THESE

peiviepar  POUN Obtenir le grade de
universite  Docteur

MONTPELLIER 2

Préparée au sein de I’école doctorale I2S
Et de I'unité de recherche Institut de Mathématiques et de Modélisation de

Montpellier
Spécialité : MATHEMATIQUES

Présentée par: Marco Robalo

Théorie Homotopique Motivique des Espaces

Noncommutatifs

Soutenue le 04/07/2014 devant le jury composé de

M. Damien CALAQUE, Professeur, UM2-Montpellier Examinateur
M. Denis-Charles CISINSKI, Professeur, UPS-Toulouse Examinateur
M. Carlos SIMPSON, Directeur de Recherche, Nice, Sophia-Antipolis Examinateur
M. Bertrand TOEN, Directeur de Recherche, UM2-Montpellier Directeur de Thése
M. Gabriele VEZZOSI, Professeur, Paris VII Denis-Diderot Examinateur

Au vu des Rapports de

M. Dennis GAITSGORY, Professeur, Harvard University

M. Maxim KONTSEVICH, Professeur, IHES






“No. Try not. Do. Or do not. There is no try.”

B.Toén (following Master Yoda)



ii

Acknowledgments

My gratitude to Bertrand Toén is infinite. So are my admiration and mathematical debt. For ac-
cepting me as his student, for suggesting me such an amazing quest, for his kindness in sharing and
discussing his ideas and beautiful visions and for his continuous support and patience during the dif-
ferent stages of this thesis.

There are several people to whom I also owe my deepest gratitude.

I would like to start by expressing my gratitude to Prof. D.Gaitsgory and Prof. M. Kontsevich
for having accepted to referee this thesis. It is a real honour and a pleasure. The works of Prof.
Kontsevich are the very starting point for the work here presented. His vision and insights were a
continuous extraordinary source of inspiration.

These last four years have been an amazing adventure. I can not imagine a more extraordinary
form of scientific spirit than the one I found with Bertrand together with Gabriele Vezzosi and Michel
Vaquié. They have my gratitude for showing me what scientific research is all about. Moreover, 1
deeply thank Gabriele for his support through the various stages of this thesis and of course, for having
accepted to be part of the Jury.

This thesis would not exist without the foundational, inspiring and visionary works of Prof. Carlos
Simpson on the subject of Higher Categories. His vision brought mathematics to a new era. It is a
profound honor and pleasure to thank Prof. Simpson for having accepted to be part of this Jury.

On the motivic side this thesis owes a lot to the works of Prof. Denis-Charles Cisinski. I learned
a lot from his works and I wish to thank him for several enlightning conversations on the subject of
motives over these last years. It is also a pleasure to thank him for accepting to be part of the Jury.

Finally, my gratitude to Damien Calaque for the many discussions along this last year in Mont-
pellier. It is also a great pleasure to thank him for accepting to be part of the Jury.

The story of the ideas and motivations for this work started in the spring of 2010 when they were
discussed in the first ANR-Meeting - ”GAD1” - in Montpellier (ANR-09-BLAN-0151) . The discussion
continued later in the summer of 2010, when a whole research project was envisioned and discussed
by Bertrand together with Gabriele, Michel and Anthony Blanc. I am profoundly grateful to all of
them for allowing me to dive into this amazing vision and to pursue the subject.

The results in this thesis would be impossible without the colossal works of Jacob Lurie in the
subject of higher algebra. It has been a real pleasure to read and learn from his writings.

I am also very grateful to Nick Rozenblyum for so kindly explaining me his approach to the
(00, 2)-theory of correspondences and how it leads to a very beautiful and natural formulation of the
six operations (see the Remarks 9.4.9 and 9.4.11).

T also want to thank all the friends that supported me throughout this quest. First of all I thank my
thesis brothers Anthony Blanc, Benjamin Hennion and Samuel Bach. Anthony is one of the kindest
persons I've ever met. Not only he welcomed me in his house during the times I was moving between
Paris and Montpellier, but also, he taught me to speak french and very importantly, introduced me
to the Shadoks. His friendship has been crutial during these years and more importantly, one of the
key results in this thesis follows from one of his results. Anthony taught me how to speak french.
Benjamin taught me how to write in french. I thank him for his support, specially during the last part
of this work when all energies seemed to fade. His balance of optimism vs skepticism is extraordinary
and his love for a good quality of life is (painfully!) contagious (I never ate in CROUS again...). At



0.0 Acknowledgments iii

last I thank Samuel who had the unfortunate fate of being my roommate during this last year.

I thank Dimitri Ara for his friendship and for everything he taught me about higher categories
and homotopy theory. I also thank Georges Maltsiniotis and Francois Petit for all the mathematical
discussions from which I have learned so much and for the friendly reception in Paris.

I thank Brad Drew for his friendship and for all the discussions we had during these last two
years. Our common fascination for the subject of motives combined with a temporary office sharing
(thanks!) has been deeply motivating. I thank him for teaching me so much about the subjet and
also for all the comments and corrections that helped improving the text here presented.

During these last four years I had the privilege to learn from several people. I thank Mathieu Anel,
Eduard Balzin, Guillaume Brunerie, Jonathan Chiche, Thibaud Lemanissier, Valerio Melani, Pranav
Pandit, Mauro Porta, Claudia Scheimbauer and James Wallbridge for all the discussions. I also thank
everyone at the Labo in Montpellier for the very welcoming and friendly environment.

I would also like to thank my longtime comrades Pedro Boavida Brito, Edgar Costa, Gongalo
Oliveira, Alvaro Osorio and Jaime Silva. Without those years in Lisbon this thesis would never exist.
Also at Lisbon I owe my gratitude to the teachers that most influenced me towards mathematics:
Profs. José Mourao, Gustavo Granja, Jodo Pimentel Nunes, Maria Vaz Pinto and Paulo Almeida.

To conclude, I want to dedicate this work to the three most important persons in my life. My
girlfriend Masha. When I only had frustration and anxiety to give, she would always answer with
encoragement and love. This text would definitely never exist without her continous daily support.
My brother, Rui and my mother, Fernanda, to whom my gratitude and love is beyond all words.
Obrigado por todos estes anos. Obrigado por Tudo.



v

I thank the Portuguese Foundation for Science and Technology for the Doctoral Grant SFRH /
BD / 68868 / 2010 that supported this thesis.



Théorie Homotopique Motivique des Espaces Noncommutatifs

Abstract

Cette these s’inscrit dans le cadre d’un projet de recherche visant a comparer la géométrie
algébrique classique avec la nouvelle géométrie algébrique non commutative dans le sens de Kont-
sevich. Plus précisément, on veut comparer les niveaux motiviques des deux théories.

Dans la premiere partie de ce travail on s’occupe de donner la propriété universelle de 1’(co, 1)-
catégorie symétrique monoidale S8H sous-jacente & la théorie homotopique stable motivique des
schémas, telle que construite par Voevodsky et Morel, avec sa structure monoidale symétrique.
Dans la deuxiéme partie de ce travail on introduit un analogue non-commutatif SH,. a la théorie
homotopique motivique stable pour les espaces non-commutatifs dans le sens de Kontsevich, que
nous modélisons en utilisant la notion de dg-catégories de type fini de Toén-Vaquié. Pour cela
on introduit un analogue non-commutatif approprié a la topologie de Nisnevich. En conséquence
de notre propriété universelle pour SH on obtient gratuitement un pont entre les deux théories
SH — S8Hpe. Ce pont admet un adjoint et notre second résultat principal est que cet adjoint
envoie 'unité monoidale de 83, vers I'objet K H dans 8, représentant la K-théorie invariante
par homotopie. Comme corollaire, principal on obtient que sur un corps de caractéristique nulle,
le foncteur induit entre les K H-modules vers SH,. est pleinement fidele. On montre on passage
que la K-théorie non-connective des dg-catégories est le faisceau associé a la K-théorie connective
des dg-catégories, par rapport a la topologie de Nisnevich non-commutative.

Dans la troisieme partie de ce travail, on étend nos résultats et constructions pour définir
les motifs et les motifs non-commutatives sur une base quelconque. Nous utilisons ensuite des
techniques récentes dues a Liu-Zheng pour établir un formalisme de six opérations pour SH dans
le cadre des (oo, 1)-catégories. Cela étend les résultats de Ayoub. Dans la derniere partie de cette
theése, on explique nos efforts pour établir un formalisme de six opérations dans le cadre des motifs
non-commutatifs.

Mots-Clés : Motifs, Motifs Non-commutatifs, Catégories supérieures de motifs, Schémas Non-commutatifs,
Théorie Homotopique Motivique des schémas non-commutatifs, K-Théorie
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Motivic Homotopy Theory of Non-commutative Spaces

Abstract

This thesis aims to compare classical algebraic geometry with the new noncommutative alge-
braic geometry in the sense of Kontsevich. More precisely, we compare the motivic levels of both
theories.

Our first main result in this thesis is a universal characterization for the symmetric monoidal
(00, 1)-category SH underlying the motivic stable homotopy theory of schemes of Morel-Voevodsky.
In the second part of this thesis we introduce a non-commutative analogue 8H,. of the Morel-
Voevodsky motivic theory for the non-commutative spaces in the sense of Kontsevich, modeled by
the dg-categories of finite type of Toen-Vaquié. For this purpose we introduce a non-commutative
version of the Nisnevich topology. The universal characterization proved for the commutative
theory allows us to obtain for free a bridge between the two theories SH — 8H,.. This bridge
has an adjoint and our second main result in this thesis is that this adjoint sends the tensor
unit non-commutative motive to the commutative motivic ring spectrum K H representing ho-
motopy invariant algebraic K-theory. As a corollary we deduce that over a field of characteristic
zero the induced map from K H-modules in 8H to non-commutative motives is fully-faithful. In
the process we prove that the non-connective K-theory of dg-categories is the non-commutative
Nisnevich sheafification of connective K-theory.

In the third part of this work we extend our results and constructions to define motives and
non-commutative motives over general base schemes. Moreover, we use the recent techniques of
multi-simplicial sets of Liu-Zheng to prove a formalism of six operations for S8H in the setting
of (00, 1)-categories, thus extending the results of J. Ayoub. In the last part of this thesis we
explain our attempts to prove the existence of an analogous formalism of six operations for non-
commutative motives.

Key Words : Motives, Non-commutative Motives, Higher Categories of Motives, Non-commutative
schemes, Homotopy theory of non-commutative schemes, K-Theory



Prélude

Cette these s’inscrit dans le cadre d’un projet de recherche visant a comparer la géométrie algébrique
classique avec la nouvelle géométrie algébrique non commutative dans le sens de Kontsevich [87]. Plus
précisément, nous voulons comparer les niveaux motiviques des deux théories.

Motifs

Dans le programme initial envisagé par Grothendieck, le motif d’un objet géométrique X (par exemple
X une variété projective lisse) était un nouvel objet mathématique congu pour exprimer “le contenu
arithmétique de X” !. Plus précisément, dans les années 60, Grothendieck et ses collaborateurs ont
construit des exemples de ce qu’on appelle les théories cohomologiques de Weil, congues pour cap-
turer différentes informations sur 'arithmétique de X. En présence de plusieurs théories, il a envisagé
I'existence d’une théorie universelle, celle qui rassemblerait toutes les informations arithmétiques. A
I’époque, les théories cohomologiques ont été formulées de maniere assez artificielle en utilisant des
catégories abéliennes en tant ingrédient de base. La notion de catégorie triangulée est apparue pour
fournir un nouveau cadre plus naturel pour les théories cohomologiques. ]:ilvidemment7 la théorie de
motifs a suivi ces innovations [13] et finalement, dans les années 90, V. Voevodsky [151] a construit
ce qui est devenue la ”cohomologie motivique”. Plusieurs bonnes références introductives a ce pro-
gramme arithmétique sont maintenant disponibles [3, 4, 102], avec le contexte historique présenté dans
I'introduction de [30] ainsi que les derniéres notes de cours par B. Kahn [75].

A la fin des années 90, Morel et Voevodsky [105] ont développé une théorie plus générale de motifs.
Dans leur théorie, le motif de X est concu pour étre le squelette cohomologique de X, non seulement
de la perspective d’une théorie cohomologique de Weil, mais pour toutes les théories cohomologiques
généralisées pour les schémas (comme la K-théorie, le cobordisme algébrique et la cohomologie mo-
tivique). L’inspiration vient de la théorie homotopique stable des espaces ol toutes les théories
de cohomologie généralisées (des espaces) deviennent représentables. Un tel cadre pourrait fournir
des définitions plus faciles pour la cohomologie motivique, la K-théorie algébrique, le cobordisme
algébrique, etc, en se contentant de fournir leur spectre représentant. Leur construction comporte
deux étapes principales : la premiére partie imite la théorie d’homotopie des espaces et sa stabilisa-
tion; la deuxieme partie rend inversible le “motif de Tate” par rapport a la multiplication monoidale.
Le résultat final est connu sous le nom de [’homotopie stable motivique des schémas . Notre premier
objectif dans cette these est de formuler une propriété universelle précise pour leur construction.

1 par exemple, il doit saisir I’information sous-jacente de la L-fonction de X.

vii
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Géométrie Algébrique Non-commutative

En Géométrie Algébrique, et particulierement apres les travaux de Serre et de Grothendieck, I’étude
d’un schéma X via sa catégorie abélienne des faisceaux quasi-cohérents Qcoh(X) est devenu pratique
courante. Cela s’explique par des raisons purement techniques, car a 1’époque, les catégories abéliennes
constituaient la seule fagcon de formuler des théories cohomologiques. En fait, Pobjet Qcoh(X) se
révele étre un tres bon remplacement pour 'objet géométrique X: grace a [54, 120] nous savons que
X peut étre reconstruit & partir de Qcoh(X). Cependant, les catégories abéliennes ne fournissent
pas un cadre tres naturel pour I'algebre homologique. Ce fut Grothendieck qui remarque que ce
cadre naturel serait ce que nous comprenons aujourd’hui comme étant la théorie homotopique des
complexes dans la catégorie abélienne initiale. A cette époque, la norme pour traiter les théories
homotopiques consistait a examiner leurs catégories homotopiques - l'inversion formelle stricte des
équivalences faibles. C’est ainsi que nous obtenons la catégorie dérivée D(X) du schéma X. Pour
de nombreuses raisons, il était clair que 'on perdait trop d’information en passant de la théorie
homotopique des complexes a la catégorie dérivée associée. La solution de ce probleme est venue de
deux directions différentes. D’abord, de la théorie de dg-catégories [20, 24, 25], et plus récemment,
de la théorie des oo-catégories [5, 16, 99, 100, 127, 145]. Le premier sujet a pris de 'ampleur avec
les avancées de [22, 23, 43, 44, 78, 132, 139]. Le deuxié¢me, bien que lancé tot dans les années 80
avec le célebre manuscrit [64], n’a atteint un état ol son potentiel pourrait étre pleinement exploité
qu’au cours de ces derniéres années, particulierement grace aux énormes efforts de [99, 100]. Les deux
sujets constituent un moyen approprié pour codifier la théorie homotopique des complexes de faisceaux
quasi-cohérents. En fait, les deux approches sont liées et, pour nos objectifs, devraient donner des
réponses équivalentes (voir les résultats récents dans [36] et notre Section 6.2). Chaque schéma X
(sur un anneau k) donne naissance & une k-dg-catégorie Lycon(X) - la dg-catégorie dérivée de X -
dont la catégorie homotopique est la catégorie derivéee de X. Pour les schémas raisonnables, cette
dg-catégorie a une propriété essentielle profondément liée a son origine géométrique - elle dispose d’un
générateur compact. En plus, ces objets compacts sont les complexes parfaits (voir [?] et [137]). En
conséquence, la plus petite sous-dg-catégorie L. (X) engendrée par les objets compacts est ”affine”,
et suffisante pour récupérer la totalité de Lgcon(X).

Dans ses travaux [86, 87, 89], Kontsevich a entrepris une étude systématique des dg-catégories
avec les mémes propriétés formelles de L,(X), en partant de I'observation qu’il existe de nombreux
exemples de ces objets dans la nature : si A est une algebre associative alors A peut étre considérée
comme une dg-catégorie avec un seul objet, et nous considérons L(A) la dg-catégorie dérivée des
complexes de A-modules, d’oll nous prenons les objets compacts. Cela s’applique également & une
algebre différentielle graduée. La catégorie de Fukaya d’une varieté symplectique est un autre ex-
emple [88]. Il y a aussi des exemples provenant de la géométrie complexe [110], de la théorie des
représentations, des matrices de factorisation (voir [49]), et aussi des techniques de quantification par
déformation. Cette variété d’exemples d’origine completement différente a motivé la compréhension
des dg-catégories comme les modeles naturels pour la notion d’ espace non-commutatif. L’étude de
ces dg-catégories peut étre systématisée et la correspondance X + L,.(X) peut étre rendue de fagon
fonctorielle

L. : Obj. Géométriques/k —— Espaces non-commutatifs/k (0.0.1)

En fait, le foncteur L. est défini pour une classe d’objets géométriques plus générale que cella des
schémas, notamment, les schémas dérivés (voir [141, 14, 95]). Ce sont les objets géométriques naturels
dans la théorie de la géométrie algébrique dérivée de [143, 144, 98, 146]. Ce fait est essentiel pour la
géométrie non-commutative : grace aux résultats de Toén-Vaquié dans [141], au niveau dérivé, Ly,
admet un adjoint & droite qui nous permet d’associer un objet commutatif a un objet non-commutatif
de fagon naturelle.

Kontsevich propose également que, comme dans le contexte géométrique, ces espaces non-commutatives
doivent admettre une théorie motivique. Le deuxieme objectif de cette these est de proposer un can-
didat naturel a cette théorie qui étend d’une fagon naturelle la théorie de Morel-Voevodsky. Le pont
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entre les deux théories sera donnée par une extension canonique du foncteur L., fourni par notre
résultat de caractérisation universelle de la théorie des motifs de Morel-Voevodsky.

Dans cette these

La construction motivique de Morel-Voevodsky a été initialement obtenue en utilisant les techniques
de la théorie des catégories de modeles. Aujourd’hui on sait qu'une catégorie de modeles n’est qu’une
fagon stricte de présenter un objet plus fondamental, notamment, une (oo, 1)-catégorie. Chaque
catégorie de modeles a une (0o, 1)-catégorie sous-jacente et c’est ce qui nous intéresse vraiment. On
doit aussi remarquer que cette différence est au-dela de l'esthétique. Grace aux travaux de J. Lurie
[99, 100] on a maintenant les outils et les mécanismes pour montrer des théorémes qui resterait
inaccessible avec la langage des catégories de modeeles.

Dans la premiere partie de ce travail (Part I), on s’occupe de donner la propriété universelle de
la (0o, 1)-catégorie sous-jacente & la théorie homotopique stable motivique des schémas, telle que
construite par Voevodsky et Morel, avec sa structure monoidale symétrique. Cette caractérisation est
importante dees lors que 1’on veut comparer les motifs des schémas avec d’autres théories. Dans notre
contexte, ’objectif principal est de concevoir une théorie de motifs non-commutatifs et de la relier a
celle de Morel-Voevodsky. La propriété universelle fournit également une fleche monoidale au niveau
motivique rendant le diagramme suivant commutatif:

Classical Schemes/k NC-Spaces/k (0.0.2)

i |

Stable Motivic Homotopy/k — — = NC-Stable Motivic Homotopy/k

En général, ce type de fleches monoidales sont extrémement difficiles a obtenir en utilisant unique-
ment des méthodes constructives et les techniques de la théorie des catégories de modeles. Un autre
avantage important de notre approche est la possibilité de travailler sur n’importe quelle base, pas
nécessairement affine.

A ce point la, on se doit de signaler qu’'une autre approche pour la théorie des motifs non-
commutatifs est déja présent dans la littérature dans les travaux de D-C. Cisinski and G. Tabuada
[133, 35, 130, 134]. On dit que leur approche est de ” nature cohomologique ” alors que notre méthode
pourrait étre appelé “homologique” et plus proche de ’esprit de la théorie de I’ homotopie stable. Plus
tard, dans le Chapitre 8 on systématise la comparaison entre les deux approches et dévoile une forme
de dualité entre eux. C’est exactement ce phénomene de dualité qui rend notre nouvelle approche com-
parable a la théorie de Morel-Voevodsky et qui permet a la fleche monoidale d’exister d’une maniere
naturelle. Cette dualité est une obstruction a la comparaison des théories de Morel-Voevodsky et de
Cisinski-Tabuada. On doit aussi mentionner que tous nos contenus mathématiques sont indépendants
des leurs.

Pour arriver a la caractérisation universelle, nous aurons besoin de réécrire les constructions de
Morel-Voevodsky dans le cadre des oo-catégories. Gréace a [99] et [100], on dispose d’un diction-
naire entre ces deux mondes. En fait, les résultats dans [99] sont déja suffisants pour caractériser
I’co-catégorie sous-jacente & la version non-stable et Al-invariante de la théorie homotopique des
schémas. Le probléme concerne la description du monde motivique stable avec sa structure monoidale
symétrique. Ce sera notre contribution principale. L’ingrédient-clé est la suivant:

Idée 0.0.1. (Théoréme 4.3.1):
Soit V une catégorie de modéles simpliciale combinatoire avec un structure symétrique monoidale com-
patible et un objet-unité cofibrant et soit C® son co-catégorie symétriqgue monoidale sous-jacente. Soit



X un objet cofibrant dans V satisfaisant la condition suivante :

(*) la permutation cyclique o0 = (1,2,3) : X @ X @ X - X ® X ® X est égale au morphisme
d’identité dans la catégorie homotopique de V.2

L'(c0, 1)-catégorie symétrique monoidale sous-jacente a la catégorie de modéles Sp*(V, X) des
spectres symétriques dans V, est la (00, 1)-catégorie symétrique monoidale universelle munie d’un
foncteur monoidale o partir de C®, qui envoie l'objet X dans un objet tenseur-inversible.

On démontre ce résultat au Chapitre 4. La hypothese (*) est bien connu: elle est déja présente
dans les travaux de Voevodsky ([150]) et apparait également dans [71]. Signalons également que nous
croyons ce résultat vrai méme sans cette hypothése (Remarque 4.3.2).

Dans le Chapitre 5 nous appliquons les résultats généraux du Chapitre 4 a la théorie homotopique
stable motivique des schémas :

Corollaire 0.0.2. (Corollary 5.3.2) Soit S un schéma de base et soit Sm’*(S) la catégorie des schémas
lisses séparées et de type fini sur S. L’ (00, 1)-catégorie SH(S) sous-jacente a la théorie homotopique
stable motivique des schémas est stable, présentable et admet une structure monoidale symétrique
canonique SH(S)®. En plus, la construction de Morel-Voevodsky fournit un foncteur Sm?t(S)* —
8H(S)® monoidal par rapport au produil cartésien des schémas, et possédant la propriété universelle
suivant:

(x) pour toute (0o, 1)-catégorie symétriqgue monoidale présentable et pointée D%, le morphisme
de composition 3

Fun®*(83((5),D¥) — Fun®(Sm’!(5)*, D?) (0.03)

est pleinement fidéle et son image est composée de ces foncteurs monoidaux Smft(S)X — D® sat-
isfaisant la descente Nisnevich, Uinvariance par A'-homotopie et tels que la cofibre de Uimage du

point & Uinfini S —=> IP’ls est un objet tenseur-inversible dans D®. En plus, toute (0o, 1)-catégorie
monoidale symétrique présentable et pointée qui admet un foncteur monoidal satisfaisant ces condi-
tions, est stable.

Ce résultat apporte une réponse au probleme de construire des réalisations motiviques monoidales.
Leur existence a des conséquences profondes. Voir [76] pour une introduction.

