, s) ∈ [0, 1

2
]× [0, 1]

H2(2t− 1, s) (t, s) ∈ [1
2
, 1]× [0, 1]

Here’s a video illustrating this:

Lemma V.1.6. Let γ, β, α be paths on X such that γ(1) = β(0) and β(1) = α(0).
Then the paths α ∗ (β ∗ γ) and (α ∗ β) ∗ γ are homotopic.

Proof. We sketch the construction of the homotopy:

https://www.youtube.com/watch?v=JlVnOrSM_vA
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To make this precise, we construct a function Ψ : I → I such that

(α ∗ (β ∗ γ))(Ψ(t)) = ((α ∗ β) ∗ γ)(t)

together with a homotopy Ψ ∼ idI . Composing with (α ∗ β) ∗ γ thus gives us the
required homotopy.

Following the picture, we want to go twice faster from 0 to 1
4
, same speed from 1

2
to

3
4

and twice slower from 3
4

to 1

Ψ(t) =


2t t ∈ [0, 1

4
]

t+ 1
4

t ∈ [1
4
, 1
2
]

1
2
t+ 1

2
t ∈ [1

2
, 1]

It now follows that Ψ : I → I is homotopic to the identity via the linear interpolation

H(s, t) = (1− s)id(t) + s.Ψ(t)

Here’s a video illustrating this idea:
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□

Lemma V.1.7. Let γ be a path. Let x = γ(0) and y = γ(1). Let cx denote the
constant path at x and cy the constant path at y. Then γ ∗ cx is homotopic to γ and
cy ∗ γ is homotopic to γ.

Proof. We sketch the construction of the homotopies:

https://www.youtube.com/watch?v=qLi9-e8owSI
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Here’s a video illustration:

□

Proposition V.1.8. Let X be a topological space. Then the points of X are the
objects of a category Π1(X) where

Π1(X)(x, y) := hPath(x, y)

and composition is given by concatenation of paths.

https://www.youtube.com/watch?v=ZwTYUZPby1Y
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Proof. The existence of a well-defined composition law is established by the
Construction V.1.5. The associativity of compositions is a consequence of Lemma V.1.6.
Finally, identities are given by constant paths as shown in Lemma V.1.7. □

Lemma V.1.9. Let X be a topological space. Then every morphism in Π1(X) is an
isomorphism.

Proof. We show that γ and γrev provide inverse morphisms in Π1(X). Namely,
that γ ∗ γrev is homotopic to the constant path with value γ(1) and γrev ∗ γ is
homotopic to the constant path with value γ(0). We sketch the construction of the
homotopy in the second case:

The first case follows from a similar construction.

Here’s a video illustrating the situation:
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□

Definition V.1.10. A category C where every morphism is an isomorphism is called
a groupoid.

Definition V.1.11. The groupoid Π1(X) associated to a topological space X is
called the fundamental groupoid of X.

Remark V.1.12. We have a canonical isomorphism of set π0(Π1(X)) ≃ π0(X).

Notation V.1.13. The collection of groupoids forms a category: objects are group-
oids and morphisms are given by functors between groupoids. We denoted it by
GROUPOIDS

Example V.1.14. Let X = ∗ be the point. Then Π1(∗) = [0].

Terminology V.1.15. Let X be a topological space and x ∈ X. A path γ : I → X
with γ(0) = γ(1) = x is called a based loop at x.

Remark V.1.16. If γ : I → X is a loop based at x ∈ X then γ factors through the
quotient [0, 1]/(0 ∼ 1) ≃ S1 → X sending 1 ∈ S1 to x. See the Example II.5.33.

Corollary V.1.17. Let X be a topological space and x ∈ X. The set of homotopy
equivalence classes loops based at x forms a group under the concatenation law for
paths.

Proof. Indeed, it remains to observe that if C is a groupoid, and x is an object in
C, then the inclusion AutC(x) ⊆ HomC(x, x) is an equality and therefore HomC(x, x)
is group since every morphism has an inverse with respect to composition. Applying
this to x ∈ Π1(X) we get the result. □

https://www.youtube.com/watch?v=xXqKMyjuLRE
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Definition V.1.18. The group obtained in the Corollary V.1.17 is called the fun-
damental group of X at x and denoted by π1(X, x).

Example V.1.19. Let X = ∗, then π1(∗, ∗) = {0} is the trivial group.

Definition V.1.20. A groupoid C is said to be connected if for every pair of objects
X and Y there exists a morphism X → Y . Equivalently, π0(C) ≃ ∗.

Remark V.1.21. Since in Definition V.1.20, C is assumed to be a groupoid, the
condition is equivalent to asking for the existence of a morphism Y → X: since
any morphism is an isomorphism, we can take its inverse. In particular, for any
two objects X and Y in C, the groups of automorphisms AutC(X) and AutC(Y ) are
isomorphic as groups, via the conjugation of the Remark IV.2.8.

Proposition V.1.22. Let X be a topological space. Then Π1(X) is connected as a
groupoid if and only if X is path-connected.

Proof. Obvious from the definition of morphisms in Π1(X) as homotopy classes
of paths. □

Corollary V.1.23. When X is path connected, the fundamental groups π1(X, x) do
not depend on the choice of the base points x.

Proposition V.1.24. The construction of the fundamental groupoid of Proposi-
tion V.1.8 defines a functor

Π1 : TOP→ GROUPOIDS

Proof. If f : X → Y is a continuous map, then we have a well-defined functor
Π1(f) : Π1(X) → Π1(Y ) defined on objects by x ∈ X 7→ f(x) ∈ Y and on morph-
isms by sending a homotopy class of paths [γ] : x → y to the homotopy class of
[f ◦γ] : f(x)→ f(y). This is well-defined on homotopy classes because a continuous
map can be composed with homotopies as in Proposition III.3.9. Compatibility
with compositions is a consequence of compatibility with concatenations. Compat-
ibility with units comes from the fact f sends to constant path to the constant path,
and again, is compatible with homotopies.
It remains to check that if f : X → Y and g : Y → Z are continous maps, we have
Π1(g) ◦ Π1(f) = Π1(g ◦ f). This as an exercise. □

Proposition V.1.25. The functor Π1 : TOP→ GROUPOIDS commutes with products.

Proof. This follows because a continuous path on the product space X × Y
is by universal property of products, a path on X and a path on Y . By the same
universal property, homotopies of paths on X × Y are also defined coordinate-wise
(see the Proposition III.3.10) so the result follows. More precisely, this implies that
the canonical map

Π1(X × Y )→ Π1(X)× Π1(Y )
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induced by the universal property of products in GROUPOIDS is an isomorphism of
groupoids. □

To conclude this section we want to show that homotopy equivalent spaces have
isomorphic fundamental groups. The proof of this result rests on the following
construction and lemma:

Construction V.1.26. Let us consider the functor Ψ : J → Π1(I) given by sending
0 to the point 0 in I , 1 to the point 1 in I, the unique morphism 0→ 1 in J to the
homotopy class of the continuous path from 0 to 1 given by γ = IdI and the unique
morphism 1 → 0 in J to the same path traveled in reverse sense. This is a well-
defined functor because Π1(I) is a groupoid as seen in the proof of Lemma V.1.9.
We are merely selecting an isomorphism and its inverse.

Lemma V.1.27. The functor Ψ : J → Π1(I) is an equivalence of categories.

Proof. We first show that the functor is fully faithful. This is to say that there
is a unique homotopy class of paths in the interval, ie, if γ1, γ2 : I → I are two paths
in the interval with γ1(0) = γ2(0) = 0 and γ1(1) = γ2(1) = 1. Then the homotopy
H(s, t) := (1 − s)γ1(t) + s.γ2(s) defines a homotopy between the two paths, fixing
the endpoints. This shows that the functor is fully faithful.

To see that it is essentialy surjective, it is enough to observe that the interval is
path-connected, and therefore every point in the interval can be connected to 0 by
a path.

□

Remark V.1.28. The composite functor Ψ : [0]→ Π1(I) selecting the object 0 ∈ I
is an equivalence of categories. This follows from the Example IV.4.6, together
with the Exercise IV.4.7.

Proposition V.1.29. The fundamental groupoid functor

Π1 : TOP→ GROUPOIDS

sends homotopies of continuous maps to natural isomorphisms of functors. In par-
ticular, it sends homotopy equivalences of spaces to equivalences of groupoids.

Proof. Using the Remark V.1.28 we see that if H : I ×X → Y is a homotopy
between two maps f, g : X → Y , then the induced functor Π1(H) : Π1(I × X) →
Π1(Y ), thanks to the Proposition V.1.25 is the same as a functor

Π1(I)× Π1(X)→ Π1(Y )

The composition with the functor J → Π1(I) of Remark V.1.28, produces a com-
posite functor

J × Π1(X)→ Π1(I)× Π1(X)→ Π(Y )

But this is precisely the data of a natural isomorphism between the functors Π1(H(0,−))
and Π1(H(1,−)) as explained in the Corollary IV.4.15 □
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Corollary V.1.30. The fundamental groupoid functor Π1 : TOP → GROUPOIDS
sends homotopy equivalences of spaces to equivalences of categories. In particular,
homotopy equivalent spaces have isomorphic fundamental groups.

In order to give an explicit description of how the Corollary V.1.30 applies to
fundamental groups concretely, we need the following easy lemma:

Remark V.1.31 (Square Lemma). Let I×I = [0, 1]× [0, 1] be the square. Consider
the paths obtained by traveling along the four sides of the square:

α : [0, 1]→ I × I t 7→ α(t) := (0, 1− t) , β : [0, 1]→ I × I t 7→ β(t) := (t, 0)

γ : [0, 1]→ I × I t 7→ γ(t) := (1, 1− t) , σ : [0, 1]→ I × I t 7→ σ(t) := (t, 1)

Then, the two concatenations β ∗ α and γ ∗ σ are homotopic. We extract this as a
consequence of the isomorphism of groupoids of the Proposition V.1.25:

Π1(I × I) ≃ Π1(I)× Π1(I)

Let us denote by i : I → I the path in I from 0 to 1 given by the identity: t 7→ t
and by iinv : I → I its inverse path, ie, t 7→ (1 − t). Let us also write c0 and c1 to
denote the constant paths respectively at 0 and 1 in I. Paths in a product space are
determined coordinate-wise. It follows that coordinate-wise, the paths γ,β, σ and α
are given by

α = (c0, iinv) β = (i, c0)

γ = (c1, iinv) σ = (i, c1)

Therefore, their concatenations, coordinate-wise are given by

γ ∗ σ = (c1 ∗ i, iinv ∗ c1) β ∗ α = (i ∗ c0, c0 ∗ iinv)
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But in the proof of the isomorphism of groupoids Π1(I×I) ≃ Π1(I)×Π1(I) we used
that homotopies in the product are also determined coordinate-wise. And we know
that coordinate-wise we have c1 ∗ i ∼ i and iinv ∗ c1 ∼ iinv (by the Lemma V.1.7)
so that using this homotopies in each coordinate, we get

γ ∗ σ ∼ (i, iinv)

Also coordinate-wise, we have homotopies i ∗ c0 ∼ i and c0 ∗ iinv ∼ iinv, so that

β ∗ α ∼ (i, iinv)

Finally,

β ∗ α ∼ (i, iinv) ∼ γ ∗ σ

Exercise V.1.32. TD 3, Exo 1Use the square lemma to show that homotopy classes of paths
(using homotopies that do not fix the endpoints) are in bijection with conjugacy
classes of paths up to homotopy of paths fixing the endpoints.

Remark V.1.33. Let us unfold the content of the proof of the Corollary V.1.30 in
in concrete terms for the fundamental groups: assume f1, f2 : X → Y are homotopic
via a homotopy H with H|0 = f1 and H|1 = f2. For each x ∈ X, the homotopy H
provides a path αx := H(−, x) : [0, 1]→ Y from f1(x) to f2(x). Let [γ] ∈ π1(X, x),
represented by a loop γ : [0, 1]→ X. Then we can form the composition

I × I idI×γ
// X × I H

// Y

(t, s) 7→ (γ(t), s) 7→ H(s, γ(t))

Using the Remark V.1.31, this provides a homotopy between the sides of the square:

(f2 ◦ γ) ◦ αx ∼ αx ◦ (f1 ◦ γ)

In other words, conjugation with the path αx makes the diagram commute

π1(X, x)
(f1)∗

//

(f2)∗
��

π1(Y, f1(x))

αx◦−◦α−1
xww

π1(Y, f2(x))

Now, assume f : X → Y is a homotopy equivalence with inverse g : Y → X and
homotopies H1 between g ◦ f and idX and H2 between f ◦ g and idY . Then (idX)∗
differs from (g ◦ f)∗ by a conjugation, so that (g ◦ f)∗ is an isomorphism. The same
for idY .
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Example V.1.34. Let X be a contractible space and x ∈ X any point. We have
π1(X, x) = {0}. Indeed, the homotopy equivalence betweenX and ∗, by the previous
corollary, induces an equivalence of categories between Π1(X) and Π1(∗) = [0]. In
particular:

• π1(Rn, 0) = {0}.
• π1(Dn, 1) ≃ π1(D

n, 0) = {0}.

Definition V.1.35. A space is said to be simply-connected if it is path-connected
and π1(X, x) = {0} for all x ∈ X.

Exercise V.1.36. Show that the space in the Warning III.2.7 is simply-connected.

Exercise V.1.37. Show that π1(X, x) can be identified with the set of base-point
preserving homotopy classes of base-point preserving maps (S1, 1)→ (X, x).

The goal of the next section is to compute the fundamental group of the circle. In
particular, our computation will show that the circle is not simply-connected.

V.2. Fundamental group of the circle

We now turn to the computation of π1(S1, 1). The inspiration comes from the
Example I.2.12 where the circle is somehow the simplest space where every corridor
(path) brings us back to the same room and at the extreme opposite we have R,
where every path brings us to a different room. These two extreme opposites are
related via the exponential map exp : R → S1 of the Example II.2.19 defined
on cartesian coordinates by x 7→ (cos(2πx), sin(2πx)). We have already seen that
the periodicity of the cosinus and sinus function imply that the exponential map
is a quotient map Example II.5.25 and Exercise II.5.32. We can visualize it as
wrapping the real line around over the circle:

Picture from Hatcher’s book.

https://pi.math.cornell.edu/~hatcher/AT/AT+.pdf
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Construction V.2.1. For each n ∈ Z, we denote by sn the path [0, 1] → R given
by

sn(t) = tn

We define a path on the circle

γn := exp ◦sn
explicitly, it is given by

γn(t) = (cos(2πnt), sin(2πnt))

Notice that since γn(0) = e0 = 1 and γn(1) = e2πi.1.n = 1, γn defines a loop based at
1 ∈ S1.

We remark that the concatenation γn1 := γ1 ∗ · · · ∗ γ1︸ ︷︷ ︸
n

is homotopic to γn. To check

why this is true, let us first denote by snn+1 : [0, 1] → R the path from n to n + 1
given by snn+1(t) = (1− t)n+ t(n+1) = n+ t. Notice that the exponential function
makes

exp ◦s1 = exp ◦snn+1

because

e2πit = e2πit.1 = e2πit+2πin = e2πi(t+n)

for every n ∈ Z. Therefore, the concatenation γn1 can also be written as

γn1 = exp ◦sn−1
n ∗ · · · ∗ exp ◦s12 ∗ exp ◦s1

which is the same as concatenating first the paths skk+1 in R and then applying the
exponential map

γn1 = exp ◦(sn−1
n ∗ · · · ∗ s12 ∗ s1)

The path sn−1
n ∗ · · · ∗ s12 ∗ s1 is a path from 0 to n. Since R is contractible,

every two paths with the same end-points are homotopic (its fundamental group-
oid is equivalent to the trivial category). Therefore, sn−1

n ∗ · · · ∗ s12 ∗ s1 is path-
homotopic to sn. If we want a precise formula, we can use the homotopy H(λ, t) =
(1 − λ)sn(t) + λ(sn−1

n ∗ · · · ∗ s12 ∗ s1)(t). Applying the exponential map, we deduce
that γn is homotopic to γn1 .