Exemple 0.0.3. Soit S = Spec(k) un corps de caractéristique nulle. L’application X — X°°(X(C))
fournit un foncteur Smft(S) — Sp ou Sp est 1'(c0, 1)-catégorie des spectres topologiques. Cette
application est bien connue pour étre monoidal et pour satisfaire toutes les conditions dans le corollaire
précédent. Par conséquent, il s’étend d’une maniére unique en un foncteur monoidal 8H(S)® — Sp®;

Exemple 0.0.4. Soit S = Spec(k) comme dans 'exemple précédent. Un autre exemple d’une
réalisation motivique monoidale est la réalisation de Hodge. Bien définie, 'application X +— Cpgr(X)
qui envoie un schéma sur son complexe de De Rham, fournit un foncteur Sm’*(S) — D(k) ot D(k) est
la version co-catégorique de la catégorie dérivée de k. Cette application est connu pour étre monoidale
par rapport au produit cartésien des schémas (formule de Kiinneth) et pour satisfaire toutes les con-
ditions du corollaire. Par conséquent, il s’étend d’une maniere unique en un foncteur monoidal -
la réalisation de Hodge motivique - entre 8H(S)® — D(k)® (ol sur la gauche, on a la structure
monoidale induite par le produit tensoriel dérivé de complexes). Cet exemple a été récemment tra-
vaillé en détail dans la theése de B. Drew [42]. Un de ses corollaires est une nouvelle preuve de la
correspondance de Riemann-Hilbert pour D-modules holonomes ([42, Thm 3.4.1]).

2Plus précisément on demande ’existence d’une homotopie dans V entre la identité et la permutation cyclique.
3avec les notations de 2.1
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Dans la deuxiéme partie de ce travail (Part II) on établit une comparaison entre les mondes mo-
tiviques commutatifs et non-commutatifs. Dans le Chapitre 6, aprés quelques préliminaires sur les dg-
catégories, on introduit I’(co, 1)-catégorie des espaces non-commutatifs lisses NeS(k) comme opposé
de 1’(0o, 1)-catégorie des dg-catégories idempotente completes de type fini Dg(k)/* C Dg(k)e™ qui
ont étées introduites par Toén-Vaquié dans [141]. En introduisant un analogue non-commutatif ap-
proprié pour la topologie de Nisnevich (Def. 6.4.7) et en considérant la version non-commutative
de la droit affine Ly.(A'), on construit une nouvelle (0o, 1)-catégorie symétrique monoidale stable
8H,e(S)® qui encode une théorie homotopique motivique stable pour ces espaces non-commutatifs.
Cela fournit une nouvelle approche aux motifs non-commutatifs.

La premiere étape pour comparer les deux mondes est la construction d'un foncteur L, de la
théorie des schémas affines lisses sur k vers 1’(co, 1)-catégorie NeS(k). Celui-ci doit étre monoidal
(Prop. 6.3.8). En conséquence de notre résultat principal dans le corollaire précédant, on a gratuite-
ment une extension monoidale de ce foncteur au monde motivique :

N(AfFSm (k) s NeS (k) (0.0.4)
SH(K) = — — — > 8Hno(k)

N

Dans le Chapitre 7 on commence a explorer les propriétés de ce pont. Plus précisément, on
explique comment 1'utiliser pour comprendre les différentes versions de la K-théorie algébrique des
dg-catégories et des schémas.

Pour préciser nos résultats, nous aurons besoin de quelques remarques préliminaires. Comme le
lecteur le verra plus tard (Section 5.4 et Remarque 6.4.23), les (0o, 1)-catégories SH(k)® et 8H,,.(k)®
peuvent étre construitess comme une suit de localisations réflexives monoidales des préfaisceux spec-
traux suivie par des inversions du cercle algébrique G,, par rapport au produit tensoriel. Plus
précisément, on a une suit d’étapes monoidales

N(AfSm (k)" Lo NeS(k)® (0.0.5)
(2505)® &Efojm@
Fun(N(AFSmI ()%, $p)® — =L _ _ = Fun(Dg(k)’*, $p)®
5., e

®

Funnis(N(AfSm? (1))7, Sp)® =2 — — = Funis(Dg(k)", Sp)®

® ne,®
ba lAl \L
®

LB
FWLMS,Al(N(Aﬁsmft(k))@, Sp)® == = Funpyys 1,,.a1)(Dg(k)T*, Sp)®
SH(E)® — — — — — — CA - 8o (K)®

ou chaque foncteur est induit par une propriété universelle. Pour des raisons formelles, chacun de ces
foncteurs admet un adjoint & droite, que nous noterons respectivement My, My, M3 et M.

Ce mécanisme permet de restreindre les invariants non-commutatifs au monde commutatif.

Exemple 0.0.5. Un exemple important d’un invariant non-commutative est ’homologie de Hochschild
des dg-catégories. D’apres les travaux de B. Keller dans [82] et comme on explique dans la Remarque

6.4.24, cet invariant peut étre vu comme un oo-foncteur HH : Dg(k)ft — EE Un autre exemple
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important est I’ homologie cyclique périodique des dg-catégories HP. 1l résulte du célebre théoreme
HKR que la restriction de HP au monde commutatif est la cohomologie de De Rham classique des
schémas.

Exemple 0.0.6. Un autre exemple important récemment introduit par A. Blanc dans sa these [?] est
la K-théorie topologique des dg-catégories. Il s’agit d’'un candidat pour la version non-commutative
de la réalisation de Betti.

Dans le Chapitre 7 on s’intéresse a comprendre les restrictions des différentes versions de la K-
théorie des dg-catégories. Chacun de ces objets vit dans I’ (oo, 1)-catégorie Fun(Dg(k)'t, Sp). On
s’intéresse en particulier a :

e K¢ -la K-théorie connective de Waldhausen. (Section 7.1.2).

e K* - la K-théorie non-connective des dg-catégories telle que défini dans [34] avec la méthode de
Schlichting [122] (Section 7.1.3). Par construction, ce foncteur vient naturellement munie d’une
transformation naturelle canonique K¢ — K*° qui est une équivalence dans la partie connective.

Pour le premier cas, il résulte immédiatement de la version spectrale du lemma de Yoneda (Remar-
que 5.4.1) et de la définition dans [137, Section 3] que My (K ) n’est autre que la K-théorie algébrique
connective des schémas. Dans le deuxiéme cas, par le résultat de comparaison de [122, Theorem 7.1],
on trouve la K-théorie non-connective des schémas telle que définit par Bass-Thomason-Trobaugh
dans [137]. La construction de K dans [34] en utilisant les méthodes de [122] est en quelque sort
ad-hoc. Dans I'un de nos résultats on explique comment K° apparait de facon canonique comme
le faisceaux associé a K¢ par rapport a la notion de topologie de Nisnevich pour les espaces non-
commutatives introduit dans cette these. Le résultat suivant résume nos principaux résultats dans ce
domaine :

Théoréme 0.0.7.

(i) (Thm. 7.0.29) Le morphisme canonique K¢ — K présent la K -théorie non-connective comme
le faisceau associé a la K-théorie connective par rapport a la notion de topologie Nisnevich pour
les espaces non-commutatifs;

(ii) (Thm. 7.0.31) La localisation (noncommutative) A'-invariante I75(K®) est l'unité 1,. pour la
structure monoidale dans 8H,.(k)®;

(iii) (Thm. 7.0.82) L’image de 1%$(K®) par Uadjoint a droit M est le objet KH dans SH(k) qui
représente la version Al-invariante de la K-théorie algébrique non-connective des schémas telle
que définie par Weibel et étudiée dans [150] et [29]. En particulier, comme M est faiblement
monoidal (c’est Uadjoint d’un foncteur monoidal) il envoie la structure d’algébre trivial de 1,
vers une structure d’algébre commutative sur 'objet KH. En plus, le foncteur monoidal L® se
factorise par les K H-modules comme

SH(E)® —2E Mod g (SFH(K))® — — = 8Hne (k)@

On doit signaler que la premiere partie de ce théoréme (i) n’est pas vrais dans le monde commu-
tatif. Le phénomene qui permet ce résultat dans le monde non-commutatif est le fait que la nouvelle
notion de carré Nisnevich combine les revétements d’origine géométrique (ceux formées via Ly.) et
les revétements d’origine catégorique, a savoir, ceux qui sont induits par des collections exceptionnelles.

La premiere partie de ce théoréme est prouvé en montrant que la (—)P-construction de Bass-
Thomason donné dans [137] est un modele explicite pour la version non-commutative de la localisation
Nisnevich pour les prefaisceux a valeur dans les spectres connectifs et qui envoient les carrés Nisnevich
des espaces non-commutatifs vers des produit fibrés de spectres connectives. Rappelons que I'inclusion
des spectres connectives dans les spectres ne préserve pas les produits fibrés. Plus généralement, on
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démontre que le foncteur de troncation induit une équivalence d’(oo, 1)-catégories entre les préfaisceaux
spectraux Nisnevich locaux et les préfaisceaux a valeurs dans les spectres connectifs qui ont la descente
Nisnevich au sens connective. La construction (—)” donne un inverse explicite & la troncation dans
ce contexte. Le deuxieéme résultat utilise un résultat fondamental dans la these de A. Blanc [17, Prop.
4.6): la version scindée de la S-construction de Waldhausen est A'-équivalente & la S-construction
complétée.

Le corollaire suivant fournit une nouvelle formalisation d’un résultat prévu par Kontsevich [87, 89]
et également vérifié par le formalisme de Cisinski-Tabuada.

Corollaire 0.0.8. (Cor. 7.0.33) Soient X et Y des espaces non-commautatifs et supposons Y propre
et lisse. Dans ce cas on a une équivalence de spectres

Mapss,,. k) (X, Y) ~ 135 (K%)(X @ Y°P)
ot Y°P est le dual de 'Y et ot on a identifié X et'Y avec leurs images dans 8H (k).

Finalement, le résultat suivant a été le but principal de cette theése. En combinant le théoreme
précédent avec la description des objets compacts dans SH (k) sur un corps avec des résolutions des
singularités donné par J.Riou dans [117], on déduit :

Corollaire 0.0.9. (Cor. 7.0.37) Soit k un corps avec des résolutions des singularités. Alors la
factorisation canonique

Mody g (8H(k))® — — = 8H,e(k)®
est pleinement fidéle.

Les experts (je pense en particulier & B. Toen, M. Vaquié et G.Vezzosi et aussi & D-C. Cisinski et
G. Tabuada) s’attendaient a ce resultat.

On passe maintenant & la description de la troisiéme et derniére partie de cette thése (Part III).
Le but original a été d’étendre la pleine fidélité du corollaire précédent aux motifs sur une base plus
générale. Dans le Chapitre 9 on explique comment étendre les théories des motifs pour un schéma de
base quelconque, et aussi comment prolonger le pont entre les deux théories de fagon naturelle. La
stratégie était de démontrer I'existence d’un formalisme de six opérations pour la théorie des motifs
non-commutatives, dans I'esprit des travaux de thése de J. Ayoub [6, 7] dans le cadre commutatif.
Pour cela nous avons besoin d’avoir un formalisme de six opérations dans le monde des oco-catégories
et de demontrer que les résultats d” Ayoub peuvent étre étendus & ce monde. On s’occupe de cela dans
le Chapitre 9-Section 9.4 en utilisent les techniques multi-simpliciales récemment développées dans
[93, 94] (voir le Théoréme 9.4.36). Dans le monde commutatif, c’était une importante observation
de Voevodsky [41] qu’un tel formalisme serait une conséquence d’une propriété de localisation tres
simple.(Voir les Théorémes 9.4.25 et 9.4.37).

Malheureusement nous ne sommes pas parvenu a démontrer cette propriété dans le monde non-
commutatif et le dernier chapitre de cette these - Chapitre 10 - est devenu une description I’état actuel
de nos efforts. Nous avons néanmoins réussi a réduire la preuve & deux problemes fondamentaux. Le
premier (Conjecture 10.0.41) est compléetement indépendant de la théorie motivique et ne concerne
que la théorie des dg-catégories de type fini. On la vérifie dans le cas d’un dg-catégorie propre et lisse
et aussi le cas d’'un dg-catégorie d’origine géométrique. Le cas d’une dg-catégorie de type fini général
reste inconnu. Le deuxiéme probléme (Open Problem 10.0.45) concerne notre notion de topologie Nis-
nevich pour les dg-catégories. Contrairement a la situation géométrique, on n’a pas a notre disposition
une description pratique des points de cette topologie. Le but du Chapitre 10 est d’expliquer comment
une solution positive & ces deux problemes implique I'existence du formalisme des six opérations dans
le monde non-commutatif (Proposition 10.0.47). De plus, on verra que la conjecture est suffisant pour
déduire la pleine fidélité entre les motifs et les motifs non-commutatifs sur une base lisse S sur un
corps de caractéristique nulle (Corollaire 10.0.48).
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Pour conclure, nous présentons au lecteur quelques directions de recherche nous aimerions poursuite
dans 'avenir, en utilisant le formalism et les résultats développés dans cette these. Voir la section 1.5.
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CHAPTER ].

Introduction

1.1 Motivation

This thesis is part of a research project aiming to compare classical algebraic geometry with the
new noncommutative algebraic geometry in the sense of Kontsevich [87]. More precisely, we want to
compare the motivic levels of both theories.

1.2 Motives

In the original program envisioned by Grothendieck, the motive of a geometric object X (eg. X
a projective smooth variety) was a new mathematical object designed to express “the arithmetical
content of X” . More precisely, in the sixties, Grothendieck and his collaborators started a quest
to construct examples of the so-called Weil cohomology theories, designed to capture different arith-
metic information about X. In the presence of many such theories he envisioned the existence of a
universal one, which would gather all the arithmetic information. At that time, cohomology theories
were formulated in a rather artificial way using abelian categories as the basic input. The notion
of triangulated categories appeared as an attemptive to provided a new, more natural setting for
cohomology theories. Of course, the subject of motives followed these innovations [13] and finally, in
the 90’s, V. Voevodsky [151] constructed what became known as ”motivic cohomology”. Many good
introductory references to this arithmetic program are now available [3, 4, 102], together with the
historical background given in the introduction of [30] as well as the recent course notes by B. Kahn
[75].

In the late 90’s, Morel and Voevodsky [105] developed a more general theory of motives. In their
theory, the motive of X is designed to be the cohomological skeleton of X, not only in the eyes of a
Weil cohomology theory, but for all the generalized cohomology theories for schemes (like K-theory,
algebraic cobordism and motivic cohomology) at once. The inspiration comes from the stable ho-
motopy theory of spaces where all generalized cohomology theories (of spaces) become representable.
Such a setting would provide easier definitions for the motivic cohomology, algebraic K-theory, alge-
braic cobordism, and so on, by merely providing their representing spectra. Their construction has
two main steps: the first part mimics the homotopy theory of spaces and its stabilization; the second
part forces the ”Tate motive” to become invertible with respect to the monoidal multiplication. The
final result is known as the motivic stable homotopy theory of schemes. Our first main goal in this
thesis is to formulate a precise universal property for their construction.

Lfor instance, it should capture the information underlying the L-function of X.
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1.3 Noncommutative Algebraic Geometry

In Algebraic Geometry, and specially after the works of Serre and Grothendieck, it became a common
practice to study a scheme X via its abelian category of quasi-coherent sheaves Qcoh(X). The reason
for this is in fact purely technical for at that time, abelian categories were the only formal background
to formulate cohomology theories. In fact, the object Qcoh(X) turns out to be a very good replacement
for the geometrical object X: thanks to [54, 120] we know that X can be reconstructed from Qcoh(X).
However, it happens that abelian categories do not provide a very natural framework for homological
algebra. It was Grothendieck who first noticed that this natural framework would be, what we
nowadays understand as, the homotopy theory of complexes in the abelian category. At that time,
the standard way to deal with homotopy theories was to consider their homotopy categories - the
formal strict inversion of the weak-equivalences. This is how we obtain the derived category of the
scheme D(X). For many reasons, it was clear that the passage from the whole homotopy theory of
complexes to the derived category loses too much information. The answer to this problem appeared
from two different directions. First, from the theory of dg-categories [20, 24, 25]. More recently,
an ultimately, with the theory of oco-categories [5, 16, 99, 100, 127, 145]. The first subject became
very popular specially with all the advances in [22, 23, 43, 44, 78, 132, 139]. The second, although
initiated in the 80s with the famous manuscript [64], only in the last ten years reached a state where
its full potential can be explored. This is specially due to the tremendous efforts of [99, 100]. Both
subjects provide an appropriate way to encode the homotopy theory of complexes of quasi-coherent
sheaves. In fact, the two approaches are related and, for our purposes, should give equivalent answers
(see the recent results in [36] and our Section 6.2). Every scheme X (over a ring k) gives birth to
a k-dg-category Lgcon(X) - the dg-derived category of X - whose ”zero level” recovers the classical
derived category of X. For reasonable schemes, this dg-category has an essential property deeply
related to its geometrical origin - it has a compact generator and the compact objects are the perfect
complexes (see [23] and [137]). It follows that the smaller sub-dg-category L.(X) spanned by the
compact objects is ”affine”, and enough to recover the whole Lgcon(X).

In his works [86, 87, 89], Kontsevich initiated a systematic study of the dg-categories with the same
formal properties of Ly.(X), with the observation that many different examples of such objects exist
in nature: if A is an associative algebra then A can be considered as a dg-category with a single object
and we consider L(A) the dg derived category of complexes of A-modules and take its compact objects.
The same works with a differential graded algebra. The Fukaya category of a sympletic manifold is
another example [?]. There are also examples coming from complex geometry [110], representation
theory, matrix factorizations (see [49]), and also from the techniques of deformation quantization. This
variety of examples with completely different origins motivated the understanding of dg-categories
as natural noncommutative spaces. The study of these dg-categories can be systematized and the
assignment X — L,.(X) can be properly arranged as a functor

L, : Classical Schemes/k —— Noncommutative Spaces/k (1.3.1)

In fact, the functor L, is defined not only for schemes but for a more general class of geometrical
objects, so called derived stacks (see [141, 14, 95]). They are the natural geometric objects in the
theory of derived algebraic geometry of [143, 144, 98, 146]. For the purposes of noncommutative
geometry, this fact is crucial: thanks to the results of Toén-Vaquié in [141], at the level of derived
stacks, Lp. admits a right adjoint, providing a canonical mechanism to construct a geometric object
out of a noncommutative one.

Kontsevich proposes also that similarly to schemes, these noncommutative spaces should admit a
motivic theory. Our second main goal in this thesis is to provide a natural candidate for this theory,
that extends in a natural way the theory of Morel-Voevodsky. The bridge between the two theories is
a canonical extension of the map L. given by our universal characterization of the theory for schemes.
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1.4 1In this Thesis

The motivic construction of Morel-Voevodsky was originally obtained using the techniques of model
category theory. Nowadays we know that a model category is merely strict presentation of a more
fundamental object - an (0o, 1)-category. Every model category has an underlying (oo, 1)-category
and the later is what really matters. It is important to say that the need for this passage overcomes
the philosophical reasons and that thanks to the techniques of [99, 100] we now have the ways to do
and prove things which would remain out of range only with the highly restrictive techniques of model
categories.

The first part of our quest (Part I) concerns the universal characterization of the (oo, 1)-category
underlying the stable motivic homotopy theory of schemes, as constructed by Voevodsky and Morel,
with its symmetric monoidal structure. The characterization becomes meaningful if we want to com-
pare the motives of schemes with other theories. In our case, the goal is to conceive a theory of
motives of noncommutative spaces and to relate it to the theory of Voevodsky-Morel. By providing
such a universal characterization we will be able to ensure, for free, the existence of a (monoidal)
dotted arrow at the motivic level

Classical Schemes/k NC-Spaces/k (1.4.1)

i !

Stable Motivic Homotopy/k — — > NC-Stable Motivic Homotopy/k

In general, monoidal maps such as the one here presented are extremely hard to obtain only by
constructive methods and the techniques of model category theory. Other important advantage is
that it allows us to work over any base scheme, not necessarily a field.

At this point we should also emphasize that a different approach to non-commutative motives
already exists in the literature, due to D-C. Cisinski and G. Tabuada (see [133, 35, 130] and [134] for
a pedagogical overview). Their approach is essentially of ”‘cohomological nature”’ while our method
could be said ”*‘homological” and follows the spirit of stable homotopy theory. Later on in Chapter
8 we systematize the comparison between the two approaches and unveal a form of duality between
them. It is exactly this duality phenomenon that makes our new approach comparable to the theory
of Morel-Voevodsky and allows the dotted monoidal map to exist in a natural way. The same duality
blocks a direct comparison in their case. We should also mention that all our mathematical contents
and proofs are independent of theirs.

To achieve the universal characterization we will need to rewrite the constructions of Morel-
Voevodsky in the setting of co-categories. The dictionary between the two worlds is given by the
techniques of [99] and [100]. In fact, [99] already contains all the necessary results for the charac-
terization of the A'-homotopy theory of schemes and its stable non-motivic version. The problem
concerns the description of the stable motivic world with its symmetric monoidal structure. This is
our main contribution in this subject. The key ingredient is the following:

Insight 1.4.1. (see the Theorem 4.3.1 for the precise formulation):

Let 'V be a combinatorial simplicial symmetric monoidal model category with a cofibrant unit and let
C® denote its underlying symmetric monoidal co-category. Let X be a cofibrant object in V satisfying
the following condition:

(*) the cyclic permutation of factors 0 = (123) : X @ X @ X - X ® X ® X is equal to the identity
map in the homotopy category of V.2

2More precisely we demand the existence of an homotopy in V between the cyclic permutation and the identity.
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Then the underlying symmetric monoidal co-category of Sp*(V, X) is the universal symmetric
monoidal (0o, 1)-category equipped with a monoidal map from €%, sending X to an invertible object.

It is the goal of Chapter 4 to prove this theorem. This extra assumption on X is not new. It is
already present in the works of Voevodsky ([150]) and it also appears in [71]. We must point out that
we believe our result to be true even without this extra assumption on X. We will explain this in the
Remark 4.3.2.

In Chapter 5 we apply the general results of Chapter 4 to the Motivic stable homotopy theory of
schemes:

Corollary 1.4.2. (Corollary 5.3.2) Let S be a base scheme and let Sm’*(S) denote the category of
smooth separated schemes of finite type over S. The (oo, 1)-category 8H(S) underlying the stable mo-
tivic homotopy theory of schemes is stable, presentable and admits a canonical symmetric monoidal
structure 8H(S)®. Moreover, the construction of Morel-Voevodsky provides a functor Smft(S)X —
8H(S)® monoidal with respect to the cartesian product of schemes, and endowed with the following
universal property:

(%) for any pointed presentable symmetric monoidal (0o, 1)-category D%, the composition map 3

Fun®E(8H(S)®, D®) — Fun®(Sm'*(S)*, D®) (1.4.2)

is fully faithful and its image consists of those monoidal functors Smft(S)X — D® satisfying Nisnevich
descent, A'-invariance and such that the cofiber of the image of the point at oo, S ——> PL is an

invertible object in D®. Moreover, any pointed presentable symmetric monoidal (0o, 1)-category D®
admitting a monoidal map in this image, is necessarily stable.

This result trivializes the problem of finding motivic monoidal realizations. The existence of these
have deep consequences. See [76] for an overview.

Example 1.4.3. Let S = Spec(k) be field of characteristic zero. The assignment X — X°°(X(C))
provides a functor Smft(S) — Sp with Sp the (oo, 1)-category of spectra (see below). This map is
known to be monoidal, to satisfy all the descent conditions in the previous corollary and to invert P!
in the required sense. Therefore, it extends in a essentially unique way to a monoidal map of stable
presentable symmetric monoidal (oo, 1)-categories SH(S)® — Sp®;

Example 1.4.4. Again, let S = Spec(k). Another immediate example of a monoidal motivic real-
ization is the Hodge realization. Properly constructed, the map X — Cpr(X) sending a scheme to
its De Rham complex provides a functor Sm’*(S) — D(k) with D(k) the (oo, 1)-derived category of
k. This map is known to be monoidal with respect to the cartesian product of schemes (Kunneth
formula), satisfies all the descent conditions and inverts P! in the sense above. Because of the univer-
sal characterization, it extends in a essentially unique way to a monoidal motivic Hodge Realization
S8H(S)® — D(k)® (where on the left we have the monoidal structure induced by the derived tensor
product of complexes). This example has recently been worked out in detail in the PhD thesis of B.
Drew [42]. One of its corollaries is a new Riemann-Hilbert correspondence for holonomic D-modules
(see [42, Thm 3.4.1]).

Example 1.4.5. Our main theorem also provides a universal characterization for the G-equivariant
version of motivic homotopy theory (in the sense of [73]). As proved in [73, Section 2.2 Lemma 2] we
also fall in the situation of ®-inverting a symmetric object.

In the second part of this work (Part IT) we systematize the comparison between the commutative
and noncommutative motivic worlds. In Chapter 6, after some preliminaries on dg-categories, we

3see the notations in 2.1
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introduce the (oo, 1)-category of smooth noncommutative spaces NeS(k) as the opposite of the (oo, 1)-
category of idempotent dg-categories of finite type Dg(k)/* C Dg(k)***™ introduced by Toén-Vaquié
in [141]. By introducing an appropriate noncommutative analogue for the Nisnevich topology (Def.
6.4.7) and considering the noncommutative version of the affine line L,.(A'), we construct a new
stable presentable symmetric monoidal (0o, 1)-category 8H,,.(S)® encoding a stable motivic homotopy
theory for these noncommutative spaces. This provides a new approach to noncommutative motives.

The first step to compare the commutative and the non-commutative world is to encode the map
X + L,(X) as a functor Ly, from smooth affine schemes towards NeS(k) (see the Prop. 6.3.8). Our
universal characterization of the stable motivic homotopy theory of schemes allows us to extend it to
a monoidal colimit preserving functor

N(AFSmT (k) s NeS (k) (1.4.3)
SH(k) — — — — > 8Hye (k)

In Chapter 7 we explain how this bridge can now be used to understand the different algebraic
K-theories of dg-categories and schemes. To explain our main results in this topic we need some
technical background. First, and as the reader shall later see (Section 5.4 and Remark 6.4.23), both
S8H(k)® and 8H,.(k)® can be obtained as a sequence of monoidal reflexive localizations of (oo, 1)-
categories of spectral presheaves followed by the ®-inversion of the algebraic circle G,,. With this in
mind, the construction of the comparison map in the previous commutative diagram can be explained
in a sequence of steps

N(AﬁSert(k))x o NeS(k)® (1.4.4)
(55°0)® &E‘fojm)@
Fun(N(AFSm (1)), Sp)® — = — — = Fun(Dg(k)/*, 5p)°
(R e

®

Funnis(N(AfSm? (1))P, Sp)® =2 — — = Funnis(Dg(k)!", Sp)®

® >, ®
lA\1 lZf \L
®

L3
FWLNis,Al(N(Aﬁsmft(k))w» Sp)® == = Funpyis 1. a1)(Dg(k)’*, Sp)®
2§m lN
SH(E)® — — — — — — CAN - 8% (K)®

where each dotted map is induced by a universal property. By formal abstract nonsense these functors
admit right-adjoints which we shall, respectively, denote as My, My, M3 and M.

This mechanism allows us to restrict noncommutative invariants to the commutative world.

Example 1.4.6. An important example of a noncommutative invariant is the Hochschild homology
of dg-categories. Thanks to the works of B. Keller in [82] and as explained in the Remark 6.4.24
this invariant can be completely encoded by means of an oo-functor HH : Dg(k)* — Sp. Another
important example is the so called periodic cyclic homology of dg-categories HP. It follows from the
famous H K R theorem that the restriction of HP to the commutative world recovers the classical de
Rham cohomology of schemes. For more details see the discussion in [17, Section 3.1].
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Example 1.4.7. Another important example recently introduced by A. Blanc in his thesis [17] is
the topological K-theory of dg-categories. This is a candidate for the non-commutative version of the
Betti realization.

In Chapter 7 we will be interested in the restriction of the various algebraic K-theories of dg-
categories. As we shall explain below, all of them live as objects in Fun(Dg(k)/?, Sp). There are two
of primary relevance to us:

e K¢ -encoding the connective K-theory given by Waldhausen’s S-construction. See the discussion
in Section 7.1.2 below.

e K* - encoding the non-connective K-theory of dg-categories as defined in [34] using the adapta-
tion of the Schlichting’s framework of [122] to the context of dg-categories. (see the discussion in
Section 7.1.3). By construction, this functor comes naturally equipped with a canonical natural
transformation K¢ — K*° which is an equivalence in the connective part.

For the first one, it follows immediately from the spectral version of Yoneda lemma (see the Remark
5.4.1) and from the definition in [137, Section 3] that M;(K ) recovers the connective algebraic K-
theory of schemes. The second one, by the comparison result [122, Theorem 7.1], recovers the non-
connective K-theory of schemes of Bass-Thomason-Trobaugh of [137]. The construction of K* in
[34] using the methods of [122] is somehow ad-hoc. We explain how the non-connective version of
K-theory K° can be canonically obtained from the connective version K¢ as a result of enforcing
our noncommutative-world version of Nisnevich descent. The following theorem summarizes our main
technical results in this topic:

Theorem 1.4.8.

(i) (Thm. 7.0.29) The canonical morphism K¢ — K presents non-connective K-theory as the
(noncommutative) Nisnevich sheafification of connective K -theory;

(ii) (Thm. 7.0.81) The further (noncommutative) A'-localization 13$(K®) is a unit 1. for the
monoidal structure in 8H,.(k)®;

(iii) (Thm. 7.0.32) The image of I3$(K*®) along the right-adjoint M recovers the object K H in SH(k)
representing A'-invariant algebraic K -theory of Weibel (also known as homotopy invariant K-
theory) studied in [150] and in [29]. In particular, since M is lax monoidal (it is right-adjoint
to a monoidal functor) it sends the trivial algebra structure in 1,. to a commutative algebra
structure in KH so that the monoidal map L® factors as

SH(E)® “EE Mod e i (SFH(K))® — — = 8Hne(k)®

Let us emphasize that the part (i) of this theorem is not true if we restrict ourselves to the non-
connective K-theory of schemes. The phenomenon that makes it possible in the noncommutative
world is the fact the new notion of Nisnevich squares of noncommutative spaces combines at the same
time coverings of geometrical origin (namely, those coming via Ly from classical Nisnevich squares)
and coverings of categorical origin, namely, the ones induced by exceptional collections.

The first part of this theorem is proved by showing that the Bass-construction (—)Z given in
Thomason’s paper [137] is an explicit model for the (noncommutative) Nisnevich localization of
presheaves with values in connective spectra and sending Nisnevich squares of noncommutative spaces
to pullback squares in connective spectra. Recall that the inclusion of connective spectra in all spectra
does not preserve pullbacks. More generally, we prove that the connective truncation functor induces
an equivalence of (0o, 1)-categories between the (0o, 1)-category of Nisnevich local spectral presheaves
and the (0o, 1)-category of spectral presheaves with values in connective spectra and satisfying connec-
tive Nisnevich descent. The (—)Z-construction is an explicit inverse to this truncation. The second
result uses a fundamental result of A. Blanc in his Phd Thesis [17, Prop. 4.6], namely, that the
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split version of the Waldhausen S-construction is A'-homotopy equivalent to the full S-construction.
To prove this last part we also show that the commutative and noncommutative versions of the Al-
localizations are compatible with the right adjoints.

The following corollary provides a new formalization of a result understood by Kontsevich [87, 89]
long ago and also already satisfied by the formalism of Cisinski-Tabuada.

Corollary 1.4.9. (see Cor. 7.0.33) Let X and Y be two noncommutative smooth spaces and assume
that Y is smooth and proper. Then we have an equivalence of spectra

Mapsse., k) (X, Y) = 135 (K%) (X @ Y°P)
where Y°P is the dual of Y and we have identified X and Y with their images in 8H,.(k).

Finally, the following result was the main goal of this thesis. It follows from the previous theorem
together with the results of J. Riou describing the compact generators in 8H(k) over a field with
resolutions of singularites (see [117]).

Corollary 1.4.10. (see Cor. 7.0.37) If k is a field admitting resolutions of singularities then the
canonical factorization

Modg g (8H(K))® — — = 8H e (k)®
is fully faithful.

This result has been expected and known to some people after a while. I think particularly of B.
Toen, M. Vaquie and G.Vezzosi and also D-C. Cisinski and G. Tabuada.

Let us now describe the goals of the third and final part of this thesis (Part III). Our original
aim in this part was to extend the fully-faithfulness result to the bridge between motives and non-
commutative motives over a more general basis. In Chapter 9 we explain how to define motives and
non-commutative motives over a general base scheme and how to naturally extend the bridge. Our
strategy was to proof the existence of a formalism of six operations for the theory of non-commutative
motives, in the spirit of the same result well-known for commutative motives proved in J. Ayoub’s
thesis [6, 7). For that purpose we needed to have a formalism of six operations in the world of co-
categories and to prove that the results of Ayoub lift to this world. This is done in Chapter 9-Section
9.4 using the techniques of multi-simplicial sets recently developed in [93, 94]%. See the Theorem
9.4.36. It was a key insight of Voevodsky [41] that such a formalism follows almost entirely from a
very basic localization property (see the Theorems 9.4.25 and 9.4.37).

Unfortunately we were not able to accomplish the proof of this property in the non-commutative
world and the last chapter of this thesis - Chapter 10 - became an attempt to describe the current
status of our efforts. We were able to reduce the proof to two basic statements. The first one
(Conjecture 10.0.41) is completely independent of the motivic theory and concerns only the theory
of dg-categories of finite type in the sense of [141]. We could confirm it for smooth and proper
dg-categories and also for dg-categories of geometric origin but the general case of a dg-category of
finite type remains unknown. The second statement (Open Problem 10.0.45) concerns our notion of
Nisnevich topology for dg-categories. Contrary to the geometric situation, we don’t know any nice
description of its points. We explain how a positive solution to the two problems implies the existence
of the formalism of six operations in the non-commutative world

Proposition 1.4.11. (Proposition 10.0.47) The Conjecture 10.0.41 together with a positive solution
to the Open Problem 10.0.45 implies the existence of a formalism of six operations for non-commutative
motives over smooth quasi-projective schemes over a field of characteristic zero.

Moreover,

4A different approach is currently being developed by D. Gaitsgory and Nick Rozenblyum. Their main strategy is
to use the universal property of the (oo, 2)-category of correspondences.
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Proposition 1.4.12. (Prop. 10.0.48) The Conjecture 10.0.41 alone implies that for any regular
scheme S over a field of characteristic zero the natural map from motives to non-commutative motives

Mody g (8H(S))® — — = SHZ.(S)
is fully faithful.

This last result is also a reason why our approach to non-commutative motives seems necessary.
The methods of Cisinski-Tabuada cannot be extended to general base schemes because of the duality
phenomenom that distinguishes the two approaches.

1.5 Future Research Directions

To conclude this introduction we would like to outline some possible research directions that we would
like to investigate in the future, using the materials developed in this thesis.

The first application we would like to mention concerns the study of motives of Deligne-Munford
stacks. If X is a Deligne-Munford stack over a field k of characteristic zero then our methods allow
us to assign to it an object in 8H (k). Namely, X has a naturally associated non-commutative motive
- the non-commutative motive of the dg-category L,.(X). Our framework allows us to restrict this
object to the commutative world and produce a module over K-theory, M(L,.(X)) € 8H(k). In
particular, we hope that the decomposition of the inertia stack of X used in [138] can be also applied
in this motivic context. This would provide a decomposition of the non-commutative motive of X in
terms of pieces of geometric origin. The advantage of this decomposition is that it does not depend
on any assumptions on the existence of semi-orthogonal decompositions for L,.(X). The important
new ingredient is the fully-faithfulness of the brigde between the two motivic worlds (Cor. 7.0.37).

The other research directions we have in mind make a crutial use of our new theory of non-
commutative motives over general base schemes.

The first application concerns the construction of a non-commutative mixed Hodge realization
functor. In the commutative case this was studied in the [42] already usng the new universal property
proved in this thesis (Corollary 5.3.2). In [81], the authors introduced the notion of a noncommutative
Hodge Structure. Recall that thanks to the famous theorem HKR, the Periodic Cyclic Homology
HP,(X) provides the correct noncommutative analogue of the classical de Rham cohomology. They
formulate the following conjecture:

(*) If X is a ”"good enough” noncommutative space then HP,(X) carries a noncommutative Hodge
Structure;

Said in a different way, H P, should provide a functor from noncommutative spaces to noncommuta-
tive Hodge-structures. We should then expect this functor to factor through our new noncommutative
version of the motivic stable homotopy theory because of its universal property. More generally, we
expect our main commutative diagram to fit in a larger one

Classical Schemes/k NC-Schemes/k

|

C-Stable Motivic Homotopy/k

Stable Motivic Homotopy/k — — =

— _univ

— univ
i Ry
prop. ™ — _

prop.. ~
A
Classical Hodge-Structures —— NC-Hodge Structures

(1.5.1)



1.5 Future Research Directions 9

where the map from the classical to the noncommutative Hodge structures was introduced in [81]°.
The diagonal maps are known as the Hodge-realizations functors: the commutative case is known
to the experts (see [118] for a survey of the main results); the noncommutative case is given by the
conjecture (). This conjecture can be divided in two parts: the first concerns the de Rham part (see
[79]) and the second is related to the Betti part. In his thesis A. Blanc constructed a candidate for
the second [17].

The general methods developed in this thesis can now be use to talk about a mixed version of
these Hodge structures. In particular, we can hope this non-commutative mixed Hodge realization to
be compatible with the one of [42].

A second application we have in mind is the construction a formalism of vanishing cycles for non-
commutative motives, in the spirit of the one developped in J. Ayoub’s thesis [7] for the motivic stable
homotopy theory of schemes. Part of this formalism needs the existence of the six operations and
this was actually one of the main reasons for our interest in them. In the commutative world the
motivic vanishing cycles formalism is compatible with the Betti and the l-adic realizations [8]. One
expects the same compatibilitity in the non-commutative world. Moreover, there are deep reasons
to believe that such a formalism is closely related to the theory of 2-periodic dg-categories of matrix
factorization. See [111] and the results in [50].

The last research direction that we would like to mention concerns the relation between Azu-
maya algebras, twisted forms of K-theory and motives. Here it is also crutial our formalism of non-
commutative motives over a general basis. Let X be a scheme quasi-compact and quasi-separated over
a field of characteristic zero having an ample line bundle. By a theorem of O.Gabber every torsion ele-
ment in H2,(X,G,,) is represented by an Azumaya algebra - a sheaf of O x-algebras A, locally free and
of finite rank with the property that the natural map A°” ® o, A = Homeo, (A, A) is an equivalence.
In [77] B. Kahn and M. Levine introduced two different objects in 83((k) attached to an Azumaya
algebra A over X = Spec(k) - from one side a twisted form of the spectrum representing algebraic
K-theory and in a more geometric flavour, the motive of the Severi-Brauer variety associated to A.
They compare the motivic slices of these two objects. At the same time, also over a X = Spec(k),
the approach of non-commutative motives of Cisinski-Tabuada allows us to attach a non-commutative
motive over k to every Azumaya algebra (over k) and it is immediate to see that the restriction of
this motive to the commutative world recovers the twisted form of K-theory of Levine-Kahn [136].

Our results in this thesis allow us to vastly extend these results to base schemes more general
than a field. Recently, in [140, Theorem 0.1], B. Toén extended the key result of O. Gabber: every
element in H2(X,G,,) (not necessarily torsion) is represented by a derived Azumaya algebra on X.
As defined in loc. cit, these are sheaves A of O x-dg-algebras such that: (i) the underlying complex of
A is perfect complex on X; (ii) for every affine U = Spec(R) open subscheme of X the restriction of A
to U is a compact generator of the derived category of R and (iii) the natural morphism of complexes
of Ox-modules A°P ®H@X A — RHomgy, (A, A) is a quasi-isomorphism of complexes. As explained in
[140, Prop. 1.5] this definition is equivalent to that of ®-invertible dg-category over X. Every such
object, as explained in the Remark 9.3.6, produces then a ®-invertible non-commutative motive over
X which we can restrict to 8H(X). This procedure attaches a motive over X to every element in
HZ,(X,G,,), namely, a twisted form of the algebraic K-theory spectrum. One can now, as in [77],
hope to understand the geometric features of this motive.

50f course we should only expected the part of the diagram concerning the Hodge Theory to work if we restrict to
a good class of schemes over k
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CHAPTER 2

Preliminaries I: Higher Category Theory

In this chapter we set our notations and review the main notions and tools from Higher Category
Theory of [99], together with the mechanism to pass from the world of model categories to (oo, 1)-
categories. These tools will be used all along this thesis. Classical categories will be called 1-categories.

2.1 Notations and Categorical Preliminaries

2.1.1 Quasi-Categories

The theory of (oo, 1)-categories has been deeply explored over the last years and we now have many
different models to access them. In this article we follow the approach of [99, 100], using the model
provided by Joyal’s theory of Quasi-Categories [74]. In this sense, the two notions of quasi-category
and (00, 1)-category will be identified throughout the text. Recall that the Joyal’s model structure is
a combinatorial, left proper, cartesian closed model structure in the category of simplicial sets A, for
which the cofibrations are the monomorphisms and the fibrant objects are the quasi-categories - by
definition, the simplicial sets € with the lifting property

A¥[n] %e (2.1.1)

e
e
e

Afn]

for any inclusion of an inner-horn A*[n] C A[n] with 0 < k < n and any map f.

For a quasi-category €, we will follow [99] and write Obj(C) for the set of zero-simplexes of C; given
two objects X,Y € Obj(C) we let Mape(X,Y) denote the Kan complex Mapping Space between X
and Y and finally we let h(C) denote the homotopy 1-category of €. Moreover, as in [74, 99] the term
categorical equivalence will refer to a weak-equivalence of simplicial sets for the Joyal’s model structure.

2.1.2 TUniverses

In order to deal with the set-theoretical issues we will follow the approach of Universes (our main
reference being the Appendix by Nicolas Bourbaki in [1]). We will denote them as U, V, W, etc.
Moreover, we adopt a model for set theory where every set is artinian. In this case, for every strongly
inaccessible cardinal * , the collection U(k) of all sets of rank ? < & is a set and satisfies the axioms

1Recall that a cardinal & is called strongly inaccessible if it is regular (meaning, the sum >, oy of strictly smaller
cardinals a;; < k with ¢ € I and card(l) < k, is again strictly smaller than , which is the same as saying that x is not
the sum of cardinals smaller than k) and if for any strictly smaller cardinal a < k, we have 2% < k

2Recall that a set X is said to have rank smaller than & if the cardinal of X is smaller than x and for any succession
of memberships X,, € X;,_1 € ... € Xo = X, every X; has cardinal smaller than k.

13
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of a Universe. The correspondence k — U(k) establishes a bijection between strongly inaccessible
cardinals and Universes, with inverse given by U +— card(U). We adopt the aziom of Universes which
allows us to consider every set as a member of a certain universe (equivalently, every cardinal can be
strictly upper bounded by a strongly inaccessible cardinal). We will also adopt the aziom of infinity,
meaning that all our universes will contain the natural numbers N and therefore Z, Q, R and C.
Whenever necessary we will feel free to enlarge the universe U € V. This is possible by the axiom of
Universes.

Let U be an universe. As in [1] we say that a mathematical object T is U-small (or simply, small)
if all the data defining T is collected by sets isomorphic to elements of U. For instance, a set is U-small
if it is isomorphic to a set in U; a category is U-small if both its collection of objects and morphisms
are isomorphic to sets in U; a simplicial set X is U-small if all its level sets X; are isomorphic to
elements in U, etc. A mathematical object T is called essentially small if is equivalent (in a context
to be specified) to a U-small object. A category C is called locally U-small (resp. locally essentially
U-small) if its hom-sets between any two objects are U-small (resp. essentially small).> We define
the category of U-sets as follows: the collection of objects is U and the morphisms are the functions
between the sets in U. It is locally small. Another example is the category of U-small categories Caty
whose objects are the U-small categories and functors between them. Another important example is
given by Ay the category of U-small simplicial sets. Again, it is locally small and, together with the
Joyal model structure (see [74]) it forms a U-combinatorial model category (in the sense of [143]) and
its cofibrant-fibrant objects are the U-small (0o, 1)-categories.

Consider now an enlargement of universes U € V. In this case, it follows from the axiomatics that
every U-small object is also V-small. With a convenient choice for V, the collection of all U-small
(00, 1)-categories can be organized as a V-small (oo, 1)-category, Cats, (See [99, Chapter 3] for the
details). We have a canonical inclusion Ay C Ay which is compatible with the Joyal Model struc-
ture. Again, through a convenient enlargement of the universes U € V € W, we have an inclusion
of W-small (oo, 1)-categories Cato, C Cat'.*. We say that a V-small (oo, 1)-category is essentially
U-small if it is weak-equivalent in Ay to a U-small simplicial set. Thanks to [99, 5.4.1.2], the fol-
lowing conditions are equivalent for a V-small (oo, 1)-category C: (i) € is essentially U-small; (i)
card(mp(C)) < card(U) and C is locally small, which means that for any two objects X and Y in C,
we have card(m;(Mape(X,Y))) < card(U); (iii) € is a card(U)-compact object in Cat., (see 2.1.13
below).

Some constructions require us to control "how small” our objects are. Given a cardinal 7 in the
universe U, we will say that a small simplicial set K is 7-small if a fibrant-replacement € of K satisfies
the conditions above, replacing card(U) by 7.

The category of U-small simplicial sets can also be endowed with the standard Quillen model
structure (see [69]) and it forms a U-combinatorial simplicial model category in which the fibrant-
cofibrant objects are the U-small Kan-compleres. They provide models for the homotopy types of
U-small spaces and following the ideas of the Section 2.2 we can collect them in a new (oo, 1)-category
Sy. Again we can enlarge the universe U € V and produce inclusions Sy C Sy.

Throughout the text we will fix three universes U € V € W with V chosen conveniently large and
W, very large. In general, we will work with the V-small simplicial sets and the U-small objects will
be refered to simply as small. In order to simplify the notations we write Cats (resp. 8) to denote
the (00, 1)-category of small (oo, 1)-categories (resp. spaces). With our convenient choice for V, both
of them are V-small. The third universe W is assumed to be sufficiently large so that we have W-small
simplicial sets Cat”? (resp. 8) to encode the (oo, 1)-category of all the V-small (oo, 1)-categories (resp.

3Notice that this definition is not demanding any smallness condition on the collection of objects and therefore a
locally small category does not need to be small
4CatY, is V-small and so it is also W-small
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spaces).

2.1.3 Fibrations of Simplicial Sets

Let p: X — Y map of simplicial sets. We say p is a trivial fibration if it has the right-lifting property
with respect to every monomorphism of simplicial sets. We say p is a categorical fibration if it is
a fibration for the Joyal model structure. We say p is an inner fibration if it has the right-lifting
property with respect to every inclusion A¥[n] C A[n], with 0 < k < n. We have

{trivial fibrations} C {categorical fibrations} C {inner fibrations} (2.1.2)

2.1.4 Categories of Functors

The Joyal model structure is cartesian closed (see [74] or [99, Cor. 2.3.2.4]). In particular, if € and
D are (00, 1)-categories in a certain universe, the internal-hom in A, Fun(€,D) := Hom 4(C,D) is
again an (0o, 1)-category in the same universe (See [99, Prop. 1.2.7.3]). It provides the good notion
of (00, 1)-category of functors between € and D;

2.1.5 Diagrams

Let € be an (0o, 1)-category and let K be a simplicial set. A diagram in € indexed by K is a map of
simplicial sets d : K — €. We denote by K™ (resp. K<) the simplicial set K x A[1] (resp. A[l] x K)
where * is the join operation of simplicial sets (see [99, Section 1.2.8]).