It follows that γn ∗ γm is homotopic to γn1 ∗ γm1 = γn+m
1 which is then homotopic to

γn+m. This implies that the assignment

Ψ : Z→ π1(S
1, 1)
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sending n 7→ [γn] is well-defined and is a group homomorphism with respect the
additive law in Z.

Theorem V.2.2: Fundamental Group of the Circle

The group homomorphism

Ψ : Z→ π1(S
1, 1)

n 7→ [γn]

is an isomorphism of groups.

Since the paths γn were constructed using the exponential map, the proof of this
theorem relies on some fundamental properties of the exponential map. The first
concerns the surjectivity of Ψ, telling us that a loop in the circle is always homotopic
to one of the γn’s:

Definition V.2.3. Let p : E → X be a morphism in a category C. A lift of
f : Y → X along p is the data of a morphism f̃ : Y → E making the diagram
commute

E

p
��

Y
f
//

f̃
>>

X

Lemma V.2.4. Every path γ on the circle can be lifted along the exponential map
to a path in R.

R

exp
��

[0, 1]
γ
//

γ̃
==

S1

This lifting is unique if we fix the starting point in R.

In order to prove this result we will need to delve deeper in the properties of the
exponential map. Motivated by the picture above, we will explore the fact that the
exponential function is, at least locally, a homeomorphism.

Example V.2.5. Let us consider Uright the right side of the circle, ie, those points
(x, y) ∈ S1 ⊆ R2 with x > 0. The subset Uright is the intersection of the circle
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with the open subset of R2 with strictly positive x-coordinate. and therefore, by
definition of the subspace topology, Uright is open in S1.

(Picture take from Munkres, Topology)
The pre-image exp−1(Uright) = {x ∈ R : cos(2πx) > 0} consists of a disjoint union
of open intervals Vn :=]n− 1

4
, n+ 1

4
[

(Picture take from Munkres, Topology)

and restriction of exp to each of this intervals induces a homeomorphism

exp|Vn : Vn → Uright

Indeed, restrict to each closure Vn the function x ∈ Vn 7→ sin(2πx) is injective (since
it is strictly decreasing in these intervals). Moreover, as a map Vn → U it is sur-
jective. We use the criterium of the Proposition II.3.22. to deduce that Vn → U
is a homeomorphism. Indeed, we just checked it is a continuous bijection. It re-
mains to observe that U is Hausdorff as a subspace of S1 which is Hausdorff, and Vn
is a closed interval, therefore quasi-compact. It restricts to a homemorphism Vn to U .

In more concrete terms, the local inverse of exp|Vn is given by a local branch of the
complex logarithm: recall that our exponential function is defined as the restriction
of the complex exponential C→ C∗ sending z 7→ ez to the imaginary line 2πi.R ⊆ C.
The complex logarithm log is defined on every open subset of C obtained by removing
half a line. In our case,

Uright ⊆ S1 ⊆ C \ {z : Re(z) < 0}
so on Uright the complex logarithm
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logright : Uright → C, w 7→ ln(|w|) + arg(w)

2π

with arg(w) ∈]− π, π[, provides a local inverse to V0 → Uright. Changing the range
of the angle by adding 2πn we find the explicit local inverses to Vn → Uright.

One can now apply similar arguments to the open subsets of the half-circles

Ulower = {(x, y) ∈ S1 : y < 0}

Uleft = {(x, y) ∈ S1 : x < 0}

Uupper = {(x, y) ∈ S1 : y > 0}

Here’s a picture of what we get

using the sinus or cosinus functions respectively.

Here’s a video illustrating this discussion:
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Let us resume the content of the Example V.2.5 as follows:

Proposition V.2.6. Consider the exponential map exp : R → S1. Then for every
point in the circle x there exists an open neighborhood U ⊆ S1 such that exp−1(U)
is equal to a disjoint union of open subsets Vn in R such that exp|Vn : Vn → U is a
homeomorphism.

Proof. Take the open subsets Uright, Uleft, Uupper, Ulower. Any point in the circle
belongs to one of these subsets and all of them satisfy the required property. □

Proof of the Lemma V.2.4. Let γ : [0, 1] → S1 be a path. The starting
point γ(0) is contained in at least one of the four Uright, Uleft, Uupper, Ulower of the
Proposition V.2.6. Without loss of generality suppose γ(0) ∈ Uright. As we follow
t ∈ [0, 1], γ will travel between the different Uright, Uleft, Uupper, Ulower so we can
choose a partition of the interval [0, 1] as a union of finitely many closed sub-intervals

[0, a1], [a1, a2], · · · , [an, 1]

such that each one of the γ([ai, ai+1]) is fully contained in one of the four Uright,
Uleft, Uupper or Ulower

(∗).

For instance, since we have assumed γ(0) ∈ Uright we can assume γ([0, a1]) ⊆ Uright.

Fix x0 a lift of γ0. Then x0 belongs to one and only one of the Vn’s. Suppose
without loss of generality it belongs to the V0. The map exp|V0

: V0 → Uright has an
inverse exp−1

|V0
: Uright → V0. Since γ([0, a1]) ⊆ Uright, we can form the composition

exp−1
|V0
◦γ|[0,a1] : [0, a1] → V0. This gives us a path in V0 from x0 = exp−1

|V0
(γ(0)) to

x1 = exp−1
|V0
(γ(a1)) in V0.

Now γ(a1) belongs to one of the Uright, Uleft, Uupper or Ulower. Say it is Udown

and assume again, without loss of generality that this choice is also such that
γ([a1, a2]) ⊆ Udown. Write exp−1(Udown) =

∐
nWn as a disjoint union of open

(∗)In fact a careful proof of the existence of this partition requires the Lebesgue covering
dimension of Example V.3.11 below.

https://www.youtube.com/watch?v=Xse7IpEgk64
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subsets, each mapping homeomorphically to Udown. Let W1 be the unique one con-
taining x1.

Notice that W1 intersects V0 (x1 belongs to both).

Then exp|W1
: W1 → Udown is a homeomorphism with inverse exp−1

|Wn
: Udown → W1.

Consider the composition exp−1
|W1
◦γ|a1,a2 : [a1, a2]→ W1. This a path in W1 from x1

to a point x2 := exp−1
|W1
◦γ|[a1,a2](a2).

The pasting lemma (Exercise II.2.14) applied to decomposition of the interval [0, a2]
as a union of the closed sub-intervals [0, a1] and [a1, a2], allows to glue the first lifted
path from x0 to x1 with this new lifted path from x1 to x2 to form a continuous
path [0, a2]→ R.

We now proceed by induction until reaching the last interval [an, 1]. The resulting
path γ̃ : [0, 1] → R obtained from the pasting lemma is a lifting of γ. Indeed p ◦ γ̃
can be checked locally to match with γ, as the construction so forces.

Notice that the resulting lift does not depend on the fact that we used the covering
{Uright, Uleft, Ulower, Uupper}. Any open covering satisfying the property of the Pro-
position V.2.6 will allow us to construct a lift. The fact that the local inverses to
the exponential function are unique (given by the logarithm), implies that the lift
is unique.

□

Remark V.2.7. The proof of the Lemma V.2.4 provides liftings for loops based at
1 ∈ S1. If γ : [0, 1] → S1 is a loop based at 1, there is a unique lift γ̃ : [0, 1] → R
starting at 0 ∈ R. Since exp(γ̃(1)) = γ(1) = γ(0) = 1, we have γ̃(1) ∈ Z. More
generally, for any lift γ̃ of a loop γ based at 1, independently of the choice of the
starting point, the difference γ̃(1)−γ̃(0) belongs to Z because exp(γ̃(1)) = exp(γ̃(0)).

Example V.2.8. Here’s an example of what we get for constructing the lift of γ2
in S1:
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Proposition V.2.9. Let γ : [0, 1] → S1 be a loop based at 1 ∈ S1. Then every two
lifts of γ differ by a translation by an integer in R.

Proof. Let γ̃1 and γ̃2 be lifts of γ
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R

exp
��

[0, 1]
γ
//

γ̃1,γ̃2

==

S1

Observe that both γ̃2(0) and γ̃1(0) are integers since being a lift of 1, we have
1 = exp(2πi γ̃2(0)) = exp(2πi γ̃1(0)). Therefore, the difference

n := γ̃2(0)− γ̃1(0)

is an integer. We now claim that

γ̃2(t)− γ̃1(t) = n

for all t ∈ [0, 1]. Clearly, since exp(2πi γ̃2(t)) = exp(2πi γ̃1(t)) for all t ∈ [0, 1], we
have exp(2πi (γ̃2(t)− γ̃1(t))) = 1 for all t ∈ [0, 1]. Therefore, the function [0, 1]→ R
given by t 7→ γ̃2(t) − γ̃1(t) takes values in Z ⊆ R. By construction this function
is continuous since it is given by the difference of two continuous functions. Since
[0, 1] is connected, this function must be constant (Remark II.6.3). But we already
know that at 0 its value is n.

□

Construction V.2.10. Let γ : [0, 1]→ S1 be a loop based at 1 ∈ S1. Let γ̃ be any
lift of γ. The integer number

degγ := γ̃(1)− γ̃(0)
is well-defined, ie, it is independent of the choice of lift γ̃. We call it the degree of γ.

Example V.2.11. The based loops γn = exp ◦sn have sn has a lift and therefore
degree n = sn(1)− sn(0).

Proposition V.2.12. If γ and β are two base loops at 1 in S1 and γ ∗ β is their
concatenation, then

degγ∗β = degγ + degβ

Proof. Let x0 be a lift of β(0) and let β̃ be the unique lift of β starting at
x0. Since β(1) = γ(0) = 1, take the unique lift γ̃ of γ starting at x1 := β̃(1). The
concatenation γ̃ ∗ β̃ is a lifting of the concatenation γ ∗β. Since the degree does not
depend on the choice of the lifting, we have

degγ∗β = γ̃ ∗ β̃(1)− γ̃ ∗ β̃(0) = γ̃(1)− β̃(0)

But since γ̃(0) = β̃(1), we have

γ̃(1)− β̃(0) = γ̃(1)− γ̃(0) + β̃(1)− β̃(0) = degγ + degβ

□
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Proposition V.2.13. If γ and β are two based loops at 1 in S1 that are homotopic,
then

degγ = degβ

The proof of this result relies on the observation that the the strategy used to lift
paths also works to lift homotopies:

Lemma V.2.14. Let H : I × I → S1 be a homotopy of paths, between γ and β
having the same endpoints. Fix x0 ∈ R a lift of exp(x0) = γ(0) = β(0). Then the
homotopy H admits a unique lifting to a path homotopy ‹H : I × I → R between the
unique lifting γ̃ of γ at x0 and the unique lifting β̃ of β at x0.

Proof. Choose a subdivision of the square I × I in small enough squares
such that for each small square Ki, the image of H(Ki) is fully contained in one of
the open intervals Uright, Uleft, Uupper, Ulower. This is possible again by the Lebesgue
covering argument that we will see in the next section.

Rename U1 the open where H(K1) is fully contained. The point x0 is contained in
only and only one of the disjoint open intervals in R in exp−1(U1). Name it V1 and
use the local inverse of exp−1

V1
: U1 → V1 to define the composition

exp−1
V1
◦H|K1

: K1 → U1 → V1

One now proceeds by induction using the pasting lemma, gluing this homotopy along
the squares Ki.

The result is a continuous map ‹H : I×I → R. It remains to check this is a homotopy
of paths between γ̃ and β̃. But ‹H(0,−) : I → R provides by construction another
lifting of γ, starting at x0. By the unicity of the lifting once a starting point is
fixed, we must have ‹H(0,−) = γ̃. The same argument shows that ‹H(1,−) = β̃. To
show that ‹H is a homotopy of paths, it remains to explain why the endpoints of‹H(s,−) remain fixed for all s ∈ I. But notice that by construction ‹H(−, 0) : I → R
provides a lifting for the constant path with value γ(0) = β(0). This is because
by assumption H is a path homotopy and therefore H(,−0) is constant equal to
γ(1) = β(1). By uniqueness of the lifting, ‹H(−, 0) : I → R must therefore be the
constant path (since the constant path also provides a lifting). The same argument
for ‹H(−, 1) : I → R explains why it must also be a constant path. □

Proof of the Proposition V.2.13. Consider β and γ as in the statement
of the Proposition V.2.13 and H a homotopy of paths between them. Since the
degree does not depend on the choice of lifting, fix the unique liftings γ̃ and β̃ starting
at x = 0, together with the unique path homotopy ‹H given by the Lemma V.2.14.
Since ‹H is a homotopy of paths, the endpoint ‹H(s, 1) is independent of the parameter
s in the homotopy. Therefore,

degγ = ‹H(0, 1) = ‹H(s, 1) = ‹H(1, 1) = degβ
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□

Corollary V.2.15. The map sending an homotopy class of based loop at 1 ∈ S1, [γ]
to its degree, defines a group homomorphism

deg : π1(S
1, 1)→ Z

which is an inverse of Ψ.

Proof. The fact that deg ◦ Ψ = idZ is a consequence of the Example V.2.11
and the fact that the degree does not depend on the choice of the lifting or the rep-
resentative of the homotopy class. This implies that Ψ is injective. Since we already
knew it Ψ was surjective thanks to the lifting property for paths (Lemma V.2.4),
the Theorem V.2.2 is therefore proved, as is this corollary. □

Example V.2.16. There can be no retract for the inclusion S1 ↪→ D2. Indeed, if
there was a retract, we would have also a retraction for the induced map of groups
Z ≃ π1(S

1, 1) → π1(D
2, 1) = {0}. But clearly this is not possible since the identity

of Z cannot factor through 0.

Exercise V.2.17.

(i) Let

X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ X :=
⋃
i≥0

Xi

be a sequence of inclusions of Hausdorff spaces where X is equipped with
the inductive limit topology: a subset U ⊆ X is open if and only if each
intersection U ∩Xi is open in Xi.

Show that a compact subset K ⊆ X is contained in some Xi.

(ii) Use (i) to show that for every n and choice of x0 ∈ X0, the canonical map

colimn π1(Xi, x0)→ π1(X, x0)

is an isomorphism of abelian groups. (†)

(iii) Use the sequence of inclusions along the equator

S1 ⊆ S2 ⊆ S3 ⊆ · · · ⊆
⋃
i≥0

Si =: S∞

to show that S∞ is simply-connected.

(†)We have not defined general colimits/inductive limits in these notes. So in this exercise we
assume this is known from elsewhere.
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Exercise V.2.18. Show that if the circle S1 had a trivial fundamental group, then
all topological spaces would have a trivial fundamental group.

V.3. Van Kampen theorem

The Theorem V.2.2 finally gives a precise sense to the claim in the Example I.2.12
that the group associated to the circle is the free group in one generator (ie, Z).
We would like now to finally prove the claim that the group associated to the space
S1 ∨ S1

(Picture taken from Hatcher’s book)

is the free group with two generators a and b as claimed in the Remark I.2.11.
Proving this is the goal of this chapter. The general phenomena behind is the
content of the following theorem
Our main goal in this section is to prove the following theorem:

Theorem V.3.1. Let X be a topological space obtained as a union of two open
subsets X = U

⋃
V . Then, the functor Π1 sends the pushout diagram in TOP of the

Example II.5.48

U
⋂
V //

��

V

��

U // X

to a pushout diagram in GROUPOIDS

(3) Π1(U
⋂
V ) //

��

Π1(V )

��

Π1(U) // Π1(X)

We proceed in several steps.

Construction V.3.2. Consider a diagram of groupoids

E

F
��

G
// D

C

https://pi.math.cornell.edu/~hatcher/AT/AT+.pdf
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such that both functors F and G are injective on objects. Let us denote by C
∐
E

D

the category defined by:

• objects given by the pushout in sets Ob(C)
∐

Ob(E)

Ob(D), which since both

functors are injective on objects, is imply the union Ob(C)
⋃
Ob(D).

• A morphism X → Y consists of a formally composable string,

f0 f1 f2 · · · fn−1

where each fi is a morphism either in C or in D and the target object of
fi is the source object of fi+1, the source of f0 is X and the target of fn−1

is Y .(‡) We consider the equivalence relation on strings generated by the
conditions

– Whenever fi is an identity morphism, we can omit it;
– If fi and fi+1 are both either in C or in D, we can compose it in

that category and replace their two letters by the letter given by their
composition.