If € is an (oo, 1)-category, a commutative square in € is a diagram d : A[l] x A[1] — €. This is
the same as a map A°[2]> — €. One can easily check that A[1] x A[1] has four 0-simplexes A4,B,C,
D:; five non-degenerated 1-simplexes f,g,h,u,v and four important 2-simplexes «, 8, v, o (from which
« and o are non-degenerated) which we can picture together as

id f

A A——~B (2.1.3)
D—=(C=£=C

where all the inner 1-simplexes are given by h. Since € is an (oo, 1)-category, we can use the lifting
property to show that the data of a commutative diagram in C is equivalent to the data of two triangles

A a—1.p (2.1.4)
“lﬁ%u g><°‘l9
D—2sC C

together with a map r : A — C and two-cells providing homotopies between go f ~r ~ v o u.

2.1.6 Comma-Categories

If C is an (oo, 1)-category and X is an object in €, there are (oo, 1)-categories €,x and Cx, where
the objects are, respectively, the morphisms A — X and X — A. More generally, if p : K — C is
a diagram in € indexed by a simplicial set K, there are (oo, 1)-categories €/, and C,, of cones (resp
cocones) over the diagram. These (oo, 1)-categories are characterized by an universal property - see
for instance [99, 1.2.9.2].



16 Preliminaries I: Higher Category Theory

2.1.7 Limits and Colimits

Let € be an (00, 1)-category. An object E : A[0] — C is said to be initial (resp. final) if for every
object Y in € the mapping space Mape(E,Y) (resp. Mape(Y, E)) is weakly contractible (see [99,
1.2.12.1, 1.2.12.3, 1.2.12.5]).

Let € be an (00, 1)-category and let K — € be a diagram in C. A colimit (resp. limit) for a diagram
d: K — Cis an initial (resp. final) object in the category C,, (resp. €/,). By the universal property
defining the comma-categories, this corresponds to the data of a new diagram d : K® — C (resp.
K< — @) extending d and satisfying the universal property of [99, 1.2.13.5]. Whenever appropriate,
we will also use the relative notions of limits and colimits (see [99, 4.3.1.1]).

Following [99, 4.1.1.1, 4.1.1.8], we say that a map of simplicial sets ¢ : K’ — K is cofinal if for
every (oo, 1)-category C and every colimit diagram K< — €, the composition with ¢, (K')< — €
remains a colimit diagram.

We will say that an (oo, 1)-category has all small colimits (resp. limits) if every diagram in C
indexed by a small simplicial set has a colimit (resp. limit) in C. As in the classical situation, € has
all k-small colimits (resp. limits) if and only if it has all k-small coproducts and all pushouts exist [99,
4.4.2.6] (resp. k-small products and pullbacks). In particular, it has an initial (resp. final) object.

If C is an (oo, 1)-category having colimits of a certain kind, then for any simplicial set S, the
(00, 1)-category Fun(S, ) has colimits of the same kind and they can computed objectwise in € [99,
5.1.2.3].

If € and D are (oo, 1)-categories with colimits we will denote by Fun®(€, D) the full subcategory
of Fun(C, D) spanned by those functors which commute with colimits.

We say that an (oo, 1)-category is pointed if it admits an object which is simultaneously initial
and final. Given an arbitrary (oo, 1)-category with a final object %, we consider the comma-category
C. := €, . This is pointed. Moreover there is a canonical forgetful morphism €, — € which commutes
with limits.

2.1.8 Subcategories

If € is an (00, 1)-category, and O is a subset of objects and F is a subset of edges between the objects
in O, the subcategory of € spanned by the objects in O together with the edges in F (closed under
composition and containing all identity maps) is the new (oo, 1)-category Co s obtained as the pullback
of the diagram

Cog ———>€ (2.1.5)

| |

N(h(C)o,5) — N((C))

where the lower map is the nerve of the inclusion of the subcategory h(C)e 5 of h(C), spanned by the
objects in O together with the morphisms in h(€) represented by the edges in F. The right-vertical
map is the unit of the adjunction (h, N). It follows immediately from the definition that Co g will
also be an (oo, 1)-category.

2.1.9 Grothendieck Construction

We recall the existence of a Grothendieck Construction for (oo, 1)-categories (See [99, Chapter 3]).
Thanks to this, we can present a functor between two (oo, 1)-categories € — D as a cocartesian
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fibration (see [99, 2.4.2.1]) p : M — A[1] with p~1({0}) = € and p~*({1}) = D. Using this machinery,
the data of an adjunction between € and D corresponds to a bifibration M — A[l] (see the proof
of [99, 5.2.1.4] to understand how to extract a pair of functors out of a bifibration, using the model
structure on marked simplicial sets);

2.1.10 Adjointable Squares
Let 0 :=

e e, (2.1.6)

igl \ng
f2

Dl HDQ

be a homotopy commutative diagram of (co, 1)-categories. Recall that o is said to be left adjointable
(see [99, 7.3.1.2] or [100, 4.7.5.13]) if the functors f; and fo admit left-adjoints u1, us and the diagram
/.

g =

61 'T GQ (217)

N

D1T®2

commutes by means of the natural transformations

ug0go >~ (ugoga)old— upogao(fiour) ~ugo(faogr)ous =~ (ugo fz)ogiour — Ido (g1 ouy)
where Id — f; ou; and ug o fo — Id are the unit and the co-unit of the adjuntions.
In this case we say that the square ¢’ is left adjoint to the square o.

One omits the obvious notion of right adjointable.

2.1.11 Localizations

There is a theory of localizations for (0o, 1)-categories. If (€, W) is an (oo, 1)-category together with
a class of morphisms W closed under homotopy, composition and containing all equivalences, then
we can produce a new (oo, 1)-category C[W 1] together with a map € — €[W '] with the universal
property of sending the edges in W to equivalences. To construct this localization we can make use
of the model structure on the marked simplicial sets of [99, Chapter 3]. Recall that every marked
simplicial set is cofibrant and the fibrant ones are precisely the pairs C* := (€, eq) with C a quasi-
category and eq the collection of all equivalences in C. Therefore, C[W 1] can be obtained as a
fibrant-replacement of the pair (€, W). We recover the desired universal property from the fact that
the marked structure is simplicial. Following [100, Cons. 4.1.3.1], this procedure can be presented in
more robust terms. Namely, it is possible to construct an (oo, 1)-category W Cat, where the objects
are the pairs (€, W) with € a quasi-category and W a class of morphisms in €. Moreover, the mapping
@ — Cf provides a fully faithful functor

Catso € WCat (2.1.8)

and the upper localization procedure (C, W) — C[W ] provides a left adjoint to this inclusion (see
[100, Prop. 4.1.3.2).
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Let € be an (0o, 1)-category and let G be a full subcategory of C. We say that Cq is a reflexive
localization of C if the fully faithful inclusion €y C € admits a left adjoint L : € — Cy. A reflexive
localization is a particular instance of the notion in the previous item, with W the class of edges in C
which are sent to equivalences through L (see [99, Prop. 5.2.7.12]);

2.1.12 Presheaves

If € is a small (0o, 1)-category, the (oo, 1)-category of co-presheaves over C is defined as P(C) :=
Fun (€ 8). Tt is not small anymore because § is not small. It comes naturally equipped with a fully
faithful analogue of the classical Yoneda map € — P(€), endowed with the following universal property:
for any (oo, 1)-category D having all colimits indexed by small simplicial sets, the composition

Fun®(P(€), D) — Fun(€,D) (2.1.9)

induces an equivalence of (oo, 1)-categories, where the left-side denotes the full-subcategory of all
colimit preserving functors (see [99, Thm. 5.1.5.6]).

2.1.13 k-filtered categories and k-compact objects

Let % be a small cardinal. A simplicial set S is called x-filtered if there is an (oo, 1)-category € together
with a categorical equivalence € — S, such that for any x-small simplicial set K, any diagram K — C
admits a cocone K” — € (see [99, Notation 1.2.8.4 ]). We use the terminology filtered when xk = w.
Notice that if Kk < k" and € is x'-filtered then it is also k-filtered.

It follows from [99, 4.2.3.11] that an (oo, 1)-category € has all small colimits if and only if there
exists a regular cardinal x such that € has all k-small colimits together with all k-filtered colimits.

Let object X in a big (0o, 1)-category €. We say that X is completely compact if the associated
map Mape(X,—) : € — 8" commutes with all small colimits. We say that X is x-compact (for
t a small regular cardinal) if Mape (X, —) commutes with colimits indexed by k-filtered simplicial
sets. We denote by C® the full subcategory of € spanned by the k-compact objects in €. We use the
terminology compact when k = w. Notice that if k < k" and X is k-compact it is also x'-compact.

2.1.14 Ind-Completion

Let € be a small (0o, 1)-category and choose a regular cardinal x with x < card(U). Following [99,
Section 5.3.5], it is possible to formally complete € with all small colimits indexed by small k-filtered
simplicial sets. More precisely, we can construct a new (oo, 1)-category Ind,(€) (which is not small
anymore), together with a canonical map € — Ind,(C) having the following universal property: for
any (00, 1)-category D having all colimits indexed by a small x-filtered simplicial set, the composition

Fun®(Ind,(C), D) = Fun(C, D) (2.1.10)

induces an equivalence of (0o, 1)-categories, where the left-side denotes the full-subcategory spanned
by the functors commuting with colimits indexed by a r-filtered small simplicial set (see of [99, Thm.
5.3.5.10]). In the case k = w we write Ind(C) := Ind,(C).

2.1.15 Completion with colimits

Following [99, Section 5.3.6], given an arbitrary (oo, 1)-category € together with a collection X of
arbitrary simplicial sets and a collection of diagrams R = {p; : K; — C} with each K; € X, we
can form a new (0o, 1)-category P (€) together with a canonical map € — P%(€) such that for any
(00, 1)-category D, the composition map

Fung (PF(C), D) — Fung(C, D) (2.1.11)
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is an equivalence of (oo, 1)-categories, where the left-side denotes the full subcategory of K-colimit
preserving functors and the right-side denotes the full-subcategory of functors sending diagrams in the
collection R to colimit diagrams in D. This allows us to formally adjoin colimits of a given type to a
certain (00, 1)-category. We denote by Cat’¥(X) the (non-full) subcategory of Cat’9 spanned by the
(00, 1)-categories which admit all the colimits of diagrams indexed by simplicial sets in X, together
with the K-colimit preserving functors. The intersection Cat”9(X)N Cat o, is denoted as Cat o (X). In
the particular case when X is the collection of x-small simplicial sets, we will use the notation Cat (k).

If X C X' are two collections of arbitrary simplicial sets and € is an arbitrary (oo, 1)-category
having all K-indexed colimits, we can let R be the collection of all X-colimit diagrams in €. The
result of the previous paragraph T%(G) will in this particular case, be denoted as ‘J’%l (). By ignoring
the set-theoretical aspects, the universal property defining (P%l () allows us to understand the formula
€ — P¥'(C) as an informal left adjoint to the canonical (non-full) inclusion of the collection of (oo, 1)-
categories with all the X’-indexed colimits together with the X’-colimit preserving functors between
them, into the collection of (oo, 1)-categories with all the X-indexed colimits together with the K-
colimit preserving functors.

By combining the universal properties, we find that if X is the empty collection and X’ is the
collection of all small simplicial sets, ?%'(e) is simply given by P(C). In the case K is the empty
collection and X’ is the collection of all x-small filtered simplicial sets (for some small cardinal k),
we obtain an equivalence PX (€) ~ Ind,(€). Another important example is when X is again the
empty collection and X’ is the collection of x-small simplicial sets. In this case we have a canonical
equivalence PX (€) =~ P(€)". Following the fact that an (0o, 1)-category has all small colimits if and
only it has x-small colimits and x-filtered colimits, we find a canonical equivalence between P(C) and

Ind,,(P(C)").

2.1.16 Sifted Colimits and Geometric Realizations

Following [99, 5.5.8.1], a simplicial set K is said to be sifted if it is nonempty and if the diagonal map
K — K x K is cofinal. The main examples are given by filtered simplicial sets and by the simplicial
set N(A)°P - the opposite of the nerve of the category A (see [99, 5.5.8.4]).

A simplicial object in an (0o, 1)-category C is, by definition, a diagram N(A)°? — C. We say that
C admits geometric realizations of simplicial objects if every simplicial object in € has a colimit.

For a small (00, 1)-category C, we let Px(C) denote the formal completion of € under sifted colimits
(as in the previous section). Thanks to [99, 5.5.8.14], if € has finite coproducts, the formal completion
Px(€) is equivalent to the completion of Ind(C) under geometric realizations of simplicial objects.
Moreover, by [99, 5.5.8.17], if C has small colimits, a functor € — D commutes with sifted colimits if
and only if it commutes with filtered colimits and geometric realizations.

2.1.17 Accessibility

Sometimes an arbitrary (oo, 1)-category € is not small but it is completely determined by small
information. Let x be a small regular cardinal. We say that a big® (0o, 1)-category € is k-accessible
if there exists a small (oo, 1)-category €° together with an equivalence

Ind,(€%) — € (2.1.12)

By [99, 5.4.2.2] a big (00, 1)-category is k-accessible if and only if it is locally small, admits small
k-filtered colimits, C” is essentially small and generates C under small k-filtered colimits. In this case,
by [99, 5.4.2.4], C* is the idempotent completion of €°.

5We can also define the notion of accessibility for the small (oo, 1)-categories. In this case, by [99, Cor. 5.4.3.6], a
small (oo, 1)-category is accessible if and only if it is idempotent complete - see the next subsection.
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We say that a big (0o, 1)-category is accessible if it is k-accessible for some small regular cardinal
k. Given two small cardinals k < k', a k-accessible (0o, 1)-category is not necessarily x’-accessible.
However, by [99, Prop. 5.4.2.11], this is the case if ' satisfies the following condition: for any cardinals
7 <k and T < K/, we have 77 < K’.

An important example of accessibility comes from the theory of presheaves: if € is a small (oo, 1)-
category, P(C) is accessible (see Proposition 5.3.5.12 of [99]).

The natural morphisms between the accessible (0o, 1)-categories are the functors f : € — D which
are again determined by the small data. More precisely, if € and D are k-accessible, a functor f
is called k-accessible if it preserves small k-filtered colimits and sends k-compact objects in € to k-
compact objects in D. The crucial result is that the information of the restriction f|, : €* — D*
determines f in a essentially unique way (see [99, 5.3.5.10]).

2.1.18 Idempotent Complete (oo, 1)-categories

Let € be a classical 1-category and let X be an object in €. A morphism f: X — X is said to be an
idempotent if fo f = f. If we want to extend this notion to the setting of higher category theory, we
need to specify a 2-cell ¢ rendering the diagram

X (2.1.13)

o

X —X

commutative. Moreover, we should be able to glue together different copies of ¢ to built up a 3-cell
encoding the relation fo fo f ~ f. This continues for every positive n. In [99, Section 4.4.5] the
author introduces a simplicial set Idem suitable to encode all this kinds of coherences. It has a unique
nondegenerate cell on each dimension n > 0. To give a diagram Idem — C is equivalent to the data
of an object X € €, together with a morphism f: X — X and all the expected coherences that make
f an idempotent.

Recall now that an object Y € C is said to be a retract of an object X € C if the identity of Y factors
as a composition ¥ — X — Y. Every decomposition likes this provides a morphism f: X - Y — X
which by [99, 4.4.5.7], can be extended to a diagram Idem — C. It follows that if d has a colimit in
C, this colimit is canonically equivalent to Y [99, 4.4.5.14]. Following this, € is said to be idempotent
complete if every diagram d : Idem — C has a colimit. In this case, there is a bijective correspondence
between retracts and idempotents. In particular, every functor € — D between idempotent complete
(00, 1)-categories preserves colimits indexed by the simplicial set Idem, because the functoriality will
send retracts to retracts.’

Remark 2.1.1. Since the simplicial set Idem is not finite, the fact that an (oo, 1)-category C has
all finite colimits does not imply that C is idempotent complete. However, even though Idem is not
filtrant, if x is a regular cardinal and € admits small x-filtered colimits then C is idempotent complete
[99, 4.4.5.16].

We denote by Caté‘iem the full subcategory of Cat., spanned by the small (oo, 1)-categories which
are idempotent complete. By [99, 5.1.4.2] every (oo, 1)-category € admits an idempotent completion
Idem(@) given by the full subcategory of P(€) spanned by the completely compact objects (which by
[99, 5.1.6.8] are exactly the retracts of objects in the image of the Yoneda embedding). The formula
C +— Idem(C) provides a left adjoint to the full inclusion

6We can rewrite this definition in more simpler terms. Since P(C) has all colimits, we can easily see that an
(00, 1)-category € is idempotent complete if and only if the image of the Yoneda embedding € — P(C) is stable under
retracts.
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Cat'¥™ C Cat., (2.1.14)

Following the discussion in 2.1.15, we can also identify Cat'%™ with Cat . (X) where X = {Idem}.
Moreover, we have a canonical equivalence of functors Pdemt(—) ~ Idem(-). By [99, 5.4.2.4],
Idem(C) can also be identified with Ind,(€)", the full subcategory of k-compact objects in I'nd,(C),
for any small regular cardinal .

Let now € be a small (0o, 1)-category and let € — €’ be an idempotent completion of €. Then, by
[99, 5.5.1.3], for any regular cardinal &, the induced morphism Ind,(C) — Ind,(C") is an equivalence
of (oo, 1)-categories. Thus, if € is a k-accessible (00, 1)-category, with € ~ Ind,(Cy) for some small
(00, 1)-category Cy and some regular cardinal k, then, since Cyp — Ind,;(Cp)" ~ C* is an idempotent
completion of €, the canonical morphism I'nd,(C*) — € is an equivalence. The converse is immediate
by definition.

2.1.19 Presentable (0, 1)-categories

We say that an (oo, 1)-category C is presentable if it is accessible and admits all colimits indexed
by small simplicial sets. Again, we have a good criterion to understand if an (oo, 1)-category € is
presentable. By [99, Thm. 5.5.1.1]), the following are equivalent: (i) C is presentable; (i7) there
exists a small (0o, 1)-category D such that € is an accessible reflexive localization of P(D)7; (iii) € is
locally small, admits small colimits and there exists a small regular cardinal x and a small S set of
k-compact objects in € such that every object of € is a colimit of a small diagram with values in the
full subcategory of € spanned by S.

The natural morphisms between the presentable (0o, 1)-categories are the colimit preserving func-
tors. We let Prl (resp. Prft) denote the (non full!) subcategory of Catgig spanned by presentable
(00, 1)-categories together with colimit (resp. limit) preserving functors. As Cat’¥, Prl is only a
W-small (0o, 1)-category. By the Adjoint Functor Theorem (see [99, Cor. 5.5.2.9]) a functor be-
tween presentable (0o, 1)-categories commutes with colimits (resp. limits) if and only if it admits
a right (resp. left) adjoint (resp. and is accessible) and therefore we have a canonical equivalence
Pri ~ (Prit)er. By [99, 5.5.3.13, 5.5.3.18] we know that both Prl and Prf admit all small limits
and the inclusions Prl, Prft C Catggg preserve them. In particular, colimits in Pr’ are computed as
limits in Pr¥ using the natural equivalence Pr’ ~ (Prf)e.

2.1.20 k-compactly generated (oo, 1)-categories

Although each presentable (oo, 1)-category is determined by small information, not all the informa-
tion in the study of Pr’ is determined by small data. This is mainly because the morphisms in
Prl are all kinds of colimit preserving functors without necessarily having a compatibility condition
with the small information. Again, as in the accessible setting, if we want to isolate what is deter-
mined by small information, we consider for each small regular cardinal x, the (non-fulll) subcategory
PrL C Prl spanned by the presentable k-accessible (oo, 1)-categories together with those colimit
preserving functors that preserve x-compact objects. By definition, we say that an (oo, 1)-category
is k-compactly generated if it is an object of PrZ. The idea that s-compactly generated (oo, 1)-
categories are determined by smaller information can now be made precise: by the Propositions [99,
5.5.7.8, 5.5.7.10], the correspondence € — € sending a k-compactly generated (oo, 1)-category to the
full subcategory C* C € spanned by the k-compact objects, determines a fully faithful map of (co, 1)-
categories Prl — Cat®¥ (k) whose image is the full subcategory Cato (k)™ of Cat’¥ (k) spanned
by those big (oo, 1)-categories € with all k-small colimits, which are essentially small and idempotent
complete. Following the discussion in 2.1.18, Cats (k)™ can be identified with Cat.(X) with X

"The reflexive localization @ C P(D) is accessible if C is accessible for some cardinal. Using the universal property of
the ind-completion (see [99, 5.5.1.2]) this is equivalent to ask for the composition P(D) — € C P(D) to be k-accessible
for some small regular cardinal
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the collection of all x-small simplicial sets together with the simplicial set Idem. The construction
Ind, : Cate(X) — Prk provides an inverse to this map. ®. Moreover, and following the discus-
sion in 2.1.1, in case kK > w we can drop the idempotent considerations because the full inclusion
Catoo(r)1™ C Cat (k) is an equivalence.

Following [100, 5.3.2.9], PrL is presentable and the inclusion Prl C Prl preserves colimits.

We will be particularly interested in PrZ, the study of the presentable (oo, 1)-categories of the
form Ind(Cy) with Gy having all finite colimits. These are called compactly generated.

2.1.21 Localizations of Presentable (oo, 1)-categories

The theory of presentable (0o, 1)-categories admits a very friendly internal theory of localizations. By
[99, Prop. 5.5.4.15 and 5.5.4.20], if € is a presentable (0o, 1)-category and W is strongly saturated
class of morphisms in € generated by a set S (as in [99, 5.5.4.5]), then the localization C[W ~1] is again
a presentable (0o, 1)-category equivalent to the full subcategory of € spanned by the S-local objects
and the localization map is a left adjoint to this inclusion.

2.1.22 Postnikov Towers

Recall that a space X € § is said to be n-truncated if the homotopy groups m;(X,x) are all trivial
for @ > n. It is said to be n-connective if all the homotopy groups m;(X,x) are trivial for i < n.
If Cis an (o0, 1)-category we say that an object X € C is n-truncated if for every object ¥ in C
the mapping spaces Mape(Y, X) are n-truncated. This notion agrees with the previous definition
when € = 8. Let 7<,,C denote the full subcategory of € spanned by the n-truncated objects. A
morphism f : X — X’ in € is said to exhibit X’ as an n-truncation of X if for every n-truncated
object Y in € the composition with f induces an homotopy equivalence Mape (Y, X) ~ Mape (Y, X').
By definition a Postnikov tower in € is a diagram X : (N(Z>0)°?)? — € such that for every n the
map X, — X, exhibits X,, as an n-truncation of X,. In particular, this implies that X,, — X,,
exhibits X, as a m-truncation of X,. We say that Postnikov towers converge in C if the forget-
ful map Fun((N(Z>0)°?)9,€C) — Fun(N(Z>o), ) induces an equivalence when restricted to the full
subcategory spanned by the Postnikov towers. In particular, if € admits all limits, Postnikov towers
converge in € if and only if every Postnikov tower is a limit diagram [99, 5.5.6.26].