– F (u) = G(u) for every morphism u in E.
• Compositions of strings are given by concatenation.

Under this construction C
∐
E

D defines a category which in particular is a groupoid,

since every string admits an inverse string obtained using the inverses from C and D.

Moreover, it comes equipped with two natural inclusion functors C → C
∐
E

D and

D→ C
∐
E

D.

Finally, given a commutative diagram of functors

E

F
��

G
// D

T
��

C
S
// P

we define a functor Ψ rendering the commutativity of the diagram

(‡)Formally we can picture it as

X = X0
f0 // X1

f1 // X2
f2 // · · ·

fn−1
// Xn−1

fn−1
// Xn = Y

although the compositions a priori do not make sense neither in C or in D.
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E

F

��

G
// D

�� T

��

C

S
33

// C
∐
E

D

Ψ

  

P

defined on objects by

Ψ(X) =

®
S(X) X ∈ C

T (X) X ∈ D

(this is well defined on objects because T ◦ G = S ◦ F ) . We define it the same
away on morphisms by applying S or T to each letter in a word, depending if it
corresponds to a morphism on C or D, and composing the morphisms in P. In case
the letter comes from E, again the fact that T ◦G = S ◦ F garantees the procedure
is well-defined under the equivalence relation.

Exercise V.3.3. Check that the Construction V.3.2 satisfies the universal property
of pushouts in GROUPOIDS

Remark V.3.4. The two functors

Π1(U
⋂

V )→ Π1(U) and Π1(U
⋂

V )→ Π1(V )

are injective of objects (objects being the points of X). So we fall under the condi-
tions of the Construction V.3.2 and have an explicit description of the pushout

Π1(U)
∐

Π1(U
⋂

V )

Π1(V )

Its objects are the points of X and as explained in Construction V.3.2, a morphism
in Π1(U)

∐
Π1(U

⋂
V )

Π1(V ) is a formal string of composable morphisms

f0 f1 f2 · · · fn−1

where each fi is a morphism either in Π1(U) or in Π1(V ). Therefore, each fi is of
the form [γi] a homotopy class of a path γi either fully contained in U or in V . The
same way, if fi = [γi] = [γ′i], then the homotopy H rendering γi and γ′i homotopic
must itself also be defined either fully in U or in V .

Following this remark let us provide an equivalent description for the sets of morph-
isms in Π1(U)

∐
Π1(U

⋂
V )

Π1(V ).
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Definition V.3.5. LetX be a topological space obtained as in the pushout (II.5.48).
A partitioned path is a path γ : [0, 1] → X together with a finite partition of [0, 1]
by closed sub-intervals Ii, and such that the for each i, γ(Ii) is either contained in
U or in V .

Given two partitioned paths (α, {Ii}) and (β, {Jj}) such that the two partitions
{Ii} and {Jj} coincide, a partitioned homotopy is a family of homotopies {Hi :
[0, 1] × Ii → X}i∈I where each Hi is a homotopy between α restricted to Iiand β
restricted to Ii, that fixes the endpoints of Ii and whose image Hi([0, 1] × [0, 1]) is
completely inside either U or V , depending on where the path lies.

We consider the equivalence relation on partitioned paths generated by forcing
(α, {Ii}) ∼ (β, {Jj}) if

• α and β coincide as paths, or,

• The two partitions {Ii} and {Jj} agree and there exists a partitioned ho-
motopy.

Example V.3.6. Here is a path

With two different partitions:
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Remark V.3.7. Notice that two partitions {Ii} and {Ij} of the same path α, have
a common refinement by taking intersections and choosing if want to see the image
in U or in V whenever it belongs to the intersection.

Construction V.3.8. Assume the context of Definition V.3.5. Every partitioned
path (α, {Ii}) provides a morphism in Π1(U)

∐
Π1(U

⋂
V )

Π1(V ), namely, the string given

by

[α|In ][α|In−1
][α|In−2

] · · · [α|I1 ]

where each chunk of the path is either in U or in V . By the nature of the equivalence
relation on partitioned paths, this descends to the quotient.
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Lemma V.3.9. The induced map from equivalence classes of partitioned paths to
morphisms in the pushout, is a bijection.

Proof. Indeed, to find the inverse just concatenate all the paths in the word as
paths in X and endowed it with the induced partition coming from the concatena-
tion. □

We can finally turn to the proof of the Van Kampen theorem: Here is the main
lemma that will guarantee that enough partitions will both for paths and for homo-
topies:

Lemma V.3.10 (Lebesgue number lemma). Let (K, d) be a compact metric space
and let U = {Ui}i∈I be an open cover. Then there exists a constant δ > 0 such that
every subspace A ⊆ K of diameter less than δ, is contained in one of the Ui’s.

Proof. For each x ∈ K pick a radius ϵ(x) small enough such that ballB(x, 2ϵ(x))
is contained in some of the Ui. In particular, the smaller ball B(x, ϵ(x)) is still con-
tained in Ui. This is possible because the metric topology has a basis given by open
balls.
Now, the collection {B(x, ϵ(x))}x∈K forms an open cover of K. Since K is compact
this cover admits a finite subcover, say {B(x1, ϵ(x1)), · · · , B(xn, ϵ(xn))}.
Take δ = inf{ϵ(x1), · · · ϵ(xn)}.
Now, let A be a subspace of diameter smaller than δ. Let a ∈ A. Then a belongs
to at least one of the B(xi, ϵ(xi))’s, say B(x1, ϵ(x1)). We claim that in this case the
whole A is contained in B(x1, 2ϵ(x1)). Indeed, let a′ ∈ A. Then by definition of
diameter we have d(a, a′) ≤ δ. But by the triangle inequality, we have

d(a′, x1) ≤ d(a′, a) + d(a, x1) ≤ δ + ϵ(x1) ≤ 2ϵ(x1)

Since the ball B(x1, 2ϵ(x1)) is by construction contained in one of the Ui, so is A.

□

We will apply this in two ways. First with paths:

Example V.3.11. Let X be as in Definition V.3.5. Then {U, V } forms an open
cover of X. Let γ : [0, 1] → X be a path. Then {γ−1(U), γ−1(V )} forms an
open cover of K = [0, 1] which is a compact metric space. Take the constant δ in
Lemma V.3.10 and pick a partition of [0, 1] by subintervals Ii of size smaller than
δ. It follows that the restriction of γ to each of the Ii’s has image either in U or in
V .

Then with homotopies

Example V.3.12. Let X be as in Definition V.3.5 with {U, V } an open cover. Let
H : K = [0, 1] × [0, 1] → X be a continuous map. Then {H−1(U), H−1(V )} forms
an open covering of K which is a metric space. Since the metric topology in this
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case has a basis by boxes as in the Example II.5.9, the Lemma V.3.10 guarantees
the existence of a partition of K in a finite number small enough squares, K1, · · ·Kn

such that H(Ki) is fully contained in U or V . By reducing the size of the squares if
necessary, we can suppose they are all of the same size:

Proof of Theorem V.3.1. We must show that the induced functor

Ψ : Π1(U)
∐

Π1(U
⋂

V )

Π1(V )→ Π1(X)

is fully faithful and essentially surjective. The second is automatic since the functor
is by construction bijective on objects. It remains to prove fully faithfulness. For
this purpose we will use the description of morphisms in the pushout as equivalence
classes of partitioned paths (Lemma V.3.9.). In practice, what we have to show is
that, given two points x, y ∈ X, then the map sending a partitioned path (γ, {Ii})
with γ(0) = x, and γ(1) = y to the path γ, sends homotopies of partitioned paths
to homotopies of paths and induces a bijection on the quotient sets

{(γ, {Ii}) : γ(0) = x, γ(1) = y)}/ ∼ −→ {γ : γ(0) = x, γ(1) = y}/ ∼

The surjectivity of this map comes the existence of partitions for a given path. This
is the Example V.3.11 as a consequence of Lemma V.3.10.

Injectivity: Consider two partitioned paths (α, {Ii}) and (β, {Jj}) and assume they
are homotopic as paths, ie, α and β are homotopic via a homotopy H preserving
the endpoints.
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We must show that it is possible to partition H. But this is exactly the Ex-
ample V.3.12.

We must now show that this gives us a partitioned homotopy. For this we use the
square lemma to produce homotopies of paths respecting the partitions, block by
block, starting from the bottom left square
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By induction:

Continuing this process by induction, we a sequence of path homotopies respecting
the partitions
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□

Corollary V.3.13. Let X be a topological space obtained as a disjoint union of two
spaces X ≃ U

∐
V . Then Π1(X) ≃ Π1(U)

∐
Π1(V ).

The version of the Van-Kampen theorem of the Theorem V.3.1 is not convenient
for many computations. For all the practical purposes, we will instead work with
the following version:
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Theorem V.3.14: Van-Kampen for groups

Let X be a topological space. Assume that X is obtained as a union of two
non-empty open subsets U and V such that all X, U , V and U

⋂
V are path-

connected. Let x ∈ U
⋂
V . Then the functor π1(−, x) sends the pushout of

spaces

U
⋂
V //

��

V

��

U // X

to a pushout diagram in GROUPS

(4) π1(U
⋂
V, x) //

��

π1(V, x)

��

π1(U, x) // π1(X, x)

ie

π1(X, x) ≃ π1(V, x) ∗
π1(U

⋂
V,x)

π1(U, x)

Remark V.3.15. There is also a version of the van Kampen theorem obtained by
considering closed subsets instead of open subsets. You can check the proof here.
We will need need in this this course.

We will deduce Theorem V.3.14 from Theorem V.3.1. This requires some formal
steps:

Construction V.3.16. Let G be a group. In particular, forgetting that the oper-
ation has inverses, G is an associative monoid. So we can form the category BG
of the Example IV.1.25. Since G is a group, this category is now a groupoid. We
have therefore upgraded the functor B : MONOIDS→ CATS, to a functor

B : GROUPS→ GROUPOIDS

Exercise V.3.17. Show that the functor B : GROUPS→ GROUPOIDS of the Con-
struction V.3.16 preserves pushouts. Use the explicit description of pushouts of
groups in the Proposition IV.5.34 and pushouts of groupoids in the Construc-
tion V.3.2.

https://analysis-situs.math.cnrs.fr/Theoreme-de-van-Kampen-version-fermee.html
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Proposition V.3.18. Let C be a connected groupoid. Let c be an object in C and
G := AutC(c) its group of automorphisms. Then the functor

Bc : BAutC(c)→ C

sending •G 7→ c and defined by the identity on morphisms, defines an equivalence of
categories.

The data of an inverse Ωc to Bc is determined by the choice of a collection of morph-
isms {αc′ : c→ c′}c′∈C for every object c′ ∈ C. In particular, it is possible to choose
Ωc such that Ωc ◦ Bc = id.

Proof. Indeed, being the identity on morphisms, the functor is automatically
fully faithful. It remains to show that it is essentially surjective. But since C is
assume to be connected, every object c′ in C is isomorphic to c so Bc is essentially
surjective.

An explicity inverse to Bc can be constructed by picking a collection of morphisms
{αc′ : c → c′}c′∈C for every object c′ ∈ C: indeed, set Ωc(c

′) = •c and if f : c1 → c2
is a morphism in C, set Ωc(f) = α−1

c2
◦ f ◦ αc1 . By choosing αc = idc, this defines a

functor Ωc with Ωc ◦ Bc = id.

To show that Bc and Ωc form an equivalence of categories, it remains to exhibit a
natural isomorphism of functors λ : idC ≃ Bc ◦Ωc. For each c′ ∈ C, define λc′ = α−1

c′ .
Then we have for any morphism f : c1 → c2 in C, a commutative diagram

c1

f

��

α−1
c1
// c = BcΩc(c1)

BcΩc(f):=α−1
c2

fαc1
��

c2
α−1
c2
// c = BcΩc(c2)

□

Proof of the Theorem V.3.14. Let X be a topological space obtained as a
union of two non-empty open subsets U and V such that all X, U , V and U

⋂
V are

path-connected. Let x ∈ U
⋂
V . Then the functors Bx of the Proposition V.3.18

provide a commutative diagram of groupoids
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(5) B π1(U ∩ V, x) //

Bx

((

��

B π1(V, x)
Bx

&&

��

Π1(U ∩ V ) //

��

Π1(V )

��

Bπ1(U, x) //

Bx

((

Bπ1(X, x)
Bx

&&

Π1(U) // Π1(X)

This is automatic from the definitions and the fact the base point x belongs to the
intersection.

Now, since all U , V and U ∩ V are path-connected we can choose for every y ∈ X a
path αy : x→ y such that if y is in U then αy is a path in U and if y is in V , αy is
a path in V and if y is in U ∩ V the two choices of paths coincide. In this case the
associated retraction functors Ωx of the Proposition V.3.18 provide a retraction of
commutative squares (5) as in the Definition IV.5.38

Π1(U ∩ V ) //

Ωx

((

��

Π1(V )
Ωx

&&

��

B π1(U ∩ V, x) //

��

B π1(V, x)

��

Π1(U) //

Ωx

((

Π1(X)
Ωx

&&

B π1(U, x) // B π1(X, x)

So, by the Exercise IV.5.39 applied to C = GROUPOIDS, we deduce that

B π1(U
⋂
V, x) //

��

B π1(V, x)

��

B π1(U, x) // B π1(X, x)

is a pushout of groupoids. It follows now from the explicit description of pushouts
of groupoids in the Construction V.3.2 and the explicit description of pushouts of
groups in Proposition IV.5.34, that the diagram of groups
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(6) π1(U
⋂
V, x) //

��

π1(V, x)

��

π1(U, x) // π1(X, x)

is a pushout.

□

Remark V.3.19. In fact, what we have used in the last part of the proof of the
Proposition V.3.18 when comparing the explicit description of pushouts of group-
oids in the Construction V.3.2 and the explicit description of pushouts of groups
in Proposition IV.5.34, is that the functor B : GROUPS→ GROUPOIDS preserves
pushouts.

Remark V.3.20. Let us describe in more explicit terms what we have done in the
proof of the Theorem V.3.14. We wanted to show that the concatenation map

π1(U, x) ∗
π1(U∩V,x)

π1(V, x)→ π1(X, x)

is both injective and surjective. Injectivity follows from the square lemma and the
lebesgue number lemma applied to the square.

To show surjectivity we had to use the fact that U ∩ V is path-connected. Indeed,
if γ : I → X is a loop in X, the partition of γ does not exhibit γ as a concatenation
of loops, but rather paths, as shown in the picture:
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In the proof of the Theorem V.3.14 we made a choice of paths α1, α2, α3

that allow us to write

γ = γ6 ∗ γ5 ∗ γ4 ∗ γ3 ∗ γ2 ∗ γ1
as

γ = γ6 ∗ α5 ∗ α−1
5 ∗ γ5 ∗ γ4 ∗ α4 ∗ α−1

4 ∗ γ3 ∗ α3 ∗ α−1
3 ∗ α2 ∗ α−1

2 ∗ γ2 ∗ α1 ∗ α−1
1 ∗ γ1

and therefore, as a concatenation of loops based at x.

Here’s a video illustrating this
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To prove that the morphism

π1(U, x) ∗
π1(U∩V,x)

π1(V, x)→ π1(X, x)

is injective, we used the square lemma, the Lebesgue number lemma applied to the
square and the fundamental groupoid. In class, we gave a different more direct proof
that avoids the use of the fundamental groupoid. Here’s a video illustrating a direct
argument for the proof of injectivity without using the language of groupoids:

Example V.3.21. We can now finally compute the fundamental group of the wedge
of circles S1 ∨ S1 and compare it to the discussion in the Solution I.2.2.

(Picture taken from Hatcher’s book)

https://www.youtube.com/watch?v=VGDVdR2b29s&t=451s
https://www.youtube.com/watch?v=j9sjtpUEcQ4&t=7s
https://pi.math.cornell.edu/~hatcher/AT/AT+.pdf
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We consider two open subsets U and V of the form

As shown in the picture, their intersection is path-connected. Moreover, the open
subset U deformation retracts to the circle b and the open subset V deformation
retracts to the circle a. Moreover, the intersection U ∩ V deformation retracts to
the middle node x.

It follows that

π1(U, x) ≃ .bZ

π1(V, x) ≃ .aZ

π1(U ∩ V, x) ≃ {0}

By the Van-Kampen theorem for groups Theorem V.3.14, we have a coproduct of
groups

π1(S
1 ∨ S1, x) ≃ aZ ∗ bZ

which, by definition is exactly the free group on two generators.
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Example V.3.22. As an example, let us use Theorem V.3.14 to compute the
fundamental group of the 2-sphere S2. Let N = (0, 0, 1) and S = (0, 0,−1) denote
respectively the northern and southern poles. Consider the open subsets

UN := S2 \ {S} US := S2 \ {N}

UN is an open subset contained the northern hemisphere and US is an open subset
containing the southern hemisphere.

All UN , US and the intersection UN ∩ US = S2 \ {N,S} is path-connected so can
apply the Theorem V.3.14 to

(7) UN

⋂
US

//

��

US

��

UN
// S2

Let x = (1, 0, 0). The fundamental group of S2 is then isomorphic to the pushout
of groups

π1(S
2, x) ≃ π1(UN , x) ∗

π1(UN
⋂

US ,x)
π1(US, x)

The stereographic projection from the north pole gives a homeomorphism

ϕN : US →∼ R2

Its restriction to the intersection US ∩ UN gives one identification ϕS : US ∩ UN →∼
R2 \ {0}.

The stereographic projection from the south pole gives a homeomorphism

ϕS : UN →∼ R2

and another identification ϕN : UN ∩ US →∼ R2 \ {0}.

The fundamental groups are thus given by

π1(UN , x) ≃ {0} π1(US, x) = {0} π1(UN ∩ US, x) ≃ Z

Since ϕ−1
N ◦ ϕS is the identity on the unit circle in R2 \ {0}, the induced diagram of

groups
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(8) π1(UN

⋂
US, x) //

��

π1(US, x)

��

π1(UN , x) // π1(X, x)

is isomorphic to

(9) Z //

��

{0}

��

{0} // π1(X, x)

So, by the Exercise IV.5.35, the pushouts are isomorphic

π1(S
2, x) ≃ π1(UN , x) ∗

π1(UN
⋂

US ,x)
π1(US, x) ≃ {0} ∗

Z
{0}

But by the explicit description of the pushout of groups in the Proposition IV.5.34
as the free groups generated by words, the result is the trivial group:

π1(S
2, x) ≃ {0}

Remark V.3.23. As already mentioned in the Example III.4.15, the sphere S2

is not contractible. But the computation in the Example V.3.22 shows that S2

is simply-connected, ie, π1(S1, x) = {0}. In the same way that to prove the circle
S1 is not contractible we had to introduce the machinery of fundamental groups,
to show that S2 is non-contractible one needs a new kind of machinery, namely,
that of second homotopy groups π2(X, x). One can show that π2(S2) ≃ Z. More
generally, one can associate higher homotopy groups πn(X) for all n ≥ 1. For the
sphere we have πn(Sn) ≃ Z showing that none of the higher dimensional spheres are
contractible. These theorems are beyond the scope of this introductory course and
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are really the beginning of the subject of algebraic topology.

Exercise V.3.24. TD, Exo 3,
Feuille 3

Let n ≥ 2. Show that π1(Sn) = 0

Exercise V.3.25. Let X be a path-connected space. Compute the fundamental
group of the suspension S(X). Hint: use the Exercise II.5.52.

Exercise V.3.26. TD, Exo 4,
Feuille 3

Show that R2 is not homeomorphic to Rn for n ̸= 2

Exercise V.3.27 (Eckmann-Hilton).
TD, Exo 13,
Feuille 3(i) Let M be a set. We suppose M is equipped with two product laws

∗ :M ×M →M , • :M ×M →M

verifying the following properties:
• Each law has a unit element, respectively 1∗ et 1•.
• The map ∗ :M ×M →M is compatible with the operation •, i.e.,

(x • x′) ∗ (y • y′) = (x ∗ y) • (x′ ∗ y′)
(a) Show thate 1∗ = 1•.
(b) Show that the two laws ∗ et • are equal.
(c) Show that the two product laws define a single monoid structure

on M that is abelian.
(ii) Let (G, ∗, e) be a path-connected topological group.

(a) Show that the group law of G induces an extra group law on π1(G, e):
If α, β : [0, 1]→ G are two loops in G at e, we denote by α∗β the new
loop defined by pointwise multiplication in G, α ∗ β(t) = α(t) ∗ β(t)
for all t ∈ [0, 1].

(b) If α, β : [0, 1] → G are two loops in G at e, we denote by α ◦ β their
path-concatenation. Show that M = π1(G, e) with the two product
laws ∗ et ◦ fits in the situation of question (1) above, i.e., the law ∗ is
compatible with ◦.

(c) Show that α ◦ β, β ◦ α et α ∗ β are path homotopic.
(d) Conclude that π1(G, e) is abelian.

Exercise V.3.28. TD, Exo 5,
Feuille 3

Show that any continuous map f : D2 → D2 admits a fixed
point.

Exercise V.3.29. TD, Exo 6,
Feuille 3

Show that any complex polynomial which is non-constant, admits
at least one root.

Exercise V.3.30. TD, Exo 7,
Feuille 3

Let Σ2 be the compact connected surface obtained by connected
sum of two torus. Show that its fundamental group admits a presentation as

< a1, b1, a2, b2, ...., an, bn|[a1, b1].[a2, b2] = 1 >
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Exercise V.3.31. Show using the Van-Kampen theorem that π1(RP 2) ≃ Z/2.TD, Exo 8,
Feuille 3

Exercise V.3.32.TD, Exo 6,
Feuille 5

Use the Van-Kampen theorem to compute the fundamental group
of the Klein bottle K (see Exercise II.5.40).

Exercise V.3.33. LetX be a topological space. Show that S(X) is simply-connected.

Exercise V.3.34. [Borsuk-Ulam theorem in dimension 2]TD, Exo 16,
Feuille 3

Let f : S2 → R2 be a
continuous function. Show that there exists a point x ∈ S2 such that f(x) = f(−x).

Exercise V.3.35. Give an example of a path-connected topological space whose
fundamental group is isomorphic to the free product Z ∗ Z/2.

Exercise V.3.36. Let X be the space obtained by removing the three positive half-
axis from the 3-dimensional disk D3 ⊆ R3. Compute the fundamental group of
X.



CHAPTER VI

Covering Spaces and their classification

We start by axiomatizing the key property of the exponential map seen in the
Proposition V.2.6:

Goal VI.0.1. In this chapter we will finally explain the mathematics of the Exer-
cise I.2.10.

Warning VI.0.2. The approach taken in this chapter is far from being the fast-
est. In fact, it is the most exhaustive, as it tries to distillate as much as possible
the topological side from the algebraic side of the theory. In the main lectures we
will short-circuit it and go directly from covers to subgroups. These notes are inten-
ded as side material in case you want to see what is really going on behind the scenes.

The main reference for the lectures are the notes of Ilia Itenberg.

VI.1. Covering Spaces

Definition VI.1.1. Let p : E → X be a continuous map. We say that p is a cover-
ing map (revêtement en français) (or that E is a covering space of X) if:

(i) The map p is surjective;

(ii) for every b ∈ X there exists an open neighborhood U of b such that
F := p−1(U) consists of a disjoint union of open subsets Vj of E, with
j ∈ p−1({b}), and such that each restriction p|Vj : Vj → U is a homeo-
morphism.

We say that X is the base of the covering space and E is the total space. An open
neighborhood U satisfying the condition in (ii) is called a trivializing neighborhood.

133

https://webusers.imj-prg.fr/~ilia.itenberg/enseignement/topologie_algebrique.pdf
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Remark VI.1.2. Let p : E → X be a covering map. Let b ∈ X and U a trivializing
neighborhood. Then the map p|Vi : Vi → U admits a canonical section given by the
inverse si = p−1

|Vi
. This section is uniquely determined and verifies Vi := si(U).

Proposition VI.1.3. A map p : E → X is a covering map if and only if for every
point b ∈ X there exists an open neighborhood U of b in X, a discrete space F and
a homeomorphism ϕ : p−1(U)→ U × F such that the diagram commutes:

p−1(U)
p

##

ϕ
// U × F

||

U

The map ϕ is called a local trivialization of p.

Example VI.1.4. Let X be a topological space and F a discrete space. Then the
projection πX : X × F → X is a covering map. Indeed, it satisfies the condition in
the Proposition VI.1.3 with ϕ being the identity.

Example VI.1.5. The exponential map exp : R → S1 is a covering map. This is
the Proposition V.2.6.

Question VI.1.6. Is the projection map R2 → R sending (x, y) 7→ x a covering
map?

We now state a series of general properties of covering spaces.

Proposition VI.1.7. Let p : E → X be a covering map. Then:
(i) If E ′ → X ′ is another covering map, then the product E ′ × E → X ′ ×X

is a covering map.
(ii) Given any f : Y → X continuous map, the pullback E ×

X
Y → Y is a

covering map.
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(iii) If X is Hausdorff then so is E.
(iv) If X is connected, then all the fibers are isomorphic to the same discrete

space F .
(v) If both E and X are compact, then all the fibers are finite.
(vi) p is a local homeomorphism.

Proof.

• (i) and (ii) follow directly from the definition of a cover using local trivial-
izations.

• (iii) Let e, e′ ∈ E and choosing separating open neighborhoods of p(e) and
p(e′) in X, U and V . Find trivializing neighborhoods S and W for p(e)
and p(e′) and take A = U ∩ S and B = V ∩W . Then p−1(A) and p−1(B)
are separating open neighborhoods for e and e′.

• Using the local trivializations, the cardinality of the fibers form a loc-
ally constant function. Since X is assume to be connected, the Proposi-
tion II.6.22 establishes the result.

• Let x ∈ X. Then p−1({x}) ⊆ E is a closed subset of E which is compact.
By the Exercise II.3.19, p−1({x}) must be compact. But thanks to the
definition of a covering map, p−1({x}) is discrete with respect to the sub-
space topology. Therefore it must be finite.

• Follows directly from the local trivializations.

□

Remark VI.1.8. It follows from the Proposition VI.1.7-(vi) that if p : E → X is
a covering map and X is locally "bla" then E is locally "bla".

Definition VI.1.9. Let p : E → X be a covering map with X connected. The
degree of p is the cardinality of its fibers.

Definition VI.1.10. TD, Exo 1,
Feuille 4

Let X be a topological space endowed with an action of a
(discrete) group G with unit element e ∈ G. We say that the action of G on X is a
covering action if every x ∈ X there exists an open neighborhood U such that all the
images g(U) for varying g ∈ G are disjoint, ie g1(U) ∩ g2(U) = ∅ for all g1, g2 ∈ G.

Proposition VI.1.11. Let X be a topological space endowed with an action of a
(discrete) group G with unit element e ∈ G If the the action is a covering action as
in the Definition VI.1.10, then the quotient map X → X/G is a covering map.

Proof. Recall from Exercise II.5.41 that the quotient map p : X → X/G is
an open map: if U is an open in X then p−1(p(U)) =

⋃
g∈G g(U). If U is as in the
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statement of the proposition, the assumption of a covering action implies that this is
a disjoint union p−1(p(U)) =

∐
g∈G g(U) and that U satisfies the covering condition.

□

Exercise VI.1.12. Let G be a (discrete) group acting on space X. We say that the
action is properly discontinuous if every point x ∈ X admits an open neighborhood
U such that the subset {g ∈ G : g(U) ∩ U ̸= ∅} ⊆ G is finite. Show that if X
is Hausdorff and the action is properly discontinuous then the action is a covering
action.

Exercise VI.1.13. Let G be a (discrete group) acting on a Hausdorff space X.
Show that if the action is free and the group is finite then the action is a covering
action.

Exercise VI.1.14.TD, Exo 1,
Feuille 4

In this exercise we extend the results of the Proposition VI.1.11
to include "topological groups", ie, we assume that G is a topological group and that
the action ofG onX is continuous. Assume bothX andG are locally compact spaces
and consider the following assertions:

(i) The pre-image of every compact along the action map G × X → X × X
defined by (g, x) 7→ (x, gx), is compact.

(ii) For every K compact in X, the subset of G given by {g ∈ G : gK∩K ̸= ∅}
is compact in G.

(iii) For every K compact in X, the subset of G given by {g ∈ G : gK∩K ̸= ∅}
is compact in G.

(iv) Every point x ∈ X admits a compact neighborhood K such that {g ∈ G :
gK ∩K ̸= ∅} = {e}

Show that:

(i) (i) and (ii) are equivalent.
(ii) If G has the discrete topology, then (i), (ii) and (iii) are equivalent
(iii) If G has the discrete topology and the action is free, then all (iii) implies

(iv).
(iv) Show that for X locally compact and G discrete, (4) implies that the

quotient map X → X/G is a covering map and that the quotient X/G is
Hausdorff.

Exercise VI.1.15. Show that the maps S1 → S1 given by z 7→ zn are covering
maps for all n ≥ 1

Exercise VI.1.16. Show that the quotient map Sn → RP n is a covering map of
degree 2.
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Exercise VI.1.17. Show that the quotient map R2 → K of the Exercise II.5.40
defining the Klein bottle, is a covering map.

Example VI.1.18. Here’s a 5-sheeted cover of a surface of genus 3, Σ11 → Σ3

obtained by quotient of Σ11 by the action of Z/5

(Picture taken from Hatcher’s book, Example 1.41)

Exercise VI.1.19. TD, Exo 5,
Feuille 4

Let X → Y be a local homeomorphism and U an open in X.
Show that the restriction of f to U still defines a local homeomorphism. Use this
to construct an example of a local homeomorphism that is not a covering map.

Exercise VI.1.20. Show that a local homeomorphism f : X → Y between compact
Hausdorff spaces is a covering space.

Exercise VI.1.21. TD, Exo 7,
Feuille 4

(i) Show that the exponential map exp : C→ C∗ is a covering map.
(ii) Show that the map C∗ → C∗ sending z 7→ z2 is a covering map. Is the

same thing true for the same formula seen as a map C→ C?

Exercise VI.1.22. TD, Exo 8,
Feuille 4

Construct a 2-sheet covering map S1 × S1 → K.

Definition VI.1.23. Let p1 : E1 → X and p2 : E2 → X be covering maps with
the same base space. A morphism of coverings of X, (E1, p1) → (E2, p2) is a map
ξ : E1 → E2 such that the diagram commutes

https://pi.math.cornell.edu/~hatcher/AT/AT+.pdf
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E1
ξ

//

p1

  

E2

p2
~~

X

Definition VI.1.24. Let X be a topological space. Morphisms of covering spaces of
X can be composed. We denote by COVX the category whose objects are covering
spaces with base X and morphisms are morphisms of coverings in the sense of
Definition VI.1.23.

VI.2. Covering Spaces and Fundamental group

We start this section by specifying the lifting properties of covering maps that make
them behave like the exponential map exp : R→ S1:

Lemma VI.2.1. Let p : E → X be a covering map. Then any path in X admits a
lifting. Moreover, the lifting is unique if the starting point is fixed.

Proof. This is mutatis-mutandis the proof of the Lemma V.2.4 replacing that
specific trivializing cover by a general one.

(Picture taken from le Polycopie d’Itenberg)

□

https://webusers.imj-prg.fr/~ilia.itenberg/enseignement/topologie_algebrique.pdf
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Lemma VI.2.2. Let p : E → X be a covering map. Let H : I × I → X be a
homotopy of paths, between γ and β in X having the same endpoints. Fix x0 ∈ E
a lift of p(x0) = γ(0) = β(0). Then the homotopy H admits a unique lifting to a
path homotopy ‹H : I× I → E between the unique lifting γ̃ of γ at x0 and the unique
lifting β̃ of β at x0.

Proof. Apply mutatis-mutandis the proof of the Lemma V.2.14 replacing that
specific trivializing cover by a general one. □

Proposition VI.2.3. Let p : E → X be a covering map. Then the functor
Π1(f) : Π1(E)→ Π1(X) satisfies the following properties:

(i) Π1(p) is surjective on objects;

(ii) For every morphism f : x → y in Π1(X) and for every object e ∈ Π1(E)
with p(e) = x, there exists a unique lift of f to Π1(E).