If € is presentable, the inclusions 7<,C C C admits a left adjoint for every n > 0. This follows
from the Adjoint functor theorem together with the fact that this inclusion commutes with all limits
[99, 5.5.6.5]. In this case, we can find a sequence of functors

we = T<2€ = 7<1C = 7<(C (2.1.15)

and Postnikov towers converge in € if and only if € is the limit of this sequence [99, 3.3.3.1].

2.1.23 Stable (oo, 1)-categories

We now discuss another important topic. In the classical setting, the notion of triangulated category
seems to be of fundamental importance. Stable co-categories are the proper providers of triangulated
structures - for any stable co-category C the homotopy category h(C) carries a natural triangulated
structure, where the exact triangles rise from the fiber sequences and the shift functor is given by
the suspension (see [100, 1.1.2.15]). In practice, most triangulated categories are of this form. Grosso
modo, a stable co-category is an co-category with a zero object, finite limits and colimits, satisfying
the stronger condition that every pushout square is a pullback square and vice-versa (see [100, Def.
1.1.1.9, Prop. 1.1.3.4]). In particular this implies that finite sums are equivalent to finite products
[100, 1.1.2.10]. If C is a pointed (oo, 1)-category with finite colimits, one equivalent way to formulate

8See also the Proposition [100, 5.3.2.9] for a direct proof of this result
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the notion of stability is to ask for the suspension functor X — 3(X) := *[[y * and its adjoint
Y — Q(Y) := % xx * to form an equivalence € — C (see [100, Cor. 1.4.2.27]). It is important to
remark that stability is a property rather than an additional structure. The canonical example of
a stable (0o, 1)-category is the (oo, 1)-category of spectra Sp. The appropriate maps between stable
oo-categories are the functors commuting with finite limits (or equivalently, with finite colimits - see
[100, 1.1.4.1]). The collection of small stable oo-categories together with these functors (so called
eract) can be organized in a new oco-category C’atff. Thanks to [100, 1.1.4.4] Catfxf has all small
limits and the inclusion in Cat., preserves them. Moreover, if K is a simplicial set and C is stable
then Fun(K, C) remains stable [100, 1.1.3.1].

Also important is that any stable (oo, 1)-category € comes with a natural enrichment over spectra.
More precisely the mapping spaces Mape(X,Y) have a natural structure of an oo-loop space. To see
this we can use the fact the suspension and loop functors in € are equivalences, so that we can find a
new object X’ with X ~ 3(X’) so that Mape(X,Y) ~ Mape(X(X'),Y) ~ QMape(X,Y). Another
way to make this precise is to use a universal property of the stabilization which tells us that the
composition with Q% : Sp — § induces an equivalence of (0o, 1)-categories Exc,(C, Sp) ~ Exc.(C,8)
( see [100, 1.4.2.22]). In particular, this provides for any object X an essentially unique factorization
of the functor Mape(X,—): € — 8 as

pelt) g (2.1.16)

|
MapgP (X,—) | -
Y Q

Sp

such that for any object Y, the spectra M apgp (X,Y) can be identified with the collection of spaces
{Mape(X,E"Y) ez Moreover, and since 2 is an equivalence, it is equivalent to the family { Mape (2" X,Y) }nez.
The Ext groups Extl(X,Y) are defined as mo(Mape(2"X,Y)). If i < 0 these groups correspond to

the homotopy groups of the mapping space Mape(X,Y).

We can now isolate the full subcategory ﬂ’rétb of Prl spanned by those presentable (co,1)-
categories which are stable (every morphism of presentable (0o, 1)-categories which are stable is exact).
Again by [100, 1.1.4.4] and the results in the presentable setting, fPrgtb has all small limits and the
inclusion (Prgtb C Prl preserves them.

We discuss now an adapted version of the Proposition [100, 1.4.4.2] that provides a very helpful
characterization of presentable stable (oo, 1)-categories. First we introduce some terminology. Let €
be an (00, 1)-category with a zero object. We say that a collection € of objects in € generates C if the
full subcategory £+ C € of all objects A in € such that Mape(E, A) = x for all E € €, consists only of
zero objects in €. Let now k be a regular cardinal. We say that € is a family of k-compact generators
of € if € generates € in the previous sense and each object F € € is k-compact. In particular, we
will say that an object X in C is a k-compact generator of C if the family & = {X} is a family of
k-compact generators of C.

Proposition 2.1.2. Let C be a stable (co,1)-category. Then, C is presentable if and only if the
following conditions are satisfied:

(i) © has arbitrary small coproducts °;
(ii) the triangulated category h(C) is locally small;

(iii) there exists a regular cardinal k and a small family € of k-compact generators in C. In this case
C is presentable k-compactly generated in the sense of 2.1.20.

9Since € is stable this is equivalent to ask for all small colimits
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Proof. We follow essentially the same arguments of [100, 1.4.4.2]. For the ”only if” part, by definition,
there is a small (0o, 1)-category D and a regular cardinal 7, together with an equivalence € ~ Ind. (D).
The formal completion of D with 7-small colimits is given by D — D’ = P(D)". Passing to the ind-
completions we obtain a map

C ~ Ind,(D) — Ind,(P(D)*) ~ P(D) (2.1.17)

commuting with 7-filtered colimits. From the proof of [99, 5.5.1.1] we know that this map has a left
adjoint L that establishes € as 7-accessible reflexive localization of P(D). The items (i) and (i) follow
immediately from this. Moreover, the composition functor

P(D) — € C P(D) (2.1.18)

preserves T-filtered colimits. To prove (iii) we consider the family € of all objects of the form L(j(d))
in € with j the Yoneda embedding j : D — P(D) and d € D. It follows immediately from the Yoneda
lemma, from the fact that the composition (2.1.18) is 7-accessible and from the fact that the right
adjoint of L is fully-faithful that € is a family of 7-compact generators in €. The family is indexed by
a small set because D is small.

For the ”if” part, we consider the full subcategory C¢ of C spanned by the objects in &, their
suspensions and loopings. Inductively, we consider the successive closures under xk-small colimits. As
a result we find a full subcategory Ce¢(x) of € closed under x-small colimits, suspensions and loopings.
Since each E € € is k-compact and the suspensions of x-compact objects are again x-compact '° and
k-compact objects are closed under k-small colimits, we find that C¢ (k) is made of k-compact objects
and closed under k-small colimits. It follows that the inclusion C¢ (k) C € extends to a fully-faithfull
functor F : Ind,(Ce(k)) — € that commutes with r-filtrant colimits. Since Ind,(Ce(k)) has all k-
small colimits and all k-filtrant colimits, it has all colimits and F' commutes with all colimits. By the
hypothesis (ii) and the Remark [99, 5.5.2.10] F' has a right adjoint G and the fully-faithfulness implies
G o F ~ Id. We are reduce to showing that for every Y € €, the adjunction map FoG(Y) —» Y
is an equivalence. For that, we consider its fiber Z. Since F is fully-faithful, and G preserves limits,
we have G(Z) ~ x and by adjunction we find that for every object D € Ind,(C¢(k)) we have have
Map(F(D),Z) ~ Map(D,G(Z)) ~ . In particular, the formula holds for any D = FE € € and by
the definition of generating family we find that Z is a zero object in € so that the counit map is an
equivalence. In particular, € is a stable k-compactly generated (oo, 1)-category. In the case € is a
family of w-compact generators, € is compactly generated and its full subcategory of compact objects
is equivalent to Idem(C¢(k)). O

Remark 2.1.3. The condition (ii¢) in the Proposition 2.1.2 is equivalent to the existence of an a-
compact generator for some regular cardinal «, not necessarily the same as . Indeed, by definition, if
C has a k-compact generator, then it provides a k-generating family with a single element. Conversely,
if € = {Ei}icr is a s-generating family with multiple objects, by the hypothesis (i), the sum [[, ; E;
exists in € and is an a-compact generator of € for some « a regular cardinal (let v = max{k, card(I)}
and choose « satifying the condition described in 2.1.17).

Remark 2.1.4. The statement given in [100, 1.4.4.2] is somewhat different from ours, namely because
the notion of compact generator therein is stronger. More precisely, an object X there is said to be
a k-compact generator if it is k-compact and such that for any Y € C, if mo(Map(X,Y)) = 0 then
Y is a zero object. Of course, if X verifies this condition, the family &€ = {X} verifies our condition
(#i1). However, the converse is not necessarily true for the same X and the same cardinal. If X is a
k-generator in our sense, then the infinite coproduct [],., "X is a generator in the sense of [100,
1.4.4.2] but a priori it will only be k’-compact for some cardinal £’ > k.

Our presentation is needed to match the familiar results coming from the classical theory of
compact generators in triangulated categories. Following Neeman [108], we recall that an object X in

10Tf [ is a s-filtered simplicial set and d : I — € is a diagram, we have Map(XX, colimd;) ~ Map(X, Q(colim}d)) and
since C is stable (which implies that €2 is an equivalence and therefore commutes with colimits) and X is k-compact, we
find that the last space is homotopy equivalent to Map(X, colim(2(d;)) ~ colimyMap(X,Q(d;)) ~ colimrMap(XX,d;)
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a triangulated category T is said to be compact if it commutes with infinite coproducts. Moreover,
a collection of objects € in T is said to generate T if its right-orthogonal complement £+ := {A €
Ob(T) : Homy(E[n],A) = 0,Vn € Z,VE € &} consists only of zero objects in T. Now, € is said to
be a family of compact generators of T in the sense of Neeman if it generates T and each E € € is
compact in the sense of triangulated categories. Finally, an object X is said to be a compact generator
of T if it is compact and the set & = {X} generates T

Let now € be a stable (0o, 1)-category and let € be a collection of objects in €. It follows that & is a
family of compact generators of h(C) in the sense of Neeman if and only it satisfies the condition (i)
for Kk = w. Indeed, the two notions of generator agree because moMape(E"E, A) ~ 7, Mape(E, A).
Therefore, it is enough to see that an object X is compact in the triangulated category h(€) if and
only it is w-compact in €. This follows from [100, 1.4.4.1-(3)] and from the fact that coproducts in
€ are the same as coproducts in h(C): if {X;},cs is a collection of objects in €, its coproduct [], X;
in € is a coproduct in h(C) because the functor my commutes with homotopy products; conversely,
if ], X; is a coproduct in €, by definition, this means that moMape (][, Xi, Z) ~ @;moMape(X;, Z)
holds for any Z € h(€). In particular, this holds for all the loopings Q" Z so that the formula holds
for all 7, and [], X; is a coproduct in €.

This characterization allows us to detect the property of a stable (oo, 1)-category being compactly
generated simply by studying its homotopy category. The following example is crucial to algebraic
geometry and will play a fundamental role later in this work:

Example 2.1.5. Let X be a quasi-compact and separated scheme. Its underlying (oo, 1)-category
D(X) (see below) is stable and its homotopy category h(D(X)) recovers the classical derived category
of X. As proved in the Corollary 5.5 of [19], when X is quasi-compact and separated, h(D(X)) is
equivalent to the derived category of Ox-modules with quasi-coherent cohomology sheaves. Together
with the Theorem 3.1.1 of [23], this tells us that D(X) has a compact generator in the sense of Neeman
and that the compact objects are the perfect complexes. Thus, by the previous discussion, D(X) is a
stable compactly generated (oo, 1)-category.

We will write fPrﬁ) sy to denote the full subcategory of Prk spanned by the stable (oo, 1)-categories
that are compactly generated, together with the compact preserving morphisms. The equivalence

Prk — Cat oo (w)'®™ of 2.1.20 restricts to an equivalence Prk ¢, — Cat&® 1™ where the last denotes

the (non full) subcategory of Cat’*™ spanned by the small stable co-categories which are idempotent

complete, together with the exact functors. This follows from the fact that the idempotent comple-
tion of a stable (oo, 1)-category remains stable [100, 1.1.3.7], together with the observation that stable
(00, 1)-categories have all finite colimits and that exact functors preserve them.

Remark 2.1.6. In [18] the authors identify the subject of Topological Morita theory with the study
of the (00, 1)-category (PriStb. We will come back to this in 6.2.

To conclude this section, we give a useful result that will be necessary for many of the future
applications we have in mind:

Proposition 2.1.7. Let f : € — D be colimit preserving functor between stable presentable (00, 1)-
categories. Assume that

(i) The (00, 1)-category € has a family of w-compact generators & in the sense of the Proposition
2.1.2 (here we assume, without loss of generality, that & is closed under suspensions and loop-
ings*') and f is fully-faithful when restricted to the objects in this collection;

(ii) for any object E € &, the object f(E) is w-compact in D;

11'We can always assume this because, as discussed in the previous footnote, suspensions of compact objects are
compact.
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Then, [ is fully-faithful. Moreover, if the image of the collection & in D is a family of w-compact
generators, then f is an equivalence.

Proof. To start with, we observe that to assume £ to be closed under suspensions and loopings and
f to be fully-faithful when restricted to the objects in & produces the same effects as dropping the
condition of stability under suspensions and loopings and asking for the naturally induced maps of
spectra

MapgP(X,Y) — Maps? (f(X), f(Y)) (2.1.19)

to be equivalences in Sp for any X and Y in €.

Let us now explain the proof. Using the same notations of the Proposition 2.1.2, we have € ~
Ind(Cg(w)). To deduce fully-faithfulness we prove that the restriction of f to Ce¢(w) is fully-faithful
so that, by the hypothesis (i¢) together with [99, 5.3.5.11] we conclude that f is fully-faithful. To
see this, it is enough to check that f is fully-faithful when restricted to each one of the subcategories
in the inductive construction of C¢(w) (see the proof in [100, 1.4.4.2] for the precise inductive step).
Using induction, and since € is stable, it is enough to check that f is fully-faithful when restricted
to finite direct sums and cofibers of objects in the collection €. For direct sums this is immediate.
Suppose now we have a cofiber sequence X — Y — Z in € with X and Y in € and let A be another
object in €. In this case, and since the functors M ap‘gp (A, —) are exact by construction, we obtain a
cofiber sequence in Sp

Map? (A, X) — Map (A,Y) — Map3’ (A, Z) (2.1.20)

Since f commutes with small colimits, the induced sequence f(X) — f(Y) — f(Z) is a cofiber
sequence and we get a canonical diagram of cofiber sequences in Sp

MapiP (A, X) ————— MapiP(A,Y) ———— Map’ (A, Z) (2.1.21)

Map? (f(A), f(X)) — Maps? (f(A), f(Y)) — Map? (f(A), f(Z))

where the two first vertical maps are equivalences by hypothesis. We conclude the vertical map on the
right is also an equivalence. Finally, for any other cofiber sequence U — V — W in €, we conclude
using the universal property of the cofiber that Map3” (f(W), f(Z)) =~ MapiP (W, Z).

To conclude the additional statement we use the definition of generating familiy and the conse-
quences of the Prop. 2.1.2 to reduce everything to prove that the induced restriction Cg (w) — Dyee)(w)
is an equivalence. This follows because f commutes with colimits.

O

2.1.24 Localizations of Stable (oo, 1)-categories and Exact Sequences

Our goal in this section is to prove the Proposition 2.1.10 below. Let us start by reviewing some
standard terminology for triangulated categories. Let C' be triangulated category and let A be a
triangulated subcategory. We say that A is thick in C' (also said epaisse), if it is closed under direct
summands. Moreover generally, we say that a triangulated functor A — C' is cofinal if the image
of A is thick in C. Recall also that a sequence of triangulated categories A — C' — D is said to
be exact if the composition is zero, the first map is fully-faithful and the inclusion from the Verdier
quotient C'/A < D is cofinal, meaning that every object in D is a direct summand of an object in B/A.

Following [18], we say that a sequence in Prk,,

A—=-C—=D (2.1.22)
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is exact if the composition is zero, the first map is fully-faithful and the diagram
A ¢
* D
is a pushout. Here we denote by * the final object in Prk,,. As proved in [18, Prop. 4.5, Prop. 4.6],

this notion of exact sequence can be reformulated using the language of localizations: if ¢ : A < C is
a fully-faithful functor, the cofiber of ¢ can be identified with the accessible reflexive localization

. (2.1.23)

_

AN
P~ (2.1.24)

with local equivalences given by the class of edges f in € with cofiber in the essential image of ¢. In
particular, an object € € is in D if and only if for every object a € A we have Mape(a,x) ~ *.

Remark 2.1.8. Let A — € — D be an exact sequence of presentable stable (0o, 1)-categories as
above. If the homotopy category h(A) has a compact generator in the sense of Neeman, say k € A,
then for an object z € € to be in D it is enough to have Mape(k,z) =~ *. This follows from the
arguments in the proof of tne Proposition 2.1.2: every object in A can be obtained as a colimit of
suspensions of k.

Thanks to [18, Prop. 5.9] and to the arguments in the proof of [18, Prop. 5.13], this notion of
exact sequence extends the notion given by Verdier in [148]: a sequence A — € — D in Prl is exact
if and only if the sequence of triangulated functors h(A) — h(€) — h(D) is exact sequence in the
classical sense and the inclusion h(C)/h(A) < h(D) is an equivalence of triangulated categories. In
the compactly generated case we have the following

Proposition 2.1.9. Let A — € — D be a sequence in ‘PriStb. The following are equivalent:
1. the sequence is exact;

2. the induced sequence of triangulated functors h(A) — h(C) — h(D) is exact in the classical
sense and the inclusion h(C)/h(A) — h(D) is an equivalence;

3. the sequence of triangulated functors induced between the homotopy categories of the associated
stable subcategories of compact objects h(A¥) — h(C¥) — h(D%) is exact in the classical sense.

Proof. The equivalence between 1) and 2) follows from the results of [18] discussed above. The
equivalence between 2) and 3) follows from the results of B.Keller [82, Section 4.12, Corollary] and
the fact that for any compactly generated stable (oo, 1)-category € we can identify h(C*) with the full
subcategory of compact objects (in the sense of Neeman) in h(C) (see 2.1.4).
O
The following result will become important in the last section of our work:

Proposition 2.1.10. Let

D (2.1.25)

be a diagram in fP'riStb such that

e The homotopy triangulated category h(D) has a compact generator in the sense of Neeman;
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e The map L : C — Cy is an accessible reflexive localization of C obtained by killing a stable
subcategory A C € such that h(A) has a compact generator (in the sense of Neeman) and the
inclusion A C C is a map in CPriStb.

Then:

1. the diagram admits a limit o =

A —, (2.1.26)

m ‘.P?“f)” Stbs
2. the diagram o remains a pullback after the (non-full) inclusion fPruLj’Stb CPrk,;

3. the homotopy category h(T) has a compact generator in the sense of Neeman.

Proof. We start by noticing that f})rﬁ’sw C Prk,, preserves colimits (combine [99, 5.5.3.18,5.5.7.6,
5.5.7.7] or see [100, 5.3.2.9]). Therefore, the map L : € — €y remains a Bousfield localization in the
sense discussed above. We recall also that all pullbacks exists in Pr%,, and thanks to [100, 1.1.4.4]
and to [99, 5.5.3.13] they can be computed in Cat?9. In this case, let

.9 (2.1.27)

v
T
¢

L
——=Cy

be a pullback for the diagram given by (f, L) in Prf. Of course, we can assume that f is a categorical
fibration and nothing will change up to categorical equivalence (see our discussion about homotopy
pullbacks in 4.2). With this, we can actually describe V as the strict pullback D x¢, €. It follows
from the description of compact-objects in the pullback [99, 5.4.5.7] that both maps p and g preserve
compact objects. Therefore, to achieve the proof we are reduced to showing that V is w-accessible.
Indeed, if this is the case, it follows from the universal property of the pullback in (Prfh s and in
Prk,, that V is canonically equivalent to T. To prove that V is w-accessible we can make use of
the Proposition 2.1.2: it suffices to show that the homotopy category of V has a compact genera-
tor in the sense of Neeman. We can construct one using exactly the same arguments of [140, Prop.
3.9], itself inspired by the arguments of the famous theorem of Bondal - Van den Bergh [23, Thm 3.1.1]:

Let d be a compact generator in D, which exists as part of our assumptions. As f and L are
functors in fPrUf’ s, they preserve compact objects and therefore f(d) is compact. As L is a Bousfield
localization of compactly generated stable (0o, 1)-categories we can use the famous result of Neeman-
Thomason [107, Theorem 2.1] to deduce the existence of a compact object ¢ € C whose image in Cqy
is f(d) @ (f(d)[1]). The new object d' = d & (d[1]) is again a compact generator in h(D) and since
f preserves colimits we conclude the existence of an object v € V such that p(v) = d' and ¢(v) = c.
Then, [99, Lemma 5.4.5.7 | implies that v is a compact object in V.

At the same time, we use our second assumption that A has a compact generator k. Since k is in
A, L(k) is a zero object in €q. Therefore, it lifts to an object k € V with ¢(k) = k and p(k) =0 € D.
To deduce that k is a compact object in 'V we observe that for any z in V, the mapping space in the
pullback is given by the formula
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Mapv(iﬂa Z) = Map(?(kv(J(z)) X Mape, (L(k),L(q(2))) Map@(p(];)ap(z)) (2128)
>~ Mape(k,q(2)) X Mape, (0,L(a(=))) Mapp (0, p(2)) (2.1.29)
~ Mape(k, q(z)) %« * =~ Mape(k, q(2)) (2.1.30)

so that, since ¢ commutes with colimits, k is compact in V if and only if k is compact in €. The last
is true because of our hypothesis that the inclusion A C € preserves compact objects.

We claim that the sum v & k is a compact generator of V. Obviously, as a finite sum of compacts,
it is compact. We are left to check that it is a generator of h(V). In other words, we have to prove
that for an arbitrary object z in V, if z is right-orthogonal to the sum v & k in h(V), then it is a zero
object. Notice that z is right-orthogonal to the sum if and only if it is right-orthogonal to v and k at
the same time. In particular, the formula (2.1.28) implies that z is right-orthogonal to ke h(V) if and
only if ¢(z) is right-orthogonal to &k in €. Since k is a compact generator of h(A) (by assumption), it
follows from the Remark 2.1.8 that ¢(z) is right-orthogonal to k if and only if ¢(z) is L-local, meaning
that it is in Gy and we have i o L(¢(z)) ~ ¢q(z), where i is the fully faithfull right adjoint of L. Let us
assume that z is right-orthogonal to k. Then, this discussion implies that

Mapy (v, z) ~ Mape(c,q(2)) X Mape, (7(d). f(a(2)) Mapy(d',p(z)) (2.1.31)

and using the fact that q(z) ~ i o L(g(z)), it becomes

~ Mape(L(c), L(4(2)) X Mape, (f(d). f(a(z)) Mapn(d',p(2)) = Mapo(d',p(2)) (2.1.32)

We conclude that if z is orthogonal to k and v at the same time, then p(z) is orthogonal to d’.
However, by construction, d’ is again a compact generator of h(D) so that p(z) is zero in D. Since
we have q(z) ~ i0 L(q(z)) ~ i o f o p(z), this implies that ¢(z) is also zero in €. Using [99, Lemma
5.4.5.5], we find that z is a zero object in D. This concludes the proof.

O

Remark 2.1.11. The proof of the Proposition 2.1.10 works mutatis-mutandis if we replace the hy-
pothesis of single compact generators in A and D by the existence of compact generating families. More
precisely, and using the same arguments and notations, if Ep = {d;},c; and E4 = {k;};cs are families
of compact generators respectively in D and in A, we can prove that the family {/53 D Vi} (i, jyerx) is
a family of compact generators in 7.