Proof. This a direct consequence/reformulation of the lifting of paths and ho-
motopies of paths of Lemma VI.2.1 and Lemma VI.2.2.. □

Let us axiomatize this

Definition VI.2.4. Let F : C → D be a functor between groupoids. We say that
F is a covering map of groupoids if it satisfies the following two properties:

(i) F is surjective on objects;

(ii) For every morphism x → y in D and every c ∈ C with F (c) = x, there
exists a unique lift c→ d in C of the morphism x→ y.

Example VI.2.5. Let D be a connected groupoid. Fix d ∈ D an object. Then the
target functor t : Dd/. → D of the Example IV.1.19 is a covering map of groupoids.
Indeed, given u : d1 → d2 and an object f1 : d → d1 in Dd/., there exists a unique
lifting of u starting at f1, namely, the morphism

d
f1
//

f2 ��

d1

u

��

d2

with f2 := u ◦ f1.

Remark VI.2.6. Let F : C→ D be a covering map of groupoids. If C is connected
then D is connected. Indeed, let d1 and d2 in D. Since F is surjective on objects,
d1 = F (c1) and d2 = F (c2). But C is connected, so there exists an isomorphism
c1 → c2 in C. Therefore, F (c1) → F (c2) is an isomorphism, showing that D is
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connected.

We now extract some consequences of this general definition.

Proposition VI.2.7. Let F : C→ D be a covering map of groupoids. Then:

(i) Let c ∈ C and x = F (c) ∈ D. Then the map of groups

F : HomC(c, c) = AutC(c)→ HomD(x, x) = AutD(x)

is injective. In particular it defines a subgroup of AutD(x), which we will
simply denote by F (AutC(c)).

(ii) If c1 and c2 belong to the same connected component of C (ie, represent the
same class in π0(C)) with F (c1) = F (c2) = x then the two subgroups

F (AutC(c1)) ↪→ AutD(x)

F (AutC(c2)) ↪→ AutD(x)

are conjugated.

(iii) Conversely, let c ∈ C and x = F (c) in D. Then, for any morphism
α : x → x in D there exists an object c′ in C such that the conjugation
α.F (AutC(c)).α

−1 is equal to the subgroup F (AutC(c′))

Proof.

(i) Since the map is automatically a map of groups because F is a functor,
it is enough to show that if F (f : c → c) = idx then f = idc. But since
f provides a lifting for the identity of x, by the property (ii) of Defini-
tion VI.2.4, f must be the identity of c.

(ii) If c1 and c2 belong to the same connected component, by definition, it
means there exists an isomorphism u : c1 → c2 in C. As in the Re-
mark IV.2.8, u induces an isomorphism of groups through conjugation

AutC(c1)→ AutC(c2)

g 7→ ugu−1

Since F (u) : F (c1) = x→ F (c2) = x, F (u) is an automorphism of x in C.
Functoriality tells us that F (AutC(c1)) is conjugated to F (AutC(c2)) via
conjugation with α = F (u).
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(iii) Given α : x → x, since c is a lift of x, property (ii) in Definition VI.2.4
guarantees the existence and uniqueness of a lifting of α : c → c′ with
F (c′) = x. We now conclude by applying (iii) above.

□

Corollary VI.2.8. Let p : E → X be a covering map. Let x ∈ X.

(i) Let e ∈ p−1({x}). Then the induced map π1(E, e)→ π1(X, x) is injective.

(ii) If e, e′ ∈ p−1({x}) are in the same path-connected component of E, then
the subgroups p∗(π1(E, e)) and p∗(π1(E, e′)) are conjugated.

(iii) Any subgroup of π1(X, x) conjugated to p∗(π1(E, e)) is of the form p∗(π1(E, e
′))

for some e′ ∈ p−1({x}) with e′ in the same path-connnected component of
e in E.

What this corollary shows is that for any topological space X with a choice of base
point x we have a well-defined map of sets

{ Iso. class of (connected) covering maps of X} → {Conjugacy class. of subgroups of π1(X, x) }

sending a (connected) covering map p : E → X to the conjugacy class of the sub-
group p∗(π1(E, e)).

The main goal of this chapter is to provide a proof that this assignment is a bijection:
there are as many covering maps as conjugacy classes of subgroups of π1(X, x).

Example VI.2.9. The Corollary VI.2.8 finally gives a first precise sense to the
phenomena illustrated for the labyrinth of the Remark I.2.11. In this language,
the labyrinth is the choice of the covering map and the subgroup is given by
p∗(π1(E, e)) ⊆ π1(X, x). More concretely, by taking the space X = S1 ∨ S1 with x
the point at the intersection we have seen in the Example V.3.21 that π1(X, x) is
the free group with two generators < a, b >.

(Picture taken from Hatcher’s book)
In this case the labyrinth E given by the graph

(Picture taken from Hatcher’s book)

https://pi.math.cornell.edu/~hatcher/AT/AT+.pdf
https://pi.math.cornell.edu/~hatcher/AT/AT+.pdf
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is a covering map p : E → X by declaring that p sends the nodes to the unique node
in X, all paths named a to a in X and all paths named b to b in X.

Let us choose the darker node as a base point in E, denote it by e. Let us denote by
x the node in X so that x = p(e). The Corollary VI.2.8 explains why p∗(π1(E, e))
is a subgroup of π1(X, x) =< a, b >. As a subgroup we have

p∗(π1(E, e)) =< a2, b2, aba−1, bab−1 >

Now, we could pick another point e′ in the fiber of x, such as

(Picture taken from Hatcher’s book)
In this case we have

p∗(π1(E, e
′)) =< a, b2, ba2b−1, baba−1b−1 >

Now the Corollary VI.2.8 explains why the two subgroups are conjugated: since E
is path-connected, and p(e) = p(e′), any path between e and e′ in E gives us a way
to conjugate the subgroups. For instance, take the path b−1 from e′ to e. In this
case we find

b.p∗(π1(E, e)).b
−1 = p∗(π1(E, e

′))

Before proceeding to the next section, it will be convenient to isolate the nature of
what we did in this section, passing from a covering map of spaces to a covering of
groupoids:

Definition VI.2.10. Let D be a groupoid. We denote by COVD the category whose
objects are functors F : C→ D that are coverings maps of groupoids and morphisms
given commutative diagrams

C1
ϕ

//

F1 ��

C2

F2��

D

Exercise VI.2.11. Let X be a topological space. Show that the Π1 extends to a
functor

https://pi.math.cornell.edu/~hatcher/AT/AT+.pdf
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COVX → COVΠ1(X)

sending a covering map p : E → X to the covering map of groupoids Π1(E) →
Π1(X).

Exercise VI.2.12. Consider a morphism of covering spaces

E1
ϕ

//

p1
  

E2

p2
~~

X

with E2 path-connected and locally connected. Show that ϕ is itself a covering map.

Exercise VI.2.13. Consider a map of covering groupoids.

C1
ϕ

//

F1 ��

C2

F2��

D

Show that if ϕ is surjective on objects then ϕ is itself a covering map of groupoids.

Proposition VI.2.14. Let F : C → D be a covering of groupoids. Show that if F
is bijective on objects then F is an isomorphism of groupoids.

Proof. We need to show that F is also bijective on morphisms, ie, for any pair
of objects x, y ∈ C, the map

F : HomC(x, y)→ HomD(F (x), F (y))

is a bijection. The fact that it is surjective is the existence of liftings. The fact that
it is injective, is the uniqueness of liftings.

□

Combining these two exercices we obtain

Corollary VI.2.15. Let

C
ϕ

//

F1 ��

C2

F2��

D

be a morphism of covering maps of groupoids. Then ϕ is an isomorphism if and only
if it induces a bijection on objects.
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Proof. Thanks to the Exercise VI.2.13, ϕ is itself a covering of groupoids.
Since it is a bijection on objects, we use Proposition VI.2.14 to conclude.

□

VI.3. Classification Theorem - The algebraic side

We will first deal with the non-topological aspects of the theorem, ie, we separate as
much as possible the topology (covering maps) from everything that is of algebraic
nature (coverings of groupoids).

First we exhibit the information contained in a covering map of groupoids, in a
different way:

Construction VI.3.1 (Fiber functor). Let F : C→ D be a covering map of group-
oids. We associate to F a functor

FibF : D→ SETS

defined as follows:
• For every object x ∈ D, we define FibF (x) := F−1({x}).

• For every morphism f : x → y in D we define FibF (f) : F−1({x}) →
F−1({y}) by sending c ∈ F−1({x}) to the target of the unique morphism
f̃ lifting f and starting at c.

• if f : x→ y and g : y → z are morphism in D the composition

F−1({x})→ F−1({y})→ F−1({z})
is well-defined and associative thanks to the uniqueness property of liftings
in (ii) in Definition VI.2.4. The same argument guarantees compatibility
with identities.

The functor FibF is called the Fiber functor associated to the covering map of group-
oids.

Construction VI.3.2. The construction of the Fiber functor sending a covering
map of groupoids F : C → D to FibF : D → SETS, is functorial, ie, given a
morphism of covering maps of groupoids,

C1
η

//

F1 ��

C2

F2��

D

we have an associated natural transformation of functors Fibη : FibF1 → FibF2 defined
on each object x ∈ D by the map
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FibF1(x) = F−1
1 ({x}) η

// FibF2(x) = F−1
2 ({x})

sending c1 7→ η(c1). This is well-defined because F2 ◦ η = F1.

We now check that this is a natural transformation. We have to explain why for
each morphism f : d→ d′ in D, the diagram

F−1
1 (d)

ηd
//

FibF1
(f)

��

F−1
2 (d)

FibF2
(f)

��

F−1
1 (d′)

ηd′
// F−1

2 (d′)

commutes. Given c1 ∈ F−1
1 (d), the object FibF1(f)(c1) is the target of the unique

lifting f̃ of f along F1 starting at c1, f̃ : c1 → FibF1(f)(c1). Applying η we get
η(f̃) : η(c1) → η(FibF1(f)(c1)). This is a lifting of f along F2 starting at η(c1).
Since such a lifting is unique, we must have η(FibF1(f)(c1)) = FibF2(f)(η(c1)).

Finally, one must establish that given two composable maps of coverings of groupoids

C1
η1
//

F1   

C2

F2

��

η2
// C3

F3~~

D

we have Fib(η2 ◦η1) = Fib(η2)◦Fibη1 . This follows automatically from the definitions
of Fib(ηi) and compositions of natural transformations. This establish functoriality.

We denote by

Fib : COVD → Fun(D, SETS)

the resulting functor.

We now show that there is essentially no less of information passing from covering
maps of groupoid to fiber functors. In other words, it is merely a repacking of the
same information.

Proposition VI.3.3. The functor Fib is an equivalence of categories.

Proof. In order to prove this we will construct an inverse functor

COVD ← Fun(D, SETS) : Γ
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and natural isomorphisms σ : Γ ◦ Fib ≃ id and ξ : Fib ◦ Γ ≃ id.

Step 1: The construction of Γ.

We start by defining that Γ does on objects.

Let F : D → SETS be an object of Fun(D, SETS). We define a category Γ(F) as
follows:

• Objects of Γ(F) are pairs (d, s) where d is an object in D and s ∈ F(d);

• A morphism (d1, s1) → (d2, s2) is a morphism f : d1 → d2 in D such that
s2 = F(f)(s1).

• Compositions and identities are well-defined since they are inherited from
D.

The category Γ(F) is a groupoid as a consequence of D being a groupoid and F
being a functor and therefore compatible with compositions.

The category Γ(F) comes with a canonical functor pF : Γ(F) → D by sending
(d, s) 7→ d on objects and a morphism (d1, s1) → (d2, s2) to its underlying morph-
ism d1 → d2 in D. By definition of compositions in Γ(F), pF is compatible with
compositions and therefore defines a functor.

We claim that pF is in fact a covering of groupoids: (i) it is surjective on objects
by default and (ii) given a morphism f : d1 → d2 in D, and an object (d1, s1)
over d1, the morphism f lifts in a unique way to a morphism in Γ(F) by setting
(d1, s) → (d2, s2 := F(f)(s1)). By the definition of morphisms in Γ(F) this is the
unique possibility for a lift of f .

We now establish the functoriality of the assignment F 7→ [Γ(F)→ D].

If ϕ : F1 → F2 is a natural transformation defining a morphism in Fun(D, SETS) we
define a map of covering groupoids

Γ(F1)
Γ(ϕ)

//

pF1
""

Γ(F2)

pF2
||

D

by setting

Γ(ϕ)(d, s) := (d, ϕd(s))

on objects. Given a morphism f : (d1, s1)→ d2, s2) in Γ(F1), we define
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Γ(ϕ)[f : (d1, s1)→ d2, s2)] := [f : (d1, ϕd1(s1))→ (d2, ϕd2(s2))]

on morphisms. Γ(ϕ) is automatically compatible with compositions because ϕ is
natural transformation.

One must also check that given ϕ : F1 → F2, ψ : F2 → F3 we have Γ(ψ ◦ ϕ) =
Γ(ψ) ◦ Γ(ϕ). This is again a tedious but trivial exercise.

Finally, we have constructed a functor

COVD ← Fun(D, SETS) : Γ

We must now exhibit natural isomorphisms σ : Γ ◦ Fib ≃ id and ξ : Fib ◦ Γ ≃ id.

Step 2: The construction of σ : Γ ◦ Fib ≃ idCOVD
.

One must specify for each covering map of groupoids F : C→ D an isomorphism of
coverings of groupoids

C
∼
σC

//

��

Γ(FibF )

{{

D

natural in F : C→ D. We start with the construction of the functor σC:

• On objects c ∈ C, we set σC(c) := (F (c), c).

• On morphisms u : c1 → c2 in C, we define σC(u) = F (u) : (F (c1), c1) →
(F (c2), c2).

• σC is compatible with compositions because of unique lifting property of
F .

Therefore σC defines a morphism covering maps of groupoids over D.

We now claim that σ defines a natural transformation. More precisely, we have to
check that for every morphism of coverings of groupoids

C1
η

//

F1 ��

C2

F2��

D

the diagram of functors
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C1

η

��

σC1
// Γ(FibF1)

Γ(Fib(η))
��

C2

σC2
// Γ(FibF2)

commutes. We check this directly on objects and morphisms. Let f : c → c′ be a
morphism in C1. We have

[f : c→ c′] // F1(f) : (F1(c), c)→ (F1(c
′), c′)

��

F1(f) : (F1(c), η(c))→ (F1(c
′), η(c′))

which since F2 ◦ η = F1, coincides with

[f : c→ c′]

��

η(f) : η(c)→ η(c′) // F2(η(f)) : (F2(η(c)), η(c))→ (F2(η(c
′)), η(c′))

Finally, by construction, σC is a bijection on objects and because of the condition
(ii) in Definition VI.2.4, it is also bijective on morphisms (see Corollary VI.2.15),
so it defines a natural isomorphism.

Step 3: The construction of ξ : Fib ◦ Γ ≃ idFun(D,SETS).

One must specify for each functor F : D→ SETS an isomorphism of functors

Fib(Γ(F))→ F

natural in F. Notice that by definition of Fib and Γ, for each object d ∈ D, we have
a canonical bijection

Fib(Γ(F))(d) = F(d)

Therefore we define ξF to be given by the identity map for each d.

Functoriality and naturality here are obvious as is the fact that ξ is an isomorphism
□

Remark VI.3.4. The equivalence of categories of the Proposition VI.3.3 is a par-
ticular case of a general construction for categories, called the Grothendieck con-
struction.
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Corollary VI.3.5. Let D be a connected groupoid. Let d ∈ D and consider the
equivalence of categories Bd : B(AutD(d))→ D with inverse Ωd : D→ B(AutD(d)) of
the Proposition V.3.18 . Then, composition with Bd and Ωd induces an equivalence
of categories

COVD
Fib
// Fun(D, SETS)

−◦Bd
// Fun(B AutD(d), SETS)

with inverse

COVD Fun(D, SETS)
Γ
oo Fun(B AutD(d), SETS)−◦Ωd

oo

Proof. Use the Exercise IV.4.8. □

Example VI.3.6. Consider a connected groupoid D, with d ∈ D. Then the equi-
valence of categories given by composition with Bd : BAutD(d)→ D

Fun(D, SETS)→ AutD(d)− SETS

sends the functor HomD(d,−) : D→ SETS to the AutD(d)-set AutD(d) with its left
action.