In particular, we have the following immediate corollary:

Corollary 2.1.12. Let o0 =

AC—=¢ (2.1.33)

be an exact sequence in Trﬁ,s:&b such that h(A) admits a family of compact generators in the sense of
Neeman. Then, the diagram o is a pullback in (Prétb

Proof. This is the degenerated case of 2.1.10 (together with the Remark 2.1.11) where D = 0. The
inclusion A C € admits a canonical factorization through the pullback, which, by the arguments in
2.1.10 and 2.1.11, sends the generating family of A to a generating family. The conclusion now follows
from the Proposition 2.1.7. O
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2.1.25 t-structures

t-structures are an important tool in the study of triangulated categories. Following [100, Section
1.2.1] they extend in a natural way to the setting of stable (oo, 1)-categories: A ¢-structure in a stable
(00, 1)-category € is the data of a t-structure in the homotopy category h(C). Given a t-structure
(h(€)<0, h(€)>0) in h(€), we denote by C<g (resp. €>¢) the full subcategory of € spanned by the
objects in h(C)<o (resp. h(C)>p). Moreover, we will write C<,, (resp. €>,) to denote the image of
C<o (resp. €>¢) under the functor ¥". Recall also that an object X € C is said to be connective with
respect to the t-structure if it belongs to C>g.

It follows from the axioms for a t-structure that for every n € Z the inclusion C<,, C € admits
a left adjoint 7<, [100, 1.2.1.5] and the inclusion €>, C € admits a right adjoint 7>, and these two
adjoints are related by the existence of a cofiber/fiber sequence

Ton(X) —— X (2.1.34)

]

— T<n1(X)

Moreover, for every m,n € Z they are related by a natural equivalence

T<m © T>n = T>p O T<m (2.1.35)
(see [100, 1.2.1.10]).

Remark 2.1.13. The two notations 7<, : € — 7<,C (after 2.1.22) and 7<,, : € — C<, are not
compatible. However, they are compatible when restricted to C>¢ and we have 7<,,(C>¢) >~ C>9NC<y,
(See [100, 1.2.1.9]).

By definition, the heart of the t-structure is the full subcategory €V spanned by the objects
in the interesection C<g N €C>p. It follows from the axioms that €Y is equivalent to the nerve of
h(€Y). Given an object X € € we denote by H,, (X) the object of €% obtained by shifting the object
TgnTzn(X) € ng N ezn.

Remark 2.1.14. The cofiber/fiber sequence (2.1.34) implies that if X is already in C<,, (which means
that X ~ 7<, (X)) we a have pushout diagram

SH, (X) = TonT<n(X) 4»[ (2.1.36)
i Tgnfl(X)

The data of a t-structure in a stable (oo, 1)-category € is completely characterized by the data of
the reflexive localization C<¢ C € [100, 1.2.1.16]. Following this, if € is an accessible (oo, 1)-category
we say that the t-structure is accessible if this localization is accessible. Moreover, we say that the
t-structure is compatible with filtered colimits if the inclusion €<y C € also commutes with filtered
colimits.

If € and € are stable (oo, 1)-categories carrying t-structures, we say that a functor f: € — €' is
right t-ezact if it is exact and carries C<g to (€')<o. Respectively, we say that f is left t-ezact if it is
exact and carries C>g to (€')>o.

To conclude this section we recall the notions of left and right completeness. A t-structure in €
is said to be left-complete if the canonical map from € to the homotopy limit C' := lim,,C<,, of the
diagram
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Ccg —— B« —> B — (2.1.37)

is an equivalence. A dual definition gives the notion of right-completeness. In general this limit is
again a stable (0o, 1)-category and its objects can be identified with families X = {X,};ez such that
X; € C<; and 1<, X; >~ X, for every n <. It admits a natural ¢-structure where X is in the positive
subcategory if each X; is in €>¢. This t-structure makes the canonical map € — lim,,C<, both left

o~

and right t-exact. Moreover, the restriction €<¢ — (€)<¢ is an equivalence [100, 1.2.1.17]. In general
the difference between € and C lays exactly in the connective part. This difference disappears if the
t-structure is left-complete: the restriction C>g — Cx¢ =~ lim,,(C<, N C>p) is an equivalence. Thanks
to [100, 1.2.1.19], a t-structure is known to be left-complete if and only if the subcategory N,C>, C C
consists only of zero objects.

Remark 2.1.15. If € is a stable (0o, 1)-category with a left-complete t-structure then Postnikov
towers converge in C>¢. This follows from the definition of left-completeness and from the Remark
2.1.13.

Again a classical example of a stable (0o, 1)-category with a t-structure is the (oo, 1)-category of
spectra Sp [100, 1.4.3.4, 1.4.3.5, 1.4.3.6] where Sp~ is the full subcategory spanned by the spectrum
objects X such that 7, (X) = 0,¥n < 0. It is both right and left complete and its heart is equivalent
to the nerve of the category of abelian groups.

2.1.26 Homological Algebra

The subject of homological algebra can be properly formulated using the language of stable (oo, 1)-
categories. If A is a Grothendieck abelian category, we can obtain the classical unbounded derived
category of A as the homotopy category of an (oo, 1)-category D(A). By the main result of [70]
the category of unbouded chain complexes Ch(A) admits a model structure for which the weak-
equivalences are the quasi-isomorphisms of complexes and the cofibrations are the monomorphisms
(this is usually called the injective model structure). We define D(A) as the (oo, 1)-category underlying
this model structure (see Section 2.2 below). It is stable [100, Prop. 1.3.5.9] and the pair of full
subcategories (D(A)<o, D(A)>o) respectively spanned by the objects whose homology groups vanish
in positive degree (resp. negative), determines a right-complete ¢-structure [100, 1.3.5.21]. This ¢-
structure is not left-complete in general.

If X is a scheme, we know from [65] that A = Qcoh(X) is Grothendieck abelian. The (oo, 1)-
category of the Example 2.1.5 is D(A).

In [100, Section 1.3] the author describes several alternative approaches to access this (oo, 1)-
category and its subcategory spanned by the right-bounded complexes. We will not review these
results here.

2.2 From Model Categories to (oo, 1)-categories

2.2.0.1 Model categories and co-categories

Model categories were invented (see [113]) as axiomatic structures suitable to perform the classical
notions of homotopy theory. They have been extensively used and developed (see [69, 68] for an
introduction) and still form the canonical way to introduce/present homotopical studies. A typical
example is the homotopy theory of schemes which provides the motivation for this work. The primitive
ultimate object associated to a model category M is its homotopy category h(M) which can be obtained
as a localization of M with respect to the class W of weak-equivalences. This localization should be
taken in the world of categories. The problems start when we understand that h(M) lacks some of
the interesting homotopical information contained in M up to such a point that it is possible to have
two model categories which are not equivalent but their homotopy categories are equivalent (see [37]).
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This tells us that h(M) is not an ultimate invariant and that in order to do homotopy theory we
should not abandon the setting of model categories. But this brings some troubles. To start with,
the theory of model categories is not ”closed” meaning that, in general, the collection of morphisms
between two model categories does not provide a new model category. Moreover, the theory is not
adapted to consider homotopy theories with monoidal structures, their associated theories of homotopy
algebra-objects and modules over them.

The quest to solve these problems is one of the possible motivations for the subject of (oo, 1)-

categories. Every model category should have an associated (oo, 1)-category which should work as an
ultimate container for the homotopical information in M. In particular, the information about the
homotopy category. The original motivation for the subject had its origins in the famous manuscript
of A. Grothendieck [64]. In the last few years there were amazing developments and the reader has
now available many good references for the different directions [16, 127, 99, 5, 114].
Back to our discussion, the key idea is that every model category M hides an (oo, 1)-category and
this (oo, 1)-category encodes all the ”‘homotopical information”’ contained in M. The key idea dates
to the works of Dwyer-Kan [48, 47] who found out that by performing the ”‘simplicial localization of
M”’ - meaning a localization in the world of simplicial categories - instead of the usual localization in
the setting of ordinary 1-categories, the resulting object would contain all the interesting homotopical
information and, in particular, the classical homotopy category of M appearing in the ”ground” level
of this localization. The meaning of the preceding technique became clear once it was understood
that simplicial categories are simply one amongst many other possible models for the theory of (co, 1)-
categories. Another possible model is provided by the theory of Joyal’s quasi-categories, which was
extensively developed in the recent years [99]. The method to assign an (oo, 1)-category to a model
category M reproduces the original idea of Dwyer and Kan - Start from M, see M as a trivial (oo, 1)-
category and perform the localization of M with respect to the weak-equivalences - not in the world
of usual categories - but in the world of (0o, 1)-categories. The resulting object will be refer to as the
underlying oo-category of the model category M. For a more detailed exposition on this subject we
redirect the reader to the exposition in [145].

For our purposes we need to understand that the nerve functor N : Cat — A provides the way
to see a category as a trivial quasi-category. By definition, if M is model category with a class of
weak-equivalences W, the underlying (0o, 1)-category of M is the localization N(M)[W ~!] obtained
in the setting of (oo, 1)-categories using the process described in 2.1.11. Moreover, the universal
property of this new object implies that its associated homotopy category h(N(M)[W ~1]) recovers
the classical localization. In particular, N(M)[W~!] and N(M) have essentially the same objects.
The main technical result which was originally discovered by Dwyer and Kan is the following:

Proposition 2.2.1. ([100, Prop. 1.5.4.20] )

Let M be a simplicial model category*®. Then there exists an equivalence of (0o, 1)-categories between
the underlying oco-category of M and the (oo, 1)-category Na(M°) where Na is the simplicial nerve
construction (see [99, Def. 1.1.5.5]) and M® denotes the full simplicial subcategory of M of cofibrant-
fibrant objects. In other words we have an isomorphism

N(M)[W ™1 ~ Na(M°) (2.2.1)
in the homotopy category of simplicial sets with the Joyal model structure [74].

This statement provides an co-generalization of the fundamental result by Quillen (see [113)]) telling
us that the localization Ho(M) is equivalent to the naive homotopy theory of cofibrant-fibrant objects.
By combining this result with [99, Thm. 4.2.4.1], we find a dictionary between the classical notions
of homotopy limits and colimit in M (with M simplicial) and limits and colimits in the underlying
(00, 1)-category of M.

12 Assume the existence of functorial factorizations
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2.2.1 Combinatorial Model Categories

The theory of combinatorial model categories and that of presentable (0o, 1)-categories are equivalent.
Morever, this equivalence is compatible with left Bousfield localizations:

Proposition 2.2.2. (/99, A.3.7.4, A.53.7.6]) Let C be a big (00, 1)-category. Then, C is presentable if
and only if there exists a big U-combinatorial simplicial model category M such that C is the underlying
(00, 1)-category of M. Moreover, if M is left-proper, left Bousfield localizations of M '3 correspond
bijectively to accessible reflexive localizations of C (see our Notations).

F
This has many important consequences. To start with, if M __—=N is a Quillen adjunction
G

between combinatorial model categories then it induces an adjunction between the underlying (oo, 1)-
categories. To see this, remember from our preliminaries that the localization N(M)[W 1] can be
obtained as a fibrant-replacement for the pair (N (M), W) in the model category of marked simplicial
sets. Under the combinatorial hypothesis, M admits cofibrant and fibrant replacement functors and
of course, they preserve weak-equivalences. If we let M¢ denote the full subcategory of M spanned by
the cofibrant objects and W, the weak-equivalences between them, we will have an inclusion of marked
simplicial sets (IN(M°), W) C (N(M), W) together with a map in the inverse direction provided by
the cofibrant-replacement functor (the same applies for the subcategories of fibrant, resp. cofibrant-
fibrant, objects). By the universal property of the localization, these two maps provide an equivalence
of (00, 1)-categories N (M¢)[W 1] ~ N(M)[W ~1]. Back to the Quillen adjunction (F,G), Ken Brown’s
lemma provides a well-defined map of marked simplicial sets

(N (M), We) = (N(N°), W¢) (2.2.2)

and therefore, a new one

N W] = NN W] (2.2.3)

through the choice of fibrant-replacements in the model category of marked simplicial sets. It is the
content of [100, 1.3.4.21] that if the original Quillen adjunction is an equivalence then this map is will
also be.

Thanks to the results of [45] we know that every combinatorial model category is Quillen equiv-
alent (by a zig-zag) to a simplicial combinatorial model category. The proposition implies that the
underlying (0o, 1)-category of a combinatorial model category is always presentable. In particular, it
admits all limits and colimits which, again by the results of [45] together with the [99, Thm. 4.2.4.1],
can be computed as homotopy limits and homotopy colimits in M, namely, an object X € M is an
homotopy limit (resp. colimit) of a diagram I — M if and only if it is a limit (resp. colimit) in
N (M)[W 1] of the composition N(I) — N(M) — N(M)[W ~1], now in the sense of (0o, 1)-categories
(see [100, 1.3.4.23 and 1.3.4.24]).

Moreover, combining [99, Thm. 4.2.4.4] again with the main result of [45] we find that for any
combinatorial model category M and small category I, there is an equivalence

NV ! ] ~ Fun(N(I), N(MV)[W™1)) (2.2.4)

levelwise

In particular, for a left Quillen map between combinatorial model categories, the map induced
between the underlying (oo, 1)-categories (as above) commutes with colimits. The presentability,
together with the adjoint functor theorem ([100, Cor. 5.5.2.9]) implies the existence of a right adjoint
N(M)[W 1 + N(N.)[W.!=1] which we can describe explicitly as the composition

NONY) —Lo NONel) —S o N(WF) — 2 N (M )= N (V) (2.2.5)

where P is a fibrant replacement functor in N and @ is a cofibrant replacement functor in M.

13with respect to a class of morphisms of small generation
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In the simplicial case the underlying adjunction can be obtained with simpler technology (see [99,
Prop. 5.2.4.6] defining F'(X) as a fibrant replacement of F(X) and G(Y') via a cofibrant replacement
of G(Y).

2.2.2 Compactly Generated Model Categories

The following discussion will be usefull in the last part of this work. Let M be a model category.
Recall that an object X in M is said to be homotopically finitely presented if the mapping space
functor Map(X,—) commutes with filtered homotopy colimits. Recall also that if M is cofibrantly
generated with I a set of generating cofibrations, then X is said to be a strict finite I-cell if there
exists a finite sequence of morphisms in M

Xo=0—>X—>.—»X,=X (2.2.6)

such that for any i, we have a pushout square

X; = X1 (2.2.7)

]

A—>-=B
with s € I. Recall also that M is said to be compactly generated if it is cellular and there is a set
of generating cofibrations (resp. trivial cofibrations) I (resp. J) whose domains and codomains are

cofibrant and (strictly) w-compact and (strictly) w-small with respect to the whole category M. We
have the following result

Proposition 2.2.3. ([1/1] Prop. 2.2) Let M be a compactly generated model category. Then any
object is equivalent to a filtered colimit of strict finite I-cell objects. Moreover, if the (strict) filtered
colimits in M are exact, an object X is homotopically finitely presented if and only if it is a retract of
a strict finite I-cells object.

This proposition, together with the results of [100] described in the last section, implies that if
M is a combinatorial compactly generated model category where (strict) filtered colimits are exact,
then the compact objects in the presentable (0o, 1)-category N (M)[W 1] are exactly the homotopi-
caly finitely presented objects in M. Moreover, we have a canonical equivalence N (M)W 1] ~
Ind((N(M)[W~1])#) (consult our Notations).



CHAPTER 3

Preliminaries Il - A World Map of Higher
Algebra

Our goal in this section is to review the fundaments of the subject of higher algebra as developed in the
works of J. Lurie in [100]. We collect the main notions and results and provide some new observations
and results needed in the later sections of this work. The reader familiar with the subject can skip
this section and consult these results later on.

3.1 oo0-Operads and Symmetric Monoidal (oo, 1)-categories

The (technical) starting point of higher algebra is the definition of a symmetric monoidal structure
on a (0o, 1)-category (see Section 3.9 for the philosophical motivations). The guiding principle is that
a symmetric monoidal (0o, 1)-category is the data of an (oo, 1)-category together with an operation
C x € — €, a unit object A[0] — € and a collection of commutative diagrams providing associative
and commutative restraints. There are three main reasons why a precise definition is difficult using
brute force: (i) we don’t know how to make explicit he whole list of diagrams; (i7) these diagrams are
expected to be interrelated; (ii7) in higher category theory the data of a commutative diagram is not
a mere collection of vertices and edges: commutativity is defined by the existence of higher cells. The
first and second problem exist already in the classical setting. The third problem makes the higher
setting even more complicated for now to give () is to specify higher cells in Cat, and (i4) is to write
down explicit relations between them.

In this work we will follow the approach of [100] where a symmetric monoidal (oo, 1)-category is
a particular instance of the notion of cc-operad. In order to understand the idea, we recall that both
classical operads and classical symmetric monoidal categories can be seen as particular instances of the
more general notion of colored operad (also known as ”‘multicategory”’). At the same time, classical
symmetric monoidal categories can be understood as certain types of diagrams of categories indexed
by the category Fin. of pointed finite sets. Using the Grothendieck-Construction, we can encode this
diagram-style definition of a symmetric monoidal category in the form of a category cofibered over
Fin, with an additional property - the fiber over a finite set (n) is equivalent to the n-th power of
the fiber over (1) (follow the notations below). Moreover, by weakening this form, it is possible to
reproduce the notion of a coloured operad in this context. This way - operads, symmetric monoidal
structures and coloured operads - are brought to the same setting: everything can be written in the
world of ”things over F'in,”. The book [92] provides a good introduction to these ideas.

In [103, 33, 32, 31] the authors explore another approach to the theory of (oo, 1)-operads. The key
observation is that the theory of simplicial sets admits a natural extension - the theory of dendroidal
sets - that allows us to naturally capture the structure of a multicategory. Similarly to simplicial sets,
these admit an appropriate homotopy theory, which more recently in [67] was proved to be equivalent
to the theory developed by J. Lurie in [100]. We will give a brief overview below.

35
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3.1.1 oc-operads

In order to provide the formal definitions we need to recall some of the terminology introduced in
[100]. We write (n) € N(Fin.) to denote the finite set {0,1,...,n} with 0 as the base point and (n)™
to denote its subset of non-zero elements. A morphism f : (n) — (m) will be called inert if for each
i € (m)T, f71({i}) has exactly one element. Alternatively, a map f is inert iff it is surjective and
the induced map (n) — f~1({0}) — (m)* is a bijection. Notice that the canonical maps (n) — (0)
are inert. Moreover, for each i € (n)*, we write p’ : (n) — (1) for the inert map sending i to 1 and
everything else to 0. We say that f is active if f=1({0}) = {0}.

Definition 3.1.1. ([100/- Definition 2.1.1.10)
An oo-operad is an co-category OF together with a map p : O° — N(Fin) satisfying the following
list of properties:

1. For every inert morphism f : (m) — (n) and every object C in the fiber O?m = p1({(m)}),
there exists a p- coCartesian morphism (see [99, Def. 2.4.1.1]) f : C — C lifting f. In particular,
f induces a functor fy: ( ) = Oa),
2. Given objects C in O%m and C' in O%w and a morphism f : (m) — (n) in Fin,, we write

Mapé@, (C,C") for the disjoint union of those connected components of Mapos (C,C") which lie
over f € Mapn(pin,)({m), (n)) := Hompi,((m), (n)).

We demand the following condition: whenever we choose p-coCartesian morphisms C' — C
lifting the inert morphisms p* : (n) — (1) for 1 <1i <mn (these liftings exists by (1)), the induced
map

Mapl . (C,C") — HMapp Of(C o) (3.1.1)
is an homotopy equivalence of spaces;

3. For each n > 0, the functors p} : O%w — O (where O® denotes the fiber over (1)) induced by the
inert maps p* through condition (1), induce an equivalence of (0o, 1)-categories O‘a) — 0™ In

particular, for n =0 we have O ~ A[0].

Notice that with this definition any oco-operad O® — N(Fin,) is a categorical fibration. From
now, we will make an abuse of notation and write O% for an co-operad p : 0% — N(Fin,), ommiting
the structure map to N(Fin,). We denote the fiber over (1) by O and refer to it as the underlying co-
category of O®. The objects of O are called the colours or objects of the co-operad O%. To illustrate the
definition, condition (3) tells us that any object C' € O% living over (n) can be identified with a unique
(up to equivalence) collection (X1, X, ..., X,,) where each X; is an object in O. Moreover, if C — C’
is a coCartesian morphism in O® lifting an inert morphism (n) — (m) and if C = (X1, Xo, ..., X,,)
then C’ corresponds (up to equivalence) to the collection (Xs-1({1}), s X¢-1({m}))- In other words,
coCartesian liftings of inert morphisms C = (X1, X, ..., X,,) — C’ in O%® correspond to the selection
of m colours (without repetition) out of the n presented in C. Finally, if C = (X;)1<i<, and C' =
(X})1<i<m are objects in 0%, condition (2) tells us that

Mapoe (Xi)i1<i<n, (X})1<i<m) HMGPO® i)1<i<n, Xj) (3.1.2)

Let p: O® — N(Fin,) be an co-operad. We say that a morphism f in O% is inert if its image in
N(Fin,) is inert and f is p-coCartesian. We say that f is active if p(f) is active. By [100, 2.1.2.4],
the collections ({inert morphism}, {active morphisms}) form a (strong) factorization system in O®
([99, Def. 5.2.8.8)).

The simplest example of an oc-operad is the identity map N(Fin,) — N(Fin,). Its underlying
(00, 1)-category corresponds to A[0]. It is called the commutative co-operad and we use the notation
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Comm® = N(Fin,). Another simple example is the trivial co-operad Triv®. By definition, it is given
by the subcategory of N(F'in,) of all objects (n) together with the inert morphisms.

More generally, there is a mechanism - the so-called operadic nerve N®(—) - to produce an oo-
operad out of a simplicial coloured operad whose mapping spaces are Kan-complexes.

Construction 3.1.2. If A is a simplicial coloured operad, we construct a new simplicial category A
as follows: the objects of A are pairs ((n), (X1, ..., X;,)) where (n) is an object in Fin, and (X, ..., X;,)
is a sequence of colours in A. The mapping spaces are defined by the formula

Map i (X1, Xn), V1, V) o= [T []Mapa((Xa)aes-1qip, ¥o) (3.1.3)

fi{n)y—(m)i=1

If A is enriched over Kan complexes, it is immediate that A is a fibrant simplicial category. Follow-
ing [100, 2.1.1.23] we set N®(A) := Na(A). In this case (see [100, 2.1.1.27]) the canonical projection
7w : N®(A) — N(Fin,) is an (oo, 1)-operad. In particular, this mechanism works using a classical
operad as input.

Example 3.1.3. This mechanism can be used to construct the associative operad Ass®. Following
the Definition 4.1.1.3 of [100]), we let Ass be the multicategory with one color a and having as set of
operations Hom({a},a) the set of total order relations on I. In other words, an operation

(a,..,a) > a (3.1.4)

consists of a choice of a permutation of the n-factors. We can now understand Ass as enriched over
constant Kan-complexes and applying the Construction 3.1.2 we find a fibrant simplicial category Ass
whose simplicial nerve is by definition, the associative co-operad Ass®.

Explicitly, the objects of Ass® can be identified with the objects of N(Fin,). Morphisms f :
(n) — (m) are given by the choice of a morphisms in N(Fin.), (n) — (m) together with the choice
of a total order on each f~1({j}) for each j € (m)°. With this description, it is obvious that Ass®
comes equipped with a map towards N(F'in.) obtained by forgetting the total orderings.

Example 3.1.4. The associative operad represents the first element in a distinguished family of oco-
operads: for any natural number n € N, we can construct a fibrant simplicial colored operad [100,
Def. 5.1.0.2] whose simplicial nerve E® is called the co-operad of little n-cubes. For every n > 0 the
objects of E® are the same objects of N(Fin,) and in particular it only has one color. When n = 1,
there is an equivalence EY ~ Ass. Moreover, there are natural maps of co-operads E® — E% 1 and
by [100, Cor. 5.1.1.5], the colimit of the sequence (in the (0o, 1)-category of operads described in the
next section)

EY - EP - ES — ... (3.1.5)

is the commutative operad Comm®.

3.1.2 The (00, 1)-category of oco-operads

By definition, a map of co-operads is a map of simplicial sets O® — (0’)® over N(Fin,), sending inert
morphisms to inert morphisms. Following [100], we write Algo(O’) to denote the full subcategory of
Funy (pin,)(0%,(0")%) spanned by the maps of co-operads.

The collection of co-operads can be organized in a new (0o, 1)-category Op,, which can be obtained
as the simplicial nerve of the fibrant simplicial category whose objects are the (oo, 1)-operads and the
mapping spaces are the maximal Kan-complexes inside Algo(O’). According [100, Prop. 2.1.4.6],
there is a model structure in the category of marked simplicial sets over N(F'in,) which has Op_, as
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its underlying (oo, 1)-category.
Let us now briefly present some alternative approaches to the theory co-operads:

e As already mentioned in the introduction, there is the approach using dendroidal sets. The
language of dendroidal sets was introduced in [103] with the intention of generalizing the inter-
play between simplicial sets and categories to englobe also colored operads. There the authors
construct a category of (rooted) trees Q which includes A as a full subcategory and define den-
droidal sets as presheaves of sets over 2. Any coloured operad admits a nerve encoded by a
dendroidal set. More recently in [33] the authors proved the existence of a model structure on
dendroidal sets that extends the Joyal’s model structure on simplicial sets. A oco-operad is then
defined to be a fibrant object for this model structure.

e There is the approach of dendroidal spaces studied in [31]. By definition, a dendroidal space
is a simplicial object in the category of dendroidal sets, or, equivalently, a functor from 2°P
to simplicial sets. In loc. cit., the authors introduce a Segal type condition on the objects of
this category and a completeness condition like the one for the complete Segal spaces of Rezk.
Moreover, they prove the existence of a model structure on dendroidal spaces for which these
Segal-like complete objects are exactly the fibrant objects;

e Also in [31] the authors introduce the notion of a Segal operad. By definition these are also
dendroidal spaces this time under the requirement that n (by definition, the image of [0] €
A along the inclusion A C ) must be sent to a discrete simplicial set, together with the
requirement for a certain Segal-like condition to hold. The authors prove the existence of a model
structure on the full subcategory of dendroidal spaces spanned by those objects X : QP — A
that send 7 to a final object (so-called pre-Segal Operads) and check that the fibrant objects for
this model structure are exactly the Segal operads [31, Thm 8.13 and 8.17]. The strictification
result [99, 4.2.4.4] provides then an equivalence of (oo, 1)-categories between the underlying
(00, 1)-category of the model structure on pre-Segal Operads and Fun¢97:1(N(Q)°P,§) - the
full subcategory of Fun(N()°?,8) spanned by those dendroidal spaces that satisfy the Segal
condition for trees and send 7 to a discrete space.

e Finally, there is the approach using Simplicial colored Operads. By definition, these are colored
operads enriched in simplicial sets. Again, this category admits a model structure for which the
fibrant objects are exactly the colored operads enriched in Kan-complexes. See [32, Thm 1.4].

The first, second and third approaches are known to be Quillen equivalent. See, respectively,
the Corollary 6.7 and Theorem 8.15 in [31]. The third and fourth approaches are also known to
be Quillen equivalent (see [32, Thm 8.4]). More recently in [67], they were all shown to be Quillen
equivalent to the approach of J. Lurie used in this overview. In particular their associated underlying
(00, 1)-categories are equivalent and we have

Opoe ~ Fun®°9eb1(N(Q)°P, 8) (3.1.6)

This presentation of the theory of oco-operads in 8 provides some intuition on how to define oo-
operad objects in any cartesian symmetric monoidal (oo, 1)-category €% (see Section 3.1.8 below).
This is not at all immediate using the framework of J. Lurie in [100]. We won’t pursue this in this
work.

3.1.3 Monoidal and Symmetric Monoidal (oo, 1)-categories

We say that a map of oco-operads ¢ : C®¥ — 0% is a fibration of co-operads (respectively coCartesian
fibration of oco-operads) if it is a categorical fibration (resp. coCartesian fibration) of simplicial sets
(see [99, Def. 2.4.2.1 ).



3.1 co-Operads and Symmetric Monoidal (0o, 1)-categories 39

Definition 3.1.5. Let O® be an oo-operad. An O-monoidal (oo, 1)-category is the data of an oo-
operad C® — N(Fin,) together with a coCartesian fibration of co-operads €% — O%®. A symmetric
monoidal (oo, 1)-category is a Comm-monoidal (0o, 1)-category. A monoidal (0o, 1)-category is an
Ass-monoidal (0o, 1)-category.

Let p : C® — N(Fin,) be a symmetric monoidal (oo, 1)-category. As for general oco-operads,
we denote by C the fiber of p over (1) and refer to it as the underlying (oo, 1)-category of C®. To
understand how this definition encodes the usual way to see the monoidal operation, we observe that
if f: (n) — (m) is an active morphism in N(Fin,) and C = (Xq, ..., X,,) is an object in the fiber over

(n) (notation: G%L)L by the definition of a coCartesian fibration, there exists a p-coCartesian lift of f,

f:C — C'" where we can identify C’ with a collection (Y1, ...,Y,,), with each Y; an object in €. The
coCartesian property motivates the identification

i= Q) X (3.1.7)

acf~1({i})

where the equality should be understood only in the philosophical sense. When applied to the active
morphisms (0) — (1) and (2) — (1) we obtain functors 7 : A[0] = C and ® : C x € — C. We will
refer to the first as the unit of the monoidal structure. The second recovers the usual multiplication.
By playing with the other active morphisms we recover the usual data defining a symmetric monoidal
structure. The coherences will appear out of the properties characterizing the coCartesian lifts.

It is an easy but important observation that these operations endow the homotopy category of C
with a symmetric monoidal structure in the classical sense.

Example 3.1.6. Let C be a classical symmetric monoidal category. By regarding it as a trivial sim-
plicial coloured operad and using the Construction 3.1.2 we obtain an oco-operad N®(€) — N (Fin.)
which is a symmetric monoidal (0o, 1)-category whose underlying (oo, 1)-category is equivalent to the
nerve N(C).

Remark 3.1.7. Let €® — N(Fin,) be a symmetric monoidal (0o, 1)-category. Then, €% has a nat-
urally associated monoidal structure obtained as the pullback C® x N(Fin) Ass® — Ass® performed
along the natural map Ass® — N(Fin,). It follows from the definitions that both these monoidal
structures have the same underlying (oo, 1)-category.

3.1.4 Monoidal Functors

Let p: €® — 0% and q : D® — O® be O-monoidal (oo, 1) — categories and let F : €€ — D® be a
map of oc-operads over O%. Let us first consider O = Comm. For any object object C = (X,Y) in
the fiber over (2), the definitions allow us to extract a natural morphism in D

FX)F(Y)— F(XQ®Y) (3.1.8)

which in general doesn not have to be an equivalence. In other words, operadic maps correspond to
laxz monoidal functors.

Back to the general case, the full compatibility between the monoidal structures is equivalent to ask
for F to send p-coCartesian morphisms in €% to g-coCartesian morphisms in D®. These are called O-
monoidal functors and we write Fung (€, D) to denote their full subcategory inside Funge (€%, D).
It follows from the definitions that an O-monoidal functor C® — D® is an equivalence of co-categories
if and only if the map induced between the underlying co-categories € — D is an equivalence.
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3.1.5 Objectwise product on diagram categories

Let p: € — N(Fin,) be a symmetric monoidal (0o, 1)-category. Given an arbitrary simplicial set K,
and similarly to the classical case, we can hope for the existence of a monoidal structure in Fun(K, C)
defined objectwise, meaning that the product of two functors f, g at an object &k € K should be given
by the product of f and g at k, in C®. Indeed, there exists such a structure Fun(K,C)®, defined as
the homotopy pullback of the diagram of co-categories

Fun(K,C®) (3.1.9)

|

N(Fin,) —>> Fun(K, N(Fin,))

where the vertical map corresponds to the composition with p and the map ¢ sends an object (n) to the
constant diagram in N (Fin,) with value (n). By [99, 3.1.2.1], the composition map Fun(K,C®) —
Fun(K, N(Fin,)) is also a coCartesian fibration and therefore since every object in the diagram
3.1.9 is fibrant, the homotopy pullback is given by the strict pullback. Moreover, the natural map
Fun(K,C)® — N(Fin,) is a cocartesian fibration because it is the pull-back of a cocartesian fibration.
Notice also that the underlying (oo, 1)-category of Fun(K,C)® is equivalent to Fun(K,C) by the
formulas

Fun(K,€)® X (pin.y Al0] =~ Fun(K, C®) X n(pin.y) N(Fin. x¥ pin.) Al0] (3.1.10)

~ Fun(K, €%) X N (pin,)) A0] = Fun(K, €) (3.1.11)

In fact these constructions hold if we consider €® — O% any coCartesian fibration of operads (see
100, 2.1.3.4]).

3.1.6 Subcategories closed under the monoidal product

If p: €® — N(Fin,) is a symmetric monoidal (0o, 1)-category with underlying category €, whenever
we have Gy C € a full subcategory of C we can ask if the monoidal structure €® can be restricted
to a new one (€p)® in Cg. As explained in [100, 2.2.1.1, 2.2.1.2], if Cq is stable under equivalences
(meaning that if X is an object in Gy and X — Y (or Y — X) is an equivalence in €, then Y is in
Co) and if Cp is closed under the tensor product € x € — € and contains the unit object, then the
restriction of p to the full subcategory (€g)® C C® spanned by the objects X = (Xi, ..., X,) in €%
where each X; is in €y, is again a coCartesian fibration and the inclusion (35@ C (9% is a monoidal
functor. Moreover, if the inclusion €y C € admits a right adjoint 7, it can be naturally extended to
a map of oc-operads 7€ : €® — CF. In particular, for any co-operad 0%, 7€ gives a right adjoint to
the canonical inclusion

Algo(eo) — Alg@(e) (3.1.12)
(see 3.2 below for the theory of algebras).

3.1.7 Monoidal Reflexive Localizations

Let again p : €® — N(Fin,) be a symmetric monoidal (co, 1)-category. In the sequence of the previ-
ous topic, we can find situations in which a full subcategory €y C € is not stable under the product
in € but we can still define a monoidal structure in Cg. We say that a subcategory D€ C €% is a
monoidal reflexive localization of C% if the inclusion D® C C® admits a left adjoint map of co-operads
L% : C® — D® with L® a monoidal map. By [100, 2.2.1.9], if €y is a reflexive localization of € and
the localization satisfies the condition:
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(*) for every L-equivalence f : X — Y in C (meaning that L(f) is an equivalence) and every object
Z in @, the induced map X ® Z — Y ® Z is again a L-equivalence (see [100, 2.2.1.6, 2.2.1.7]).

then the full subcategory G? of C® defined in the previous topic, becomes a monoidal reflexive local-
ization of C®. However, and contrary to the previous situation, the inclusion 689 C C® will only be
lax monoidal.

Remark 3.1.8. If 689 C €% is a monoidal reflexive localization, then for any co-operad O%® the
category of algebras Algo(Cp) is a reflexive localization of Algo(C). (see 3.2 below for the theory of
algebras).

3.1.8 Cartesian and Cocartesian Symmetric Monoidal Structures

We recall the analogues of two classical situations. If € is a category with finite products and a final
object then the operation (-x-) gives birth to a symmetric monoidal structure in €. As explained
in [100, Section 2.4.1] there is a mechanism that allows us to extend this classical situation to the
oo-setting. For any (oo, 1)-category € we can construct a new (oo, 1)-category €* equipped with a
map to N(Fin,) [100, 2.4.1.4] this map being a symmetric monoidal structure if and only if € admits
finite products [100, 2.4.1.5]. More generally, and thanks to the results of [100, 2.4.1.6, 2.4.1.7 and
2.4.1.8] a symmetric monoidal (0o, 1)-category €% is said to be Cartesian if its underlying oo-category
C admits finite products and we have a monoidal equivalence C® ~ G* which is the identity on C.
Moreover, the construction €* is characterized by a universal property related to the preservation
of products: if € and D are (oo, 1)-categories with finite products then the space of monoidal maps
C* — D* is homotopy equivalent to the space of functors € — D that preserve products.

The second classical situation is that of a category with finite sums and an initial object. In the
oo-categorical setting we can apply the preceding argument to the opposite category of € to deduce the
existence of a monoidal structure induced by the disjoint sums in €. In [100, Section 2.4.3] the author
provides an independent description of this monoidal structure. Again, from any (oo, 1)-category €
we can construct (see [100, 2.4.3.1]) a simplicial set CLI together with a map to N(Fin,) which we can
prove to be always an oo-operad [100, 2.4.3.3]. Finally, and as explained in the Remark [100, 2.4.3.4]
this co-operad is a symmetric monoidal (oo, 1)-category if and only if and € has finite sums and an
initial object. With this, we say that an co-operad is cocartesian if it is equivalent to one of the form
el for some (oo, 1)-category C. The assignemt € — CL has a universal property [100, Thm 2.4.3.18]:
for any symmetric monoidal (oo, 1)-category D® any map € — C'Alg(D) can be lifted in a essentially
unique way to a lax monoidal functor LI — D®.

Finally, if € is an (o0, 1)-category with direct sums and a zero object, the cartesian and cocartesian
symmetric monoidal structures are canonically equivalent by means of the description in [100, 2.4.3.19].

In the next section (Remarks 3.2.2 and 3.2.3) we will review how the theory of algebras in a carte-
sian/ cocartesian structure admits a much more simpler description than in the general case.

3.1.9 Monoid objects

Following [100, Section 2.4.2], if €* — N(F'in,) is a cartesian symmetric monoidal (co, 1)-category in
the sense of the previous subsection, we define for each oc-operad p : O® — N(Fin,) an O-monoid
object in C as being a functor F' : O® — C satisfying the usual Segal condition: for each object
C = (z1,...,zy) in O% with x1,...,2, in O and given p-coCartesian liftings g : (x1,...,2,) — ; for
the inert morphisms p’ in N(Fin,), the induced product map F(C) — [, F(X;) should an equivalence
in €. The collection of O-monoid objects in € can be organized in a new (oo, 1)-category Mong(C).
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3.2 Algebra Objects

3.2.1 Algebras over an (oo, 1)-operad
Let

e (3.2.1)
|»
oe L. 98

be a diagram of oco-operads with p a fibration of co-operads. We denote by Funge (0'®, C®) the strict
pullback

Fun(0'®,C®) (3.2.2)

Al0] — > Fun(0'®, 0®)

whose vertices correspond to the dotted maps rendering the diagram commutative

e® (3.2.3)

1l
Ve

2 p
Ve

oe L 9o
By construction, it is an (oo, 1)-category and following [100, Def. 2.1.3.1], we denote by Algg: /¢ (C)
its full subcategory spanned by the maps of co-operads defined over O®. We refer to it as the co-
category of O'-algebras of €. We consider some special cases:

o If f = Id, we will simply write Alg,o(C) to denote this construction;

e In the particular case O® = N(Fin,), this construction recovers the oo-category of maps of
oco-operads Alge:(€) defined earlier in this survey.

e If both O'® = 0% = N(Fin,), the co-category Algeomm(C) can be identified with the oo-
category of sections s : N(Fin) — C® of the structure map p : €® — N(Fin,), which send inert
morphisms to inert morphisms. This condition forces every s({n)) to be of the form (X, X, ..., X)
for some object X in €. Moreover, the image of the active morphisms in N(Fin,) will produce
maps X ® X - X and 1 — X endowing X in € with the structure of a commutative algebra.
The cocartesian property is the machine that produces coherence diagrams. As an example, to
extract the first associative restraint we consider the image through s of the diagram

(3) —=(2) (3.2.4)

of active maps in N(Fin,). Since s((1)) lives in the fiber over (1), the cocartesian property will
ensure the existence of a uniquely determined (up to homotopy) new commutative square in €

XXX -->X®X (3.2.5)
o> \
\ // \
y h |
X@X-—---=X
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The commutativity restrain follows from the commutativity of the diagram

(2) — (1) (3.2.6)

in N(Fin.,), where the vertical map is permutation.

These are called commutative algebra objects of € and we write CAlg(C) := Alg/eomm(C). In

particular, it follows from the description Comm® ~ colimkE,? that C'Alg(C) is equivalent to
limy Algg, (©).

o If O® = Ass® — O® = N(Fin,) is the associative operad, the associated algebra-objects
in C® can be identified with the data of an object X in € together with a unit and a mul-
tiplication satisfying the usual associative coherences which are extracted as explained in the
previous discussion. The main difference is that the permutation of factors is no longer a map
in Ass® so that the commutativity restraint disappears. It follows that the composition with
Ass® — N(Fin,) produces a forgetful map C Alg(C) — Algass(€).

Example 3.2.1. Let C be a classical symmetric monoidal category. As explained in the Example
3.1.6, the nerve N(C) adquires the structure of a symmetric monoidal (oo, 1)-category. It follows
that CALg(N(C)) and Algass(N(€)) can be identified, respectively, with the nerves of the
classical categories of strictly commutative (resp. associative) algebra objects in € in the classical
sense.

e Another important situation is the case when 0'® = Triv® — 0% = N(Fin,) is the trivial
operad for which, as expected, we have a canonical equivalence Algy,.;,(C) ~ € (see [100, 2.1.3.5
and 2.1.3.6]).

e Following [100, 4.1.1.6], if both O'® = 0% = Ass® we use the notation Alg(C) := Alg,a,s(C).
It follows from this notation that if €% is a symmetric monoidal (oo, 1)-category, we have a
canonical equivalence between Algass(C) and Alg(C® X n(pin,) Ass®) where C¥ X n(pip, ) Ass®
is the Ass-monoidal (oo, 1)-category obtained as explained in the Remark 3.1.7.

The theory of algebras becomes much simpler in the case of cartesian and cocartesian monoidal
structures. The following two remarks collect some of these aspects:

Remark 3.2.2. If €% is cartesian symmetric monoidal (oo, 1)-category, we have a canonical map
relating the theory of algebras with the theory of monoids described in the previous section

Algo(€C) = Mong(C) (3.2.7)

By [100, 2.4.2.5] this map is an equivalence. We will use this in the next section.

Remark 3.2.3. In the classical situation if € is a category with finite sums [ [ then every object X in
C carries admits a unique structure of commutative algebra, where the codiagonal map X [[ X — X
is the multiplication. In the oco-setting this situation has its analoge for any Cocartesian oo-operad
as a consequence of the fact that Cocartesian co-operads are determined by their underlying (oo, 1)-
categories in a very strong sense. More precisely (see [100, 2.4.3.16]), for any unital generalized
oc-operad O® and any Cocartesian oco-operad CL the restriction map Alge(€) — Fun(0,C) is an
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equivalence of (0o, 1)-categories. In particular, when O% is the commutative or the associative operad!,
the evaluation functors Algass(€) — € and C Alg(C) — € are equivalences so that the forgetful map

CAlg(€) Algass(©) (3.2.8)

N

is also an equivalence. In particular, by choosing an inverse to C' Alg(C) — € we find a precise way to
reproduce the classical situation.

3.2.2 Symmetric Monoidal (oo, 1)-categories as commutative algebras in Cat
and Monoidal Localizations

Let us consider the (oo, 1)-category of small (oo, 1)-categories Cato, (see [99, Chapter 3 |). The
cartesian product endows Cat., with a symmetric monoidal structure Cat2 which can be obtained
as the operadic nerve of the combinatorial simplicial model category of marked simplicial sets with
the cartesian model structure. The objects of CatZ are the finite sequences of (oo, 1)-categories
(€4,...,C,) and the morphisms (Cy,...,C,) = (D1,..., Dyp) over a map f : (n) — (m) are given by
families of maps

II ¢-Dbi (3.2.9)
Jef~r{ih)
with 1 < ¢ < m. Using the Grothendieck-construction of [99, Thm. 3.2.0.1], the objects of C Alg(Cat )
Moneomm(Catss) can be identified with small symmetric monoidal (oo, 1)-categories and the maps
of algebras are identified with the monoidal functors (see [99, 2.4.2.6]). The same idea works if we
replace Cat, by Catfég . These examples will play a vital role throughout this work.

Remark 3.2.4. Thanks to [100, 2.2.4.9] the forgetful functor CAlg(Cats) — Opso admits left
adjoint Env®. Given an oo-operad O, the symmetric monoidal (0o, 1)-category Env®(0®) is called
the monoidal envelope of O%.

The theory in 3.1.7 can be extended to localizations which are not necessarily reflexive. Recall from
our preliminaries on higher category theory that the formula (€, W) ~ C[W ~1] provides a left adjoint
to the fully-faithful map Cat.. € WCats,. This makes Cat, a reflexive localization of W(Cat,. The
last carries a natural monoidal structure given by the cartesian product of pairs which extends the
cartesian product in Cats. By [100, 4.1.3.2] the formula (€, W) + C[W 1] commutes with products
so that, as explained in 3.1.8 it extends to a monoidal functor

WCatZ, — Catl, (3.2.10)

inducing a left adjoint to the inclusion

CAlg(Cats) C CAlg(WCat o) (3.2.11)

We can identify the objects in CAlg(WCaty,) with the pairs (€%, W) where €% is a symmetric
monoidal (oo, 1)-category and W is collection of edges in the underlying co-category C, together with
the condition that the operations ®" : €™ — € send sequences of edges in W to a new edge in W. The
previous adjunction is telling us that every time we have a symmetric monoidal (oo, 1)-category €%
together with a collection of edges W which is compatible with the operations, then there is natural
symmetric monoidal structure C®[W ~1® in the localization C[W ~1]. Plus, the localization functor is
monoidal and has the obvious universal property (see [100, 4.1.3.4]).

Notice that the condition (%) in 3.1.7 is exactly asking for the edges W = L — equivalences to
satisfy the compatibility described in the present discussion.

1These are both unital operads

~
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3.2.3 Change of Operad and Free Algebras

Let us consider now a diagram of oco-operads.

e® (3.2.12)

&

05 —*=0f ——= 0%
with p a fibration. Composition with « produces a forgetful functor

Algo, /0(€) = Algo,/0(€) (3.2.13)

The main result of [100, Section 3.1.3] is that, under some mild hypothesis on C®2, we can use the
theory of operadic Kan extensions (see [100, Section 3.1.2]) to ensure the existence of a left adjoint F'
to this functor [100, Cor. 3.1.3.5]. For each algebra X € Algo,,0(C), F(X) can be understood as the
free O1-Algebra generated by the Oz algebra X [100, Def. 3.1.3.1]: for each color b € Oq, the value of
F(X) at b is given by the operadic p-colimit of the diagram consisting of all active morphisms over
be O?, whose source is in the image of «.

As explained in [100, 3.1.3.6, 3.1.3.9, 3.1.3.13], this left adjoint admits a very precise description
in the case where O, is the trivial operad and Oy = O is the associative or the commutative operad.
Given a trivial algebra X in €, for the first (see [100, Prop. 4.1.1.14]) we obtain

FX)((1) =[] x®" (3.2.14)

n>0

while in the commutative case (see [100, Ex. 3.1.3.13]) we obtain the previous formula mod out by
the action of the permutation groups

FX)((1) = [T(x®" /=) (3.2.15)

n>0

3.2.4 Limits and Colimits of algebras

Another important feature of the oo-categories Alg,o(€) is the existence of limits and colimits. The
first exist whenever they exist in € and can be computed using the forgetful functor (see [100, Prop.
3.2.2.1 and Cor. 3.2.2.5]). The existence of colimits needs a more careful discussion. In order to
make the colimit of algebras an algebra we need to ask for a certain compatibility of the monoidal
structure with colimits in €. This observation motivates the notion of an O-monoidal (00, 1)-category
compatible with X-indexed colimits, with X a given collection of simplicial sets (see [100, 3.1.1.18,
3.1.1.19] and our review in 3.2.8 below). The definition demands the existence of K-colimits on each
C, (for each € 0), and also that the multiplication maps associated to the monoidal structure
preserve all colimits indexed by the simplicial sets K € X, separately in each variable. The main
result ([100, Cor. 3.2.3.2, 3.2.3.3]) is that if C® is an O-monoidal (oo, 1)-category compatible with
X = {x — small simplicial sets}-colimits and if O is an essentially x-small co-operad, then Alg,o(C)
admits k-small colimits. However and in general, contrary to limits, colimits cannot be computed
using the forgetful functor to €, for each color z € O.