More generally, letH ⊆ AutD(d) be a subgroup. Then then image of the AutD(d)-set
AutD(d)/H along the equivalence of categories is the functor

FH : D→ SETS

defined by sending d′ ∈ D to the quotient set HomD(d, d
′)/H where two morphisms

f : d→ d′ and g : d→ d′ are declared equivalent if g−1 ◦ f ∈ H.

Definition VI.3.7. Let G be a group. A G− set is a set F together with an action
G× F → F . A morphism of G-sets is a morphism of sets F → F ′ compatible with
the G-actions. The category of G-sets will be denoted by G− SETS.

Example VI.3.8. Let G be a discrete group and H ⊆ G a subgroup. Then the
quotient set G/H is a G-set with action defined by the formula g.[g′] := [g.g′] for
every g ∈ G and [g′] ∈ G/H.

Construction VI.3.9. Let G be a group. Every G-set F determines a functor
F : BG → SETS defined on objects by sending the unique object •G to the set
F and on morphisms, by the action map G → AutSETS(F ). If f : F → F ′ is a
map of G-sets, we can define a natural transformation F → F′ by F(•G) = F →
F′(•G) = F ′. The fact that f is compatible with the G-actions implies that is a
natural transformation. This construction defines a functor

G− SETS→ Fun(BG, SETS)
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Proposition VI.3.10. The functor

G− SETS→ Fun(BG, SETS)

is an isomorphism of categories.

Proof. An explicit inverse is given by the evaluation functor sending F : BG→
SETS to F := F(•G). □

Corollary VI.3.11. Let D be a connected groupoid. Let d ∈ D and G := AutD(d)
be the group of automorphisms of d. Then the composition functor

Fibd : COVD → G− SETS

is an equivalence of categories.

Remark VI.3.12. More precisely, the functor Fibd : COVD → G − SETS sends a
covering map of groupoids F : C→ D to the set F−1(d) equipped with the G-action
where g ∈ G acts by s ∈ F−1(d) 7→ gs := s′ where s → s′ is the unique lift of
g. The inverse functor sends a G-set F to the covering morphism of groupoids
Γ(Ωd(F ))→ D.

What this result shows is that the theory of coverings of groupoids, is essentially,
the theory of G-sets.

Definition VI.3.13. Let F be a G-set. We say that F is connected if the action is
transitive.

Construction VI.3.14. Let F be a connected G-set. Then the choice of an element
x ∈ F determines an isomorphism of G-sets

fx : G/H → F

where H denote the stabilizer subgroup of x and fx sends g 7→ g.x. In particular,
every connected G-set is isomorphic to one of the form G/H via the choice of an
element.

The G-set G/H itself has a canonical choice of element given by the unit in G.

Exercise VI.3.15. For a G-set F and a subgroup H ⊆ G, let us write FH for the
set of points fixed by H

FH := {x ∈ F : h.x = x , ∀h ∈ H}
(i) Show that the map of sets

HomG−SETS(G/H,F )→ FH



VI.3. CLASSIFICATION THEOREM - THE ALGEBRAIC SIDE 151

sending [f : G/H → F ] to the element f([e]) ∈ F , defines a bijection with
inverse sending x ∈ FH to the map G/H → F sending [g] 7→ g.x.

(ii) Show that when H = {0} is the trivial subgroup

HomG−SETS(G,F )→ F

is a bijection.

Proposition VI.3.16. Let G be a group and H,K ⊆ G subgroups. A map of G-
sets f : G/H → G/K has the form f(g.H) = α.gH for some α ∈ G satisfying
α−1.H.α ⊆ K. In particular two G-sets G/H and G/K are isomorphic through an
isomorphism of G-sets if and only if H and K are conjugated subgroups.

Proof. Thanks to the Exercise VI.3.15, we know that a map of G-sets f :
G/H → G/K is determined by an element [α] ∈ (G/K)H and is of the form
f : g.H 7→ gα.K with α.K fixed by H, ie, h.αK = α.K for every h ∈ H. In
particular, α−1hα ∈ K for every h ∈ H, so α−1Hα ⊆ K.

Now if f is an isomorphism the same argument applies for the inverse morphism
f−1 : G/K → G/H: it is of the form g.H 7→ g.βH for some class β.H fixed by K,
ie, for all k ∈ K we have β−1k.β ∈ H. Now, the fact that f and f−1 are inverse,
implies that α.β ∈ H and β.α ∈ K. It follows that

K = α−1.β−1.Kβ.α ⊆ α−1Hα.

□

Corollary VI.3.17. Let G be a group and H a subgroup. Then

AutG−SETS(G/H) = N(H)/H

where N(H) := {α ∈ G : α−1.H.α = H} is the normalizer of H.

Proof. By the argument above, an automorphism of G/H as a G-set gives an
element α.H in G/H such that for any h ∈ H, α−1.h.α is in H. The fact that the
map is automorphism gives α−1.H.α = H so by definition α.H belongs the quotient
N(H)/H. □

Corollary VI.3.18. Let G be a group. Then, the assignment H 7→ G/H establishes
a bijection

{ conjugacy classes of subgroupds of G} ≃ {iso. classes of connected G− sets}

with inverse given by taking stabilizer subgroups.

We can now analyse how connected G-sets are described via the equivalence of the
Corollary VI.3.11:
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Proposition VI.3.19. Let F : C → D be a covering map of groupoids. Let d ∈ D
and set G := AutD(d).

(i) The stabilizer subgroup of c ∈ F−1(d) is the subgroup F (AutC(c)) ⊆ AutD(d).

(ii) Assume that D is connected. Then action of G on F−1(d) is transitive if
and only if the groupoid C is connected.

(iii) Assume that C is connected groupoid . Then the choice of an element
c ∈ F−1(d) induces and isomorphism of G-sets

G/F (AutC(c)) ≃ F−1(d)

In particular, the degree of F as a covering is equal to the index of the
subgroup F (AutC(c)) in G.

Proof.

(i) Write H ⊆ G for the stabilizer of c ∈ F−1(d). We want to show that
H = F (AutC(c)). We show both that both inclusions hold:

• H ⊆ F (AutC(c)): Let h ∈ AutD(d) stabilize c. This means that the
unique isomorphism h̃ in C lifting h has c as an endpoint. It is there-
fore an automorphism of c and lives in the F (AutC(c)).

• The inclusion F (AutC(c)) ⊆ H is clear since all automorphisms of c
have c as target object.

(ii) Assume the action is transitive and let c1 and c2 be objects of C. By as-
sumption, D is connected so there exists an isomorphisms u : F (c1) ≃ d and
v : F (c2) ≃ d in D. By definition of covering map of groupoids, there exists
unique liftings ũ : c1 → c′1 and ṽ : c2 → c′2 in C with c′1, c′2 ∈ F−1(d). Since
the action is transitive there exists an element g ∈ G = AutD(d) whose
unique lift g̃ is of the form g̃ : c′1 → c′2. The composition ṽ−1◦ g̃◦ũ : c1 → c2
gives an isomorphism between c1 and c2. This argument shows that C is
connected as a groupoid.

Conversely, assume that C is connected as a groupoid. Then for every two
objects in the fiber c1, c2 ∈ F−1(d) there exists an isomorphism α relating
them. F (α) is an automorphism of d in D and by the unique lifting prop-
erty the action of F (α) on c1 is c2.

(iii) This last statement is the Construction VI.3.14 and the fact that if C is
connected then D is connected.

□
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Corollary VI.3.20. Let D be a connected groupoid and let F : C→ D be a covering
map of groupoids. Let c ∈ C and d := F (c). Then the equivalence of categories of
the Corollary VI.3.11 provides an isomorphism of groups

AutCOVD
(C) ≃ N(F (AutC(c)))/F (AutC(c))

Proof. Follows from the fully faithfulness of the equivalence of categories, to-
gether with the Corollary VI.3.17. □

Here’s a recap of what we did: we converted information of conjugacy classes of
subgroups into covering maps of groupoids.

VI.4. Classification Theorem of covering spaces

We can finally state the main technical result underlying the dictionnary between
labyrinths (coverings spaces) and subgroups. We have seen how coverings give sub-
groups. In order to be able to reverse the dictionnary we will need an extra assump-
tion on X:

Definition VI.4.1. Let X be a topological space. We say that X is locally simply-
connected if for every point x ∈ X and for every open neighbourhood U of x, there
exists an open neighbouhood V with x ∈ V ⊆ U and V simply-connected.

Theorem VI.4.2. Let X be locally path-connected, semi-locally simply connected
topological space. Then the functor

COVX
Π1
// COVΠ1(X)

defines an equivalence of categories between covering maps of spaces and covering
maps of groupoids.

In order to prove this theorem, we will first need two technical lemmas about lift-
ings of maps along covering spaces and liftings of functors along covering maps of
groupoids.

Lemma VI.4.3. Let F : C→ D be a covering map of groupoids and T : P → D any
functor with P a connected groupoid . Let p ∈ P and c ∈ C with d := T (p) = F (c).
Then there exists a lifting T̃ : C→ P of T sending p to c if and only if we have an
inclusion

T (AutP(p))) ⊆ F (AutC(c))

in AutD(d). Moreover, when such a lift exists, it is unique with this property.

Proof. It is clear that if such a lifting exists, the commutativity F ◦ T̃ = T
forces the inclusion on automorphisms groups.



154 VI. COVERING SPACES AND THEIR CLASSIFICATION

It remains to check that the condition is enough.

Assume the condition. We want to construct the functor T̃ .

• On objects: Let q ∈ P. Since P is connected, there exists an isomorphism
f : p→ q in P. By the unique lifting property of F , there exists a unique
lifting for the morphism T (f) : T (p)→ T (q) starting at c ∈ C. Let us call
it f̃ c → cq,f . We define T̃ (q) as the target of this morphism cq,f which a
priori depends on q and on the choice of f . In fact, it does not depend on f :
if g was a second choice of isomorphism g : p→ q, then β := g−1◦f : p→ p
defines an automorphism of p. By the assumption, T (β) is in F (AutC(c))

meaning that it has a unique lifting to an automorphism β̃ : c → c. Let
g̃ : c → cd,g be the unique lifting of T (g) : T (p) → T (q). In this case we
notice that

F (g̃ ◦ β̃) = T (g) ◦ T (g−1 ◦ f) = T (f) = F (f̃)

therefore g̃ ◦ β̃ and f̃ are two different liftings of the same morphism. By
unicity of the lift, they must coincide. It follows that cq,f = cq,g.

• On morphisms: given u : q1 → q2, we use the same argument: choose
an isomorphism f : p → q1 and define T̃ (q1) : c → cq,f as above. Now
define T̃ (u) as the unique lifting of T (u) starting at cq,f . The uniqueness
of liftings as above shows that this does not depend on the choice of f .

• T̃ is compatible with compositions. But again, this follows from the unicity
of liftings.

Finally, It remains to argue about the uniqueness of such functor T̃ . But we see
here that the uniquness of liftings along F strongly restrains the possibilities of T̃ :
there is only one as soon as the condition p 7→ c is fixed. □

The same lifting lemma has a topological version.

Lemma VI.4.4. Let p : E → X be a covering map and let f : Y → X be a
continuous map with Y path-connected and locally path-connected (∗). Let y ∈ Y and
e ∈ E with f(y) = p(e) = x. Then the map f admits a continuous lift f̃ : Y → E

with p ◦ f̃ = f and sending y to e, if and only if we have an inclusion of subgroups

f∗(π1(Y, y)) ⊆ p∗(π1(E, e))

in π1(X, x). Moreover, if such a lift exists, it is unique with this property.

(∗)Recall the Warning III.2.7 that a path-connected space is not necessarily locally path-
connected
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Proof. If the lifting exists, then the condition is automatic. It remains to prove
the converse. Applying the functor Π1(−) to this topological situation, we recover
the context of the Lemma VI.4.3. Therefore, the condition guarantees the existence
of a lifting at the level of fundamental groupoids

Π1(E)

F :=Π1(p)

��

Π1(Y )

T̃
::

T :=Π1(f)
// Π1(X)

Since the objects of the fundamental groupoids are the points of the spaces, at the
set-level, we have our candidate for f̃ , namely

Y → E , y 7→ f̃(y) := T̃ (y)

The unicity of the functor T̃ guaranteed by the Lemma VI.4.3 also tells us that
this is the only possible f̃ .

It remains to show that f̃ defined this way is a continuous map. This is a consequence
of the fact p is a local homeomorphism and our assumption that X is locally path-
connected. Indeed, take U an open in E. We want to show that f̃−1(U) is open in
Y . Let y0 ∈ Y . It will be enough to show that there exists an open subset of V of Y
with y0 ∈ V ⊆ f̃−1(U). Choose a trivializing neighborhood of p, W , around f(x0) =
p(f̃(y0)) and consider U ′ the unique connected component of p−1(W ) that contains
f̃(y0). Take the intersection U ∩ U ′. Since p|U′ : U ′ → W is a homeomorphism,
p(U ∩U ′) of x0 is an open neighborhood of f(y0) in X and therefore f−1(p(U ∩U ′))
is an open neighborhood of y0 in Y . Now since Y is locally path-connected, take
V any path-connected neighborhood of y0 in Y such that V ⊆ f−1(p(U ∩ U ′)). We
claim that V is contained in f̃−1(U ∩ U ′). Indeed, by construction of the map f̃ in
the Lemma VI.4.3, we used path-connectedness to construct f̃ by unique lifting for
paths.

□

Example VI.4.5. The assumption in Lemma VI.4.4 that Y in is locally path-
connected is crucial. Indeed, let us take Y to be the topologist’s circle from the
Warning III.2.7. Let us consider the map f : Y → S1 sending the all points of the
form [(0, y)] to 1 ∈ S1. The space Y is simply connected (Exercise V.1.36) but the
map f does not admit a lifting f̃ along the covering map exp : R→ S1.

Exercise VI.4.6. Show that if a path-connected, locally path-connected space X
has π1(X) finite, then every map X → S1 is nullhomotopic. Hint: use the exponen-
tial map.
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We can now turn to the proof of the Theorem VI.4.2. Let us remark that the
Lemma VI.4.4 together with Lemma VI.4.3 already implies that our functor is
fully faithful among path-connected covers:

We now want to show that this is an equivalence of categories. We first need to
explain how to go back. For this purpose we will construct a functor in the opposite
direction

COVX COVΠ1(X)
Obj
oo

The idea is that if C → Π1(X) is a covering map of groupoids, the associated
covering space will have as points exactly the objects of C. The technicality is in
the definition of the topology. The insight comes from the following remark:

Remark VI.4.7. Let p : E → X be a covering space. Then the topology on E
admits a canonical basis obtained by liftings of open subsets in X. Let V be an
open subset of E and e ∈ E. Let U be a trivializing neighbourhood of x = p(e) for
the covering p and let W denote the connected component of p−1(U) that contains
e. Then W ∩ V is an open neighborhood of e contained in V . Moreover, since the
restriction p|W : W → U is a homeomorphism, we have W ∩ V = s(p(W ∩ V )) with
s the local inverse of p. In other words, W ∩ V is the image of an open subset of x
through the section s.

It is clear from this construction that the collection of all such open subsets of E
obtained via the image of local sections, form a basis for the topology of E.

Construction VI.4.8. Let us start with a covering map of groupoids F : C →
Π1(X). We want to construct a topology τC on the set of objects Obj(C), together
with a covering map of spaces Obj(C)→ X.

Let c ∈ Obj(C) with F (c) = x. For each simply-connected neighborhood U inX with
x ∈ U , the Lemma VI.4.3 guarantees the existence of a unique lifting sc sending x
to c

C

��

Π1(U)
inc
//

sc

99

Π1(X)

Following the Remark VI.4.7 we define a basic open neighborhood O(c, U) of c as
the image sc(Obj(Π1(U))) = sc(U), ie, all objects in C obtained from the unique
lifting property of paths in U starting at c:

O(c, U) := {c′ ∈ Obj(C) : there exists a morphism f : c→ c′ in C lifting a path
γ : x→ y in U}.
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We denote by βC the collection of all subsets of the form O(c, U) running over the
objects of C and the simply-connected neighborhoods U in X.

We now show that βC satisfies the requirements of the Proposition II.1.14 and
forms a basis of a topology. This is where the hypothesis that X is locally simply-
connected plays a role:

(i) Every c ∈ Obj(C) is contained in some element of βC. Since X is locally
simply-connected there exists an open neighborhood U of x = F (c) which
is simply connected. Since idc : c → c is a lift of the constant path at x,
therefore contained in U , we find c ∈ O(c, U).

(ii) Let c ∈ O(c1, U1) ∩ O(c2, U2) with x = F (c), x1 = F (c1) and x2 = F (c2).
Then by definition, there is a morphism c1 → c lifting some path γ1 from
x1 to x contained in U1 and c1 → c lifting some path γ2 from x2 to x
contained in U2. By definition of a locally simply-connected space, there
exists U an open neighborhood of x, contained in U1 ∩ U2 with U simply-
connected. Again idc : c→ c is a lifting of the constant path in U and we
have c ∈ O(c, U).

Finally, if c→ c′ is a morphism lifting a path x→ x′ in U , by uniqueness
of the lifting, this morphism is also the unique lifting of the path seen in
U1 or in U2. In other words O(c, U) ⊆ O(c1, U1) ∩O(c2, U2).

We consider the topology τβ generated by the basis βC on Obj(C).

Remark VI.4.9. The subsets O(c, U) and O(c′, U) are disjoint for c ̸= c′ , F (c) =
F (c′) = x. This is a consequence of the fact that if two liftings agree on a pair of
points, then they must agree everywhere by unicity of the lift (see Lemma VI.4.3).

Proposition VI.4.10. The map of sets pC : Obj(C) → X sending c ∈ Obj(C) to
F (c) is continuous with respect to the topology of Construction VI.4.8.

Proof. Indeed, since X is locally-simply connected, it is enough to test that
p−1
C (U) is open for U a simply-connected neighborhood in X. Let c ∈ p−1

C (U). Then
c ∈ O(c, U) (via the constant path) and O(c, U) ⊆ p−1

C (U) by the definition of O(c, U)
as the image of a local section over U . The Remark II.2.5 allows us to conclude
that pF is continuous.

□

Proposition VI.4.11. For each covering map of groupoids F : C → Π1(X), the
continuous map pC : Obj(C)→ X is a covering map.

Proof. Take x ∈ X and U any simply-connected neighborhood x in X, then
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p−1
C (U) =

∐
c∈F−1(x)

O(c, U)

This a consequence of the fact all the O(c, U) are disjoint for c ∈ F−1(x)- see Re-
mark VI.4.9.

Now notice that each restriction (pC)|O(c,U)
: O(c, U) → U is a bijection. This is a

consequence of the description of O(c, U) as the image of a section.

We conclude by arguing that pC is an open map. Indeed, it is enough to test on the
basis elements (see Exercise II.2.6). But in this case we have pC(O(c, U)) = U .

□

Proposition VI.4.12. The construction sending a covering map of groupoids F :
C→ Π1(X) to the covering space Obj(C)→ X defines a functor

COVX COVΠ1(X)
Obj
oo

Proof. We start by explaining what Obj does on morphisms of coverings of
groupoids. Let

C1
η

//

F1 ##

C2

F2||

Π1(X)

As a map of sets, Obj(η) : Obj(C1)→ Obj(C2) is defined by what η does on objects,
so the compatibility with compositions is automatic. It remains to confirm continu-
ity.

By definition of a basis, it suffices to check that η−1(O(c2, U)) is open in C1 for each
c2 ∈ C2 and U a simply-connected neighborhood in X and x = F2(c2).
Notice that:

c ∈ η−1(O(c2, U))⇔ η(c) ∈ O(c2, U)⇔ η(c) = sc2(y) for some y ∈ U
.
where sc2 is the unique lifting guaranteed by the Lemma VI.4.3 using the fact U is
simply-connected.

C2

��

Π1(U)
inc
//

sc2

::

Π1(X)

Consider now the diagram of groupoids
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C1

η

��

C2

��

Π1(U)
inc
//

sc

::

Π1(X)

The same lifting lemma applied to F1 = F2 ◦ η guarantees the existence of a unique
lifting

C1

η

��

C2

��

Π1(U)
inc
//

sc

CC

Π1(X)

with the property that sc(y) = c. By construction, we have η ◦ sc(y) = η(c) so the
two liftings sc2 and η ◦ sc must agree by the unicity property, ie, the diagram

C1

η

��

C2

��

Π1(U)
inc
//

sc2

::

sc

CC

Π1(X)

commutes.

In particular, c ∈ O(c, U) and by construction O(c, U) ⊆ η−1(O(c2, U)) since

η(O(c, U)) = η ◦ sc(U) = sc2(U) = O(c2, U)

□

We now finally turn to the proof of our main result in this section:

Proof of the Theorem VI.4.2.

We construct natural isomorphisms η : O ◦ Π1 ≃ idCOVX
and λ : Π1 ◦O ≃ idCOVΠ(X)

.

Step 1: Construction of η : Obj ◦ Π1 ≃ idCOVX
.
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Let p : E → X be a covering map. We want to construct an isomorphism of covering
spaces

E
ηE

//

p
��

Obj(Π1(E))

FE
yy

X

natural in E → X. As a map of sets, this is clear: the points of Obj(Π1(E)) are
the objects of Π1(E) which are exactly the points of E. In this case we set ηE to
be the identity map at the level of sets. Commutativity of the diagram is automatic.

It remains to show that ηE is a homeomorphism. But this is a consequence of the
Remark VI.4.7 that explains how the the topology on E is already the one ob-
tained through liftings of open subsets in X via local sections. The two topologies
are defined by the same basis.

Finally, the fact that at the level of underlying sets η is the identity, it is automatic
that it defines a natural isomorphism.

In fact, we have shown that Obj ◦ Π1 = id.

Step 2: Construction of λ : idCOVΠ(X)
≃ Π1 ◦ Obj.

Let F : C→ D be a covering map of groupoids. We want to construct an isomorph-
ism of coverings of groupoids

C
λC

//

F ""

Π1(Obj(C))

pF
xx

Π1(X)

natural in C. We defined the functor λC as follows:

• By construction, the objects of Π1(Obj(C)) are the objects of C, so we
define λC on objects by the identity map c 7→ c;

• On morphisms, if f : c1 → c2 is a morphism in Π1(Obj(C)), we use the
unique lifting property along pF to define λC(f). Take a representative
γf : I → X for F (f) in Π1(X). γf is a path starting at F (c1) and ending at
F (c2). The fact that I is contractible, allows us to use the Lemma VI.4.4
to find a unique continuous lifting of the path, ‹γf , starting at c1 ∈ Obj(C)
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Obj(C)

��

Π1(I)
γf

//

γ̃f
::

X

We define

λC(f) := [‹γf ]
the homotopy class of this path. The uniqueness of liftings guarantees that
this construction is compatible with compositions and therefore defines a
functor.

The Corollary VI.2.15 concludes that λC is an isomorphism of groupoids.

The fact that λC is natural in C is again a consequence of the uniquness of liftings.
We leave it as an exercise to write down the details.

□

We will now translate the content of the Theorem VI.4.2 to the more down-to-earth
dictionary between labyrinths and subgroups:.

Corollary VI.4.13. Let X be path-connected and locally simply connected space.
Let x ∈ X. Then the fiber functor at x induces an equivalence of categories

COVX → π1(X, x)− SETS

In particular, a covering space is path-connected (ie, its total space is path-connected)
if and only if the corresponding π1(X, x)-set is transitive.

The following theorem summarizes the main results proved so far:

Theorem VI.4.14: Classification of Covering Spaces

Let X be path-connected and locally simply connected. Then the assignment
sending a connected covering p : E → B to the conjugation class of the
subgroup p∗(π1(E, b)) ⊆ π1(X, p(b)) establishes a bijection

{iso. cl. of connected coverings of X} ≃ { conj. cl. of subgroups of π1(X, x)}
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VI.5. Galois Coverings

Throughout this section we assume that X is path connected and locally simply
connected.

Example VI.5.1. In the Remark I.2.11 we have also looked at another example
of a covering map of the wedge of two circles given by E =

(Picture taken from Hatcher’s book)

In this case the subgroup p∗(π1(E, e)) =< a, b2, bab−1 >⊆ π1(X, x) =< a, b > is a
normal subgroup. This can be check showing that all conjugations a.p∗(π1(E, e)).a−1,
a−1.p∗(π1(E, e)).a, b.p∗(π1(E, e)).b−1 and b−1.p∗(π1(E, e)).b are subsets of p∗(π1(E, e)).

The Proposition VI.2.7 and the Example VI.5.1 suggest that some covering maps
exhibit a distinguished feature, namely the associated subgroup is normal. We isol-
ate this feature in the following definition:

Definition VI.5.2. Let F : C→ D be a covering map of groupoids with C connec-
ted (and therefore D connected). We say that F is normal (régulier en français) if
for any d ∈ D and c ∈ F−1(d), the subgroup F (AutC(c)) ⊆ AutD(d) is a normal
subgroup.

Definition VI.5.3. Let p : E → X be a covering map with E path-connected.. We
say that p is normal if the associated covering map of groupoids Π1(E)→ Π1(X) is
normal.

Proposition VI.5.4. Let F : C → D be a covering map of groupoids with C con-
nected. Let d ∈ D. The following conditions are equivalent:

(i) F : C→ D is normal;

(ii) For every pair of objects c1, c2 ∈ F−1(c) there exists an automorphism of
covering groupoids η : C1 → C2 sending c1 to c2.

Proof. Assume F : C → D is normal. Then the subgroups F (AutC(c1)) and
F (AutC(c2)) must coincide since they are conjugated, ie,

https://pi.math.cornell.edu/~hatcher/AT/AT+.pdf
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F (AutC(c1)) = F (AutC(c2))

But in this case the lifting lemma Lemma VI.4.3 guarantees the existence of η and
ρ

C

F
��

C

η
??

F
// D

C

F
��

C

ρ
??

F
// D

with η(c1) = c2 and ρ(c2) = c1. By unicity of the liftings, one must have ρ ◦ η = id
and η ◦ ρ = id.

Conversely, if the automorphism exists for any pair of points, it is automatic by the
commutativity of the diagram that

F (AutC(c1)) = F (AutC(c2))

□

Construction VI.5.5. Let C → D be a covering map of groupoids and let d ∈ D.
Then the group AutCOVD

(C) acts on the fiber of F at d, F−1(d): if η : C → C is an
automorphism of F , and c ∈ F−1(d), then η(c) ∈ F−1(d).

Definition VI.5.6. Let F : C → D be a covering map of groupoids. Then we say
that F is Galois if the action of the Construction VI.5.5 is transitive, ie, for any
pair of objects c1, c2 in the fiber of d, there exists an automorphism of covering
groupoids ϕ ∈ AutCOVD

(F )

C
ϕ

//

F ��

C

F��

D

such that ϕ(c1) = c2.

Definition VI.5.7. We say that a covering space p : E → X is Galois if its groupoid
covering Π1(E)→ Π1(X) is Galois.

Remark VI.5.8. The Proposition VI.5.4 can now be reformulated by saying that
a covering of groupoids is Galois if and only if it is normal.
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Corollary VI.5.9. Let X be path connected and locally simply connected. Let p :
E → X be a covering map with E connected, e ∈ E and x := p(e). Then, the
fully faithfulness of the equivalence of categories of Corollary VI.4.13 gives us an
isomorphism of groups

AutCOVX
((E, p)) ≃ N(p∗(π1(E, e))/p∗(π1(E, e))

In particular, if p : E → X is normal (or Galois), we get an isomorphism of groups

AutCOVX
((E, p)) ≃ π1(X, x)/p∗(π1(E, e)

Proof. Follows from the Corollary VI.3.20. □

We now give a third description of Galois coverings:

Proposition VI.5.10. Let X be a path-connected and locally simply-connected to-
pological space. Let p : E → X be a covering map with E path-connected. Then the
following are equivalent:

(i) p : E → X is a Galois covering.

(ii) The action of G := AutCOVX
(E) (with the discrete topology) on E is prop-

erly discontinuous and the quotient map

E/G→ X

is a homeomorphism.

Proof. Assume first that the covering is Galois. Let e ∈ E and let U be a
trivializing neighborhood of p(x). Let V be the connected component of p−1(U)
containing e. Then the Galois condition applied implies that the action of the group
of automorphism will shuffle the different connected components, but never intersect
them. By the Proposition VI.1.11, the quotient map E → E/G is a covering map.

Let f : E/G → X be the map induced by the universal property of the quotient.
Since the action of the G is transitive, it follows that f is injective. It is surjective
because p is surjective. Therefore, f is a bijection.
We now observe that f is an open map, since p is an open map (local homeomorph-
isms are open maps).

Let us now prove the converse statement. Assume that the action of G is property
discontinuous and that the quotient map E/G→ X is a homeomorphism. One must
show that the action of G is transitive on each fiber of the map E → X: but this is
automatic since if e1 and e2 are in the fiber of x, we must have f([e1]) = f([e2]) but
since f is injective, one has [e1] = [e2], so there is an element g ∈ G with g(e1) = e2.

□
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Exercise VI.5.11. Let X be a topological space with a properly discontinuos ac-
tion of a (discrete) group G. Show that:

(i) The quotient map π : X → X/G is a Galois covering.

(ii) Assume X is path-connected. Show that G is the group of automorphisms
of π as a covering space of X/G.

Exercise VI.5.12. TD, Exo
2.1, Feuille 5

Show that the map C∗ → C∗ given by z → z3 is a Galois covering
map. Compute its group of automorphisms.

Remark VI.5.13. The form of the Theorem VI.4.14 (through the equivalence of
categories of the Corollary VI.4.13) appears in other areas of mathematics, mani-
festing the same basic principle: objects being classifying by conjugacy classes of
subgroups of a certain group.

• Let k be a field and let L be a finite Galois extension of k with Galois group
G. Then the assignment sending an intermediate extension k ⊆M ⊆ L to
the group of automorphisms of L over M - Aut(L/M) - defines a bijection
between intermediate extensions of k ⊆ L and subgroups of G with inverse
given by sending a subgroup H to the subfield LH ⊆ L of those elements
fixed by H. Moreover, the intermediate extension is Galois if and only if
the subgroup is normal.

• In the theory of Riemann surfaces that you will see next month, you will
be led to study spaces E → X that behave like covering spaces everywhere
except at a finite number of points of X. These are called branched cov-
ers of X. When X is a Riemann surface, the classification of branched
covers can be made via algebraic techniques and proved to be equivalent
to the theory of field extensions of the field of meromorphic functions on X.

For more on this, check the book T. Szamuely Galois groups and fundamental groups

VI.6. Universal Covers

Definition VI.6.1. Let E be a path-connected space. We say that p : E → X is a
universal cover if E is connected and simply-connected(†).

(†)In particular, it is path-connected

https://www.cambridge.org/core/books/galois-groups-and-fundamental-groups/2511B1C10ACF174A0F444A045D9C1F89
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Remark VI.6.2. Let X be a path-connected, locally path-connected topological
space, and assume it admits a universal cover p : E → X. Then since E is
also locally path-connected (cf. Remark VI.1.8), the necessary requirement of the
Lemma VI.4.4 for the existence of a lifting to any other covering map is automatic.
Fix a point e ∈ E and denote x := p(e). Then for any covering map p′ : E ′ → X
and choice of point e′ ∈ E ′ there exists a lifting

E ′

p′

��

E p
//

??

X

sending e to e′. In other words, if a universal cover exists, it dominates all other
covers. Hence the terminology universal.

Proposition VI.6.3. Let X be a path-connected and locally path-connnected space
and assume p1 : E1 → X and p2 : E2 → X are two universal covers. Then E1 and
E2 are isomorphic.

Proof. Since both E1 and E2 are locally path-connected, by the Lemma VI.4.4,
both satisfy the requirement for liftings of the Lemma VI.4.4: given e1 and e2 with
p1(e1) = p2(e2), there exists unique liftings

E2

p2
��

E1 p1
//

Ψ
>>

X

E1

p1
��

E2 p2
//

Φ
>>

X

sending e1 to e2 and e2 to e2. By unicity of liftings, one must have Φ ◦ Ψ = id and
Ψ ◦ Φ = id.

□

Remark VI.6.4. Let p : E → X be universal cover, with e ∈ E.Let x = p(e).
• The subgroup p∗(π1(E, e)) ⊆ π1(X, x) is the trivial subgroup, since π1(E, e) =
0.

• p : E → X is a Galois covering and the associated π1(X, x)-set is the un-
derlying set of π1(X, x) with the action via left multiplication.

• Since E is path-connected, the action is transitive (Proposition VI.3.19),
and therefore the choice of an element e ∈ E over x induces a bijection
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π1(X, x)/{0} ≃ π1(X, x) ≃ p−1(x).

• By the Corollary VI.5.9, the choice of an element e ∈ p−1({x}) induces
an isomorphism of groups

AutCOVΠ1(X)
(E) ≃ π1(X, x)

• By the Proposition VI.5.10, the action of AutCOVΠ1(X)
(E) ≃ π1(X, x) on

X is properly discontinuous and we have a homeomorphism

E/π1(X, x) ≃ X

Example VI.6.5.

• The exponential map exp : R→ S1 is a universal cover.

• The complex exponential map exp : C→ C∗ is a universal cover.

• The quotient map R2 → T is a universal cover for the torus.

• The identity map S2 → S2 is a universal cover.

• The graph

is a universal cover of the wedge of two circles S1 ∨ S1.

https://www.youtube.com/watch?v=iuvXFg67uwo&t=1s


168 VI. COVERING SPACES AND THEIR CLASSIFICATION

• The quotient map R2 → K defining the Klein bottle, is a universal cover
(Exercise II.5.40)

• The universal cover of the cylinder S1 × R:

• The universal cover of the Mobius band:

• The universal cover of the Klein bottle:

Proposition VI.6.6. Let X path connected and locally simply connected. Then it
admits a universal cover.

https://www.youtube.com/watch?v=O7JKwJM-WE0&t=45s
https://www.youtube.com/watch?v=EGV1IgSbfa0
https://www.youtube.com/watch?v=93GHTfRX56I&t=3s
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Proof. This is a direct consequence of the equivalence of categories in Corol-
lary VI.4.13. Namely since X is path-connected, let us fix x ∈ X a base point and
take the covering ‹Xx := Obj(Γ(− ◦ Ωx(π1(X, x))))→ X associated to the π1(X, x)-
set given by π1(X, x) acting on itself via left multiplication. The covering map‹Xx → X obtained this way is indeed a universal cover:

• It is path-connected since the action of π1(X, x) on itself is transitive (Pro-
position VI.3.19-(ii));

• It is simply-connected: since it is a covering map, its fundamental group is
isomorphic to the subgroup p∗(π1(‹Xx, e)) for any point e lying over x. But
by construction we have asked for this subgroup to be the trivial subgroup.

• Comes with a canonical point x̃ lying over x given by using 0 ∈ π1(X, x)
to generate all other elements under the transitivity of the action.

□

Remark VI.6.7. For clarity’s sake, we outline the construction of ‹Xx in more de-
tail, following the steps of the equivalence Corollary VI.4.13.

As explained in the Example VI.3.6, we have ‹Xx ≃ Obj(Γ(HomD(d,−))).

Now, the category Γ(HomD(d,−)) is by definition the category of pairs (d′ ∈ D, s ∈
HomD(d, d

′)) and morphisms (d1, s1 : d → d1) → (d2, s2 : d → d2) are morphisms
f : d1 → d2 in D such that the diagram commutes

d

s2
��

s1
// d1

f
��

d2

This is precisely the comma category Dd/. of objects under d of the Example VI.2.5.

Applying this to our case, D = Π1(X) and d = x ∈ X, the objects of this category
are homotopy classes of paths [γ] : x→ x′ with starting point x.

Therefore, as a set, what we really have is‹Xx = {[γ] : γ is a path out of x in X}

so it is canonically pointed by the class x̃ := [cx] of the constant path at x. Moreover,
the map ‹Xx → X is the evaluation at the endpoint.
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Tracing back the construction of the topology ‹Xx in Construction VI.4.8 the basis
subsets O((x′, [γ] : x→ x′), U) are precisely those pairs (x′′, [α] : x→ x′′) such that
there exists a morphism

η : (x′, [γ] : x→ x′)→ (x′′, [β] : x→ x′′)

corresponding to a commutative diagram

x

[γ] ��

[β]
// x′

[η]
��

x′′

such that [η] : x′ → x′′ is the homotopy class of a path in a simply connected open
in X. In other words, it is the set

{[γ′] : there exists a path η in U such that [γ′] = [η] ∗ γ]}
corresponding to "small" contractible continuations of γ along its endpoint.

Moreover, under the isomorphism of groups AutCOVX
(X̃x) ≃ π1(X, x) obtained by

using the base point x̃, the action is given by sending [α] ∈ π1(X, x), and [γ] a path
starting at x, to the concatenation [γ ∗ α](‡)

Remark VI.6.8. As explained above, by construction, the universal cover ‹Xx comes
with the point x̃ in the fiber of x corresponding to 0 in the π1(X, x). The fully faith-
fulness of the equivalence of categories, gives for any other path-connected covering
map q : E → X, a bijection

HomCOVX
(‹Xx, E) ≃ Homπ1(X,x)−SETS(π1(X, x),Fibx(E)) ≃ Fibx(E)

by the Exercise VI.3.15-(ii). This bijection quantifies the Remark VI.6.2 by ex-
pressing exactly how many liftings exist - one for each point e in the fiber p−1({x})
of E, sending x̃ 7→ e.

Remark VI.6.9. One can also use the Example VI.3.6 to trace back the covering
space EH associated to a subgroup H ⊆ π1(X, x), namely, its points are the objects
of Γ(FH), ie,

EH = {[γ] : γ is a path out of x in X}/([γ1] ∼ [γ2] iff [γ−1
2 ∗ γ1] ∈ H)

Remark VI.6.10. Let X be a path-connected and locally simply-connected space,
x ∈ X and p : X̃x → X a universal cover. Let also x̃ ∈ X̃x be the point correspond-
ing to the constant path at x as explained in the Remark VI.6.7.

(‡)which is the natural action on the functor HomΠ1(X)(x,−).
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The choice of x̃ determines an isomorphism of groupsG := AutCOVX
(X̃x) ≃ π1(X, x).

Let H ⊆ G be a subgroup. Consider the action of H on X̃x via automorphisms.
Since the action of G is properly discontinuous (as the universal cover is Galois and
Proposition VI.5.10), so is the restricted action by elements of H. In particular,
the quotient map

π : X̃x → X̃x/H

is a covering map. The action of G descends to an action of G/H on X̃x/H which
is still property discontinuous so the further quotient

q : X̃x/H → (X̃x/H)/(G/H) ≃ X̃x/G ≃ X

is a covering map of X:

X̃x
π

//

p
  

X̃x/H

q
||

X

Using the explicit description of points in the universal cover as homotopy classes
of paths starting at x - Remark VI.6.7 - we see that the quotient X̃x/H is identi-
fying two homotopy classes of paths [γ1] and [γ2] starting at x iff [γ2] = [γ1 ∗ α] for
[α] ∈ H ⊆ π1(X, x). In equivalent terms, if [γ−1

2 ∗ γ1] ∈ H

At the same time, the canonical map of G-sets G→ G/H induces, via the functori-
ality of the equivalence of categories in Corollary VI.4.13 a map of covering spaces
X̃x → EH where EH is as described in the Remark VI.6.9.

X̃x
//

p
  

EH

~~

X

But the explicit description in the Remark VI.6.9 tells us that EH is defined exactly
as the quotient X̃x/H: the map X̃x → EH descends to a continuous map in quotient

X̃x/H → EH

which is a bijection on points (by inspection). Moreover, this an homeomorphism
since EH is path-connected and locally path-connected so by (Exercise VI.2.12) the
map X̃x → EH is itself a covering map, and therefore an open map.

In particular, this shows that all path-connected covering spaces associated to a
subgroup H can be realized as explicit quotients of the universal cover.
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VI.7. Examples of the classification theorem

Example VI.7.1. Let us classify all covering spaces of the circle S1.

Its fundamental group is Z which is an abelian group. In particular, all its subgroups
are normal.

The classification of subgroups of Z is easy: if H ⊆ Z is a subgroup, then if H ̸= {0}
, H must contain a smallest positive element

n := min{h ∈ H : h > 0}

Since H is a subgroup, H must contain all multiples of n so nZ ⊆ H. Conversely,
if h ∈ H is non-zero, then h ≥ n. So take the euclidean division h = a.n+ r where
both a, r < n. But in this case r = a.n − h and since a.n and h are in H, r is in
H. We have thus constructed an element of H which is strictly smaller than n. The
only possibility is r = 0. But then h = a.n so H ⊆ nZ.

Summarizing, all subgroups of Z are of the form nZ for n ∈ N.

Since exp : R→ Z is the universal cover of S1, we have shown (see Remark VI.6.10)
that all (connected) covering spaces of S1 are (up to isomorphism) obtained as a
quotient of the universal cover R by the action of the subgroup nZ. The explicit
description of the action given in the Remark VI.6.10, seeing 0 in R as the canonical
point representing the constant path at 1 ∈ S1, tells us that nZ acts on R by a
shifted by n. The quotient space R/nZ is itself homeomorphic to the circle via
the map R/nZ ≃ S1 sending [x] 7→ exp(2πix

n
). In this case the cover we obtain

https://www.youtube.com/watch?v=vP7NAeeKjrw
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R/nZ ≃ S1 → S1 is given by z 7→ zn. These correspond precisely to the different
labyrinths in the Example I.2.12.

Example VI.7.2. Let us classify all (connected) covering spaces of RP 2. By the
Exercise V.3.31 we have π1(RP 2, x) ≃ Z/2. This is an abelian group with only
itself and {0} as subgroups. We have seen above that the quotient map S2 → RP 2

is a covering map and we know that S2 is simply-connected. So this is the universal
cover. The only other covering is the one corresponding to the whole Z/2, ie, the
identity map RP 2 → RP 2.

Example VI.7.3. Let us classify all covering spaces of the torus S1 × S1. Its fun-
damental group is Z ⊕ Z which is an abelian group. It follows that all subgroups
are normal and all connected covers are Galois.

We need to list the subgroups of Z⊕Z. Let H be a subgroup and consider the short
exact sequence of abelian groups

0 // Z
i2
// Z⊕ Z

p1
// Z // 0

Since p1 is a map of abelian groups, p1(H) is a subgroup of p1(Z⊕Z) = Z. Therefore
p1(H) is of the form nZ for some n ∈ N. Pick an element x ∈ H such that p1(x) = n,
ie , x = (n, a) ∈ H.

Now i−1
2 (H) is a subgroup of the second copy of Z so i−1

2 (H) must be of the form
mZ for some m ∈ N.

Let h ∈ H. In this case p1(h) = ah.n for a unique ah. Consider the element h−ah.x
in H. It follows that p1(h− ah.x) = p1(h)− ah.p(x) = ah.n− ah.n = 0. So h− ah.x
belongs to the image of i2 so it is of the form kh.(0,m). Therefore, any h ∈ H can
be written as h = ah.x+ kh.m = (ah).(n, a) + kh.(0,m).

In other words, all subgroups are of the form,

H = (n, a).Z⊕ (0,m).Z

Now Z ⊕ Z acts on the universal cover R2 by translations: if (n,m) ∈ Z ⊕ Z and
(x, y) ∈ R2, (n,m).(x, y) = (x+ n, y+m). In particular, the cover associated to the
subgroup H is obtained by identifying (x, y) ∼ (x′, y′) iff there exists u, v ∈ Z such
that x′ = x+ u.n and y′ = y + u.a+ v.m.

• if n = m = a = 0, ie, H = {0} we get the universal cover of the torus, ie,
the plane R2;
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• if n = a = 0, and m ̸= 0, ie, H = (0,m).Z we get the equivalence relation
(x, y) ∼ (x′, y′) iff y′ − y ∈ mZ. It follows that the quotient R2/H is
homeomorphic to R×R/mZ which is homeomorphic to R×S1 via the map

R× R/mZ→ R× S1

sending [(x, y)] 7→ (x, exp(2πiy
m

)). The associated covering map is then the
map

R× S1 → S1 × S1

given by

(x, z) 7→ (exp(2πix), zn)

• if a = 0 and n ̸= 0, m ̸= 0, ie, H = (n, 0).Z⊕ (0,m).Z, the quotient space
R2/H is isomorphic to the product of the two quotients R/nZ × R/mZ.
This is homeomorphic to a product of two circles via the map

R/nZ× R/mZ ≃ S1 × S1

sending

[(x, y)] 7→ (exp(
2π.ix

n
), exp(

2πiy

m
))

and the associated covering map R/H → S1 × S1 is given by

S1 × S1 → S1 × S1

sending

(z, w) 7→ (zn, zm)

ie, the product of two covers of the circle.

• if m = 0, and n, a ̸= 0, ie, H = (n, a).Z, we get a quotient of R2 under
the equivalence relation (x, y) ∼ (x′, y′) iff there exists k ∈ Z such that
x′ − x = k.n and y′ − y = ka. Using the change of coordinates R2 → R2

sending (x, y) to (u, v) given byÅ
u
v

ã
:=

1

n2 + a2

Å
n a
−a n

ã
.

Å
x
y

ã
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the quotient R2/H becomes homeomorphic to the cylinder R/Z× R. The
associated covering space is given by

R× S1 → S1 × S1

(z, t) 7→ (zn. exp(2πit)−a, za. exp(2πit)n)

• Finally, if a, n,m ̸= 0, H = (n, a).Z⊕ (0,m).Z we get the covering space

S1 × S1 → S1 × S1

(z, w) 7→ (zn, za.wm)

Exercise VI.7.4. Let X be a path-connected, locally simply-connected space with
fundamental group isomorphic to the symmetric group S3. Its order is 3! = 6 = 2.3.
By the first Sylow theorem S3 admits subgroups of order 3 and subgroups of order 2.

By the third Sylow theorem, the number of subgroups of order 2 must be 3 (corres-
ponding to the three transpositions (1)(23), (12)(3) and (13)(2)) and the number
of subgroups of order 3 is 1 corresponding to the, corresponding to cyclic subgroup
generated by the permutation (123).

By the second Sylow theorem, all 2-Sylow subgroups are conjugated.

By definition, order 2 means index 3 and vice-versa, subgroups of order 3 corres-
ponds to subgroups of index 2.

Since the degree of the cover coincides with the index of the subgroup we find that
there are precisely 1 isomorphism classes of 3-sheeted path-connected covering spaces
and 1 isomorphism class of 2-sheeted path-connected covering spaces.

Example VI.7.5. Describe all covering spaces or RP 2 ∨ RP 2.

Exercise VI.7.6. Show that any map S2 → S1 is null-homotopic. Hint: use the
lifting criterium for coverings.

Exercise VI.7.7. Construct a 3-sheeted cover of a surface of genus 2, Σ4 → Σ2.

Exercise VI.7.8. Show that the torus is a 2-sheeted cover of the Klein bottle.



176 VI. COVERING SPACES AND THEIR CLASSIFICATION

Exercise VI.7.9. For each of the following pictures of a cover of S1∨S1, write down
the respective subgroups of the free group with two generators ⟨a, b⟩

Which are Galois covers?

Exercise VI.7.10. Consider the kernel Ker of the map of groups ⟨a, b⟩ → Z/4
sending both a and b to 1. What is the covering space associated to Ker?

Exercise VI.7.11. Let G be a topological group with unit e. Suppose that G is
path-connected and locally simply-connected.

(i) Show that the universal cover G̃e admits a unique structure of topological
group such that the covering map G̃e → G is a morphism of topological
groups.

(ii) Exhibit an exact sequence of topological groups

1→ π1(G, e)→ G̃e → G→ 1

with π1(G, e) endowed with the discrete topology.

(iii) Show that the image of π1(G, e) is contained in the center of G̃e.
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