Remark 3.2.5. In particular, if C® is a symmetric monoidal (oo, 1)-category compatible with col-
imits, one can easily check that its natural Ass-monoidal structure D® := % x N(Fin.) Ass® is also
compatible with colimits so that Algass(C) ~ Alg(D) has all small colimits.

2These mild conditions hold for any symmetric monoidal (co, 1)-category compatible with all small colimits (see
below) and this will be enough for our present purposes.
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3.2.5 Transport of Algebras via Monoidal functors

Let

PP (3.2.16)

be a morphism of (0o, 1)-operads (not necessarily monoidal) with both p and ¢ given by fibrations of
(00, 1)-operads. In this case, as the composition of maps of co-operads is again a map of oco-operads
f induces a composition map

which we can easily see makes the diagrams

Alg/o(C) R Algo(D) (3.2.18)

\Levz ievm
f{L’

Cg———D,

commute for any color x € O.

3.2.6 Tensor product of Algebras

Let ¢ : C® — N(F'in.) be an oco-operad. Thanks to [100, 3.2.4.1, 3.2.4.3], for any oc-operad O% the
category of algebras Alge(€) can be endowed again with the structure of co-operad p : Algo(C)® —
N(Fin,). Moreover, a morphism « in Alge(€)® is p-cocartesian if and only if for each color z € O its
image through the evaluation functor e, : Algo(C)® — €% is g-cocartersian. In particular, Algo(C)®
is a symmetric monoidal (0o, 1)-category if and only if €% is, and in this case the evaluation functors
e, are symmetric monoidal. In other words, the category of algebras inherits a tensor product given
by the tensor operation in the underlying category C. In particular, for any morphism of co-operads
0’® — 0%, since the forgetful functor f : Algo(C) — Alge/(€) is defined over the evaluation functors
ez, it extends to a monoidal map Alge (€)% — Alge:(€)®.

Remark 3.2.6. Extending the discussion in 3.2.5, by the universal property of the simplicial set
Algo(C)® (see [100, Const. 3.2.4.1]), any monoidal functor €¥ — D® between symmetric monoidal
(00, 1)-categories, extends to a monoidal functor between the symmetric monoidal categories of alge-
bras Algo(€)® — Alge(D)®. By the properties of this monoidal structure, for every color x € O, the
evaluation maps e, provide a commutative diagram of monoidal functors

Algo(€)® — = Algo(D)® (3.2.19)

¥ = D%

As in the classical case, if O = Comm, this monoidal structure is coCartesian (Prop. 3.2.4.7 of
[100]). More generally, for O = Ej, there is a formula relating this monoidal structure with coproducts
in € [100, Theorem 5.3.3.3].
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3.2.7 Tensor Product of co-operads

The (0o, 1)-category of oco-operads admits a symmetric monoidal structure where the tensor product
of two operads O® and (O")® is characterized ([100, 2.2.5.3]) by the data of a map of simplicial sets
[:09%x(0)% = 09®(0")® with the following universal property: for any oco-operad €%, composition
with f induces an equivalence

Algose(o)e),, (€) = Algo(Algo (C)) (3.2.20)

where Algo/(C) is viewed with the operadic structure of the previous section. In particular, the unit
is the trivial operad.

This monoidal structure can be defined at the level of marked simplicial sets over N(Fin,) and
can be seen to be compatible with the model structure therein [100, 2.2.5.7, 2.2.5.13]. Moreover, it is
compatible with the natural inclusion

Catse — Opego (3.2.21)

so that the cartesian product of (0o, 1)-categories is sent to this new product of operads [100, Prop.
2.2.5.15].

An important application is the description of the oo-operad Eﬁj as the tensor product of ]EZ®
with E? [100, 5.1.2.2]. In particular, this characterizes an E®-algebra X in a symmetric monoidal
(00, 1)-category €% has a collection of n different associative multiplications on X, monoidal with
respect to each other.

3.2.8 Symmetric Monoidal Structures and Compatibility with Colimits

As mentioned in 3.2.2 the objects of CAlg(Cuats) can be identified with the (small) symmetric
monoidal (oo, 1)-categories. We have an analogue for the (small) symmetric monoidal (oo, 1)-categories
compatible with K-indexed colimits: as indicated in 2.1, given an arbitrary (oo, 1)-category € together
with a collection X of arbitrary simplicial sets and a collection R of diagrams indexed by simplicial
sets in X, we can fabricate a new (0o, 1)-category P (C) with the universal property described by
the formula (2.1.11). We can now use this mechanism to fabricate a monoidal structure in Catoo(X)
induced by the cartesian structure of Cato,. Given two small (0o, 1)-categories € and € having all
the K-indexed colimits, we consider the collection R = K X X of all diagrams p : K — € x € such
that K € X and p is constant in one of the product components, and define a new (oo, 1)-category
CRC = ?ﬁm(e x €"). By construction it admits all the K-indexed colimits and comes equipped
with a map € x ¢’ — € ® €’ endowed with the following universal property: for any (oo, 1)-category
D having all the K-indexed colimits, the composition map

Fungc (€ ® €', D) = Funggx (€ x €', D) (3.2.22)

is an equivalence. The right-side denotes the category of all K-colimit preserving functors and the left-
side denotes the category spanned by the functors preserving K—colimits separately in each variable.

We can now use this operation to define a symmetric monoidal structure in Cat,(K). For that,
we start with Cat® — N(Fin,) the cartesian monoidal structure in Cats, and we consider the
(non-full) subcategory Cato,(K)® whose objects are finite sequences (€1, ..., €, ) where each C; admits
all K-indexed colimits, together with those morphisms (€1, .., C,) — (D1, ..., D,,) in CatZ over some
f:(n) = {(m), which correspond to a family of maps

I ¢-2 (3.2.23)
jef1({ih)
given by functors commuting with K-indexed colimits separately in each variable. We can now use

the universal property described in the previous paragraph to prove that Cat.,(X)® is a cocartesian
fibration: given a morphism f : (n) — (m) and a sequence of (oo, 1)-categories X = (Cy, ..., C,) having
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all the K-indexed colimits, a locally cocartesian lifting for f at X in Cato.(X)® is given by the family
of universal maps

II ¢-2i= PE II e» (3.2.24)
JEFTH({4}) jef~1 ({4}
which we know commutes with K-indexed colimits separately in each variable. The fact that the com-
position of locally cocartesian morphisms is locally cocartesian follows from [99, 5.3.6.11] Moreover, it
follows from this formula that the canonical inclusion Cat.,(K)® — Cat% is a lax-monoidal functor
(see [100, 4.8.1.3, 4.8.1.4] for the full details).

Finally, the objects of C'Alg(Cat (X)) can be naturally identified with the symmetric monoidal
(00, 1)-categories compatible with K-colimits (see [100, Remark 4.8.1.9])

More generally, given two arbitrary collections of simplicial sets X C XK', it results from the
universal properties defining the monoidal structures that the inclusion

Cat?9(K') C Cat’9(X) (3.2.25)

is lax monoidal and its (informal) left adjoint C ?%/(G) (see our review in 2.1.15) is monoidal.
In other words, for every inclusion X C K" of collections of simplicial sets, if C® is a symmet-
ric monoidal (0o, 1)-category compatible with all K-colimits, the (oo, 1)-category fP%,((?) inherits a
canonical symmetric monoidal structure (P%l (€)® compatible with all the K’-indexed colimits. More-

over, the canonical functor € — P¥ (€) extends to a monoidal functor €¥ — PX (€)® and, again by
ignoring the set-theoretical aspects, the previous adjunction extends to a new one (see [100, 4.8.1.10])

CAlg(Cat®9(K")) ‘—? CAlg(Cat®9(K)) (3.2.26)

Example 3.2.7. In the particular case when X is empty and X’ is the collection of all small sim-
plicial sets, this tells us that if €® is a small symmetric monoidal (oo, 1)-category, the oo-category
of co-presheaves on € inherits a natural symmetric monoidal structure P®(€), commonly called the
convolution product. Moreover, the Yoneda map is monoidal and satisfies the following universal prop-
erty: for any symmetric monoidal (0o, 1)-category D® with all small colimits, the natural map given
by composition

Fun®L(P(@),D) = Fun®(C, D) (3.2.27)
is an equivalence.

Example 3.2.8. The same mechanism tell us that the Ind-completion of a small symmetric monoidal
(00, 1)-category also acquires a symmetric monoidal structure. In fact, Ind is a symmetric monoidal
equivalence (see [100, 5.3.2.11]).

Example 3.2.9. Following the discussion in 2.1.18, Cato({Idem}) can be identified with Cat’de™,
In this case, the previous discussion endows Catﬁiem with a symmetric monoidal structure and the
idempotent-completion Idem(—) is a monoidal left adjoint to the inclusion Catiiem C Catso.

Example 3.2.10. Let €® be a symmetric monoidal (co, 1)-category. We say that € is closed if for
each object X € € the map (— ® X) : € — C has a right adjoint. In other words, €% is closed if and
only if for any objects X and Y in @ there is an object XY and a map Y¥ ® X — Y inducing an
homotopy equivalence Mape(Z ® X,Y) ~ Mape(Z,YX). If C¥ is closed symmetric monoidal (oo, 1)-
category and its underlying co-category € has all small colimits, then C® is a symmetric monoidal
(00, 1)-category compatible with all small colimits. An important example is the cartesian symmetric
monoidal structure on Caty,, where the right adjoint to (— x X) is provided by the construction
Fun(X,—). All small colimits exist in Cat, because it is presentable.
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3.3 Modules over an Algebra

We now recall the theory of module-objects over an algebra-object. We mimic the classical situation:
in a symmetric monoidal category C, each algebra-object A has an associated theory of modules
Mod4(€) and under some nice assumptions on €, this new category has a natural monoidal product.
This provides an example of a more general object - a collection of co-operads indexed by the objects
of a small (0o, 1)-category.

3.3.1 Generalized (0o, 1)-operads and Operadic families

We start with a review of the appropriate language to formulate the notion of a family of co-operads
indexed by the collection of objects of an (oo, 1)-category B. The theory of modules provides an
example, with B = C' Alg(€) for a symmetric monoidal (co, 1)-category C.

In [100], the author develops two equivalent ways to formulate this idea of family. The first is
the notion of a B-operadic family (see [100, 2.3.2.10]). It consists of a categorical fibration p : 0% —
B x N(Fin,) such that

1. for each object b € B, the fiber O® X5 N(Fin.) {b} = N(Fin,) is an co-operad. In particular,
we can identify an object X in the fiber of (b, (n)) as a sequence (b; (X1, ..., X)) by choosing
p-cocartesian liftings X — X; of the canonical morphisms (idp, p; : (n) — (1));

2. For any Z = (V;(Z1,...,Zm)) and X = (b;(X1,..., X)) in O® and every morphism (u, f) :
', (m)) = (b,(n)) in B x N(Fin,), we ask for the canonical map

Mapl (2, X) = [[ Map8*! (2, X;) (3.3.1)
=1

to be an equivalence. In this notation, M apg’é denotes the connected component of Mapge of
all morphisms lying over (u, f).

The second notion is that of a generalized co-operad ([100, Defn 2.3.2.1]). It is given by the data
of an (00, 1)-category O® equipped with a map ¢ : O® — N(Fin,) such that:

1. For any object X over (n) and any inert morphism f : (n) — (m), there is a g-cocartesian lifting
f: X — X’ of f. In particular, these induce functors f; : O%O — O%m) and if (m) = (0) we find
a canonical map 0% — (‘)%%). Let X be a object over (n). Choose X — X; a p-cocartesian lifting
for each p;. Moreover, choose a p-cocartesian lifting X — X for the canonical map (n) — (0)
and p-cocartesian liftings X; — X, o for the null map (1) — (0). Because of the cocartesian

property, the diagram

X, (3.3.2)

/7N

X : Xo~ Xio

)

commutes in O® (up to equivalence).
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2. For each (n), the natural map

0F) = OF) Xo8, - X8, Of) (3.3.3)

(0)

n

induced by the morphisms p; : (n) — (1), is an equivalence. This condition is weaker than the
condition in the definition of an oco-operad for it does not force O%%) to be contractible. This
second axiom allows us to identify an object X over (n) with a sequence of objects (X7, ..., X,)
in O% living over the same (up to equivalence) object Xy € (‘)%%> and motivates the notation
X = (XOa X17 ceey XN)

3. Let X = (Xo; X1,..., X,,) and Z = (Zo; Z1, .., Zm) be objects in OF. For any f : (m) — (n), we
ask for the canonical map

Mapl . (Z, X) HMap S Mapoe (Z, X1)) x X Map0= O (2,x0) Mapgs (Zo, Xo)  (3.3.4)

to be an equivalence.

According to [100, 2.3.2.11], the two notions are equivalent: if ¢ : O® — B x N(Fin,) is a B-
operadic family, the composition with the projection towards N(F'in,) is a generalized co-operad and
the canonical projection O% — B is a categorical equivalence. Conversely, if p: O® — N(Fin,) is a

generalized oco-operad, the product of p with the canonical projection O — (9%%) is a O%)-operadic

family. These two constructions are mutually inverse. Notice also that if B = A[0], we recover the
notion of co-operad.

Let p : O® — N(Fin,) be a generalized oo-operad. We say that a morphism in O® is inert if
it is p-cocartesian and its image in N(Fin,) is inert. If O® and (0’)® are generalized oo-operads,
we say that a map of simplicial sets f : O® — (O’)® is a map of generalized oc-operads if it is
defined over N(F'in,) and sends inert morphisms to inert morphisms. According to [100, 2.3.2.4],
there is a left proper, combinatorial simplicial model structure in the category of marked simplicial
sets over N (F'in,) having the generalized co-operads as cofibrant-fibrant objects. We denote by Opd”
its underlying (oo, 1)-category. According to [100, 2.3.2.6], the model structure for oo-operads is a
Bousfield localization of this model structure for generalized co-operads. At the level of the underlying
(00, 1)-categories this is the same as saying that Op. is a reflexive localization of Op??. The inclusion
understands an oco-operad as generalized oco-operad whose indexing category is A[0].

In the language of (oo, 1)-categories, the relation between the two notions of operadic families
can now be understood by using an adjunction: the assignment O® O% sending a generalized
oo-operad to its fiber over (0) can be understood as a functor F : Op?? — Cat, and as explained in
[100, 2.3.2.9], the map sending an (oo, 1)-category B to the generalized co-operad B x N(F'in,) is a
fully-faithful right adjoint of F. In this language, O® — B x N(Fin,) is an operadic family if and
only it is a fibration of co-operads and its adjoint morphism O% — B is a trivial Kan fibration.

3.3.2 The (0, 1)-category of modules over an algebra-object

Let €% — O® be a fibration of co-operads. Following the results of [100, Section 3.3], by assuming a
coherence condition on the oo-operad 0% (see [100, 3.3.1.9]), it is possible to construct a Alg,o(C)-
operadic family Mod®(€)® — Alg,o(€) x O® whose fiber over an algebra A

Mod3(€)® — 0% (3.3.5)
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can be understood as a theory of A-modules. We will not reproduce here the details of this construc-
tion. Let us just say that if O® is unital (see [100, Def. 2.3.1.1]) 3, the category Alg/o(€) x O% can
be described by means of a nice universal property in the homotopy theory of simplicial sets over
0% with the Joyal model structure (see [100, 3.3.3.5, 3.3.3.6, 3.3.3.7]). Also by means of a universal
property, we can then define a new simplicial set Mod®(€)® over O% (see [100, Const. 3.3.3.1, Def.
3.3.3.8 ]), together with a canonical map

Mod®(€)® — Alg,o(€) x 0¥ (3.3.6)

which by [100, 3.3.3.16] is a fibration of generalized co-operads. Moreover, by [100, Thm. 3.3.3.9], if
0% is coherent, then for each algebra A, the fiber Mod3(€)® := Mod® (€)% x 414, (e) {A} = 0% is a
fibration of co-operads.

3.3.3 Monoidal Structures in Categories of Modules

Under some extra conditions on C%, it is possible to prove that Mod§(€)® is actually an O-monoidal
structure, with A as a unit object. These sufficient conditions are already visible in the classical
situation: If C is the category of abelian groups with the usual tensor product, and A is a (classical)
commutative ring (a commutative algebra object in €), then the tensor product of A-modules M and
N is by definition, the colimit of

MRA®N—Z=MQ®N (3.3.7)

where ® denotes the tensor product of abelian groups and the two different arrows correspond, re-
spectively, to the multiplication on M and N. In order for this pushout to be a new A-module we
need to assume that ® commutes with certain colimits. By [100, 3.4.4.6], if C® is an O-monoidal
(00, 1)-category compatible with x-small colimits (for x an uncountable regular cardinal) and if O% is
a k-small coherent oo-operad, then the map M odf}(e)® — 09 is a coCartesian fibration of co-operads
which is again compatible with k-small colimits. In particular this result is valid for algebras over
the oo-operad E%, for any k > 0, because it is known to be coherent (see [100, Thm. 5.1.1.1] for the
general case and [100, 3.3.1.12] for the commutative operad).

3.3.4 Limits and Colimits of Modules

Another important feature of the module-categories Mod9 (@) (for each z € O) is the existence of
limits, which can be computed directly on each C, using the forgetful functor (Thm 3.4.3.1 of [100]).
The existence of colimits requires again the compatibility of the monoidal structure with colimits on
each C,. If C% is compatible with x-small colimits, then again by [100, 3.4.4.6], colimits in Mod$(€)®
can be computed in the underlying categories C, by means of the forgetful functors MOdg(G)g — Gy,
for each color x € 0.

3.3.5 Algebra-objects in the category of modules

We also recall another important result relating algebra objects in M0d2(€)® and algebras B in C
equipped with a map of algebras A — B.

Proposition 3.3.1. ([100, Cor. 3.4.1.7]) Let O% be a coherent operad and let C®¥ — O% be a fibration
of co-operads. Let A € Alg,o(C) be an O-algebra object of €. Then the obvious map

Algo(Mod3(€)) — Alg)o(€).a (3.3.8)

is a categorical equivalence (where Alg,o(C)a, denotes the (0o, 1)-category of objects B in Algo(C)
equipped with a map of algebras A — B - see [99, 1.2.9.2]).
In particular, if C® is coCartesian fibration compatible with all small colimits, Algo(C)a, inherits

a monoidal structure from Modg(@)® and by the discussion above this structure is cocartesian.

3In particular coherent operads are unital
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Under the same conditions, it is also true that for any algebra B € Alg/o(Modg(G)) the canonical
map

Mod%(Mod3(€))® — Modg(€)®. (3.3.9)

is an equivalence of co-operads, with B the image of B through (3.3.8). See [100, Cor. 3.4.1.9].

3.3.6 Modules over associative algebras

We now review the particular situation over the oco-operad Ass®. Let €¥ be a monoidal (oo, 1)-
category. Given an associative algebra A in C%®, it is possible to introduce two new constructions
LModA(C), RMods(C) encoding, respectively, the theories of left and right modules over A. Their
objects are pairs (A, M) where A is an object in Alg(€C) and M is an object in € equipped with a
left (resp. right) action of A. This idea can be made precise with the construction of two new oo-
operads LM® and RM® fabricated to shape left-modules (see [100, Definitions 4.2.1.7 and 4.2.1.13)]),
respectively, right-modules. Let us overview the mechanism for left-modules. Grosso modo, LM® is
the operadic nerve of a classical operad LM constructed to have two colours a and m and a unique
morphism

(a,a,..,a,m) —m. (3.3.10)

for each n € N, these being the only morphisms where the color m appears. Moreover, the full
subcategory spanned by the color a recovers the associative operad. At the same time, the projection
sending the two colors (a,m) in LM® to the unique color in Ass®, determines a fibration of co-
operads.

Following [100, Def. 4.2.1.13] we set LMod(C) := Algcyi/ass(C). From an object s € LMod(C)
we can extract an associative algebra-object in €, s| 44,0 € Alg(C), an object s(m) = M in € and a
multiplication map (A M — M) := s((a, m) — a) which with the help of the cocartesian property of
C® — Ass® satisfies all the coherences defining the usual module-structure (see the Example 4.2.1.18
of [100]). If we fix A an associative algebra object in C, we obtain LMod4(C) - the left-modules in
C over the algebra A - as the fiber over A of the canonical map LMod(C) — Alg(€) induced by the
composition with the inclusion Ass® C LM®.

Given a pair of associative algebras A and B, it is also possible to perform a third construc-
tion 4 BModg(€C) encoding the theory of bimodules over the pair (A, B) (left-modules over A and
right-modules over B). Again, the construction starts with the fabrication of an oc-operad BM®
whose algebras in € are identified with bimodules (see Definitions 4.3.1.6 and 4.3.1.12 of [100]). By
construction there are inclusions of co-operads

0-

+
Ass® o LMEC— > BM® < ORME <2= D450 (3.3.11)

which implies the existence of forgetful functors

LMod(€) ~— 4BModg(€) —= RModg(C) (3.3.12)

which, in general, are not equivalences.

As explained by [100, Thm. 4.4.1.28] this new theory of modules is related to the general theory
by means of a canonical equivalence

Mod/t**(€) — == ABModA(C) (3.3.13)

where Mod%**(C) is by definition, the underlying oo-category of Mod/**(C)® (the general construc-

tion). Under some general conditions, for any triple (A, B, C) of associative algebras in € it is possible
to fabricate a map of (oo, 1)-categories
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ABModg(C) x gBModc(€) — 4 Modc(€) (3.3.14)

encoding a relative tensor product (see [100, Def. 4.4.2.10, Eg. 4.4.2.11]). It can be understood as
a generalization of the formula (3.3.7), replacing it by the geometric realization of a whole simplicial
object Barg(M, N), given informally by the formula

Barg(M,N), = M ® B"® N (3.3.15)

(see [100, Construction 4.4.2.7, Theorem 4.4.2.8]). By [100, 4.4.2.15, 4.4.3.12], if C

(* * %) admits geometric realizations of simplicial objects and the tensor product preserves geo-
metric realizations of simplicial objects, separately in each variable;

then, the fibration of co-operads Mod/**(€)® — Ass® (obtained by the general methods) is an Ass-
monoidal (0o, 1)-category with the monoidal structure given by the relative tensor product. Moreover,
if € admits all small colimits and the tensor product is compatible with them in each variable, the
equivalence Mod/**(€) ~ sBModa(€) will send the existing abstract-nonsense-monoidal structure
on Mod%**(C) provided by the general discussion in 3.3.3 to this relative tensor product.

Remark 3.3.2. As mentioned before, the theory of left-modules, resp. right-modules, does not have
to be equivalent to the general theory (as we will see in the next section, this is true in the commutative
case). For this reason it is convenient to have a theory of limits and colimits specific for left, resp.
right, modules. See the Corollaries [100, 4.2.3.3 and 4.2.3.5].

3.3.7 Modules over commutative algebras

Finally, if A is a commutative algebra in a symmetric monoidal (oo, 1)-category €%, the forgetful map
Moda(C) := Mod5°™™(€) — Mod/**(C) fits in a commutative diagram

Mod u( (3.3.16)

/ﬂlﬂss\

LMOdA %ABMOdA 4>RM0dA
and by [100, 4.4.1.4, 4.4.1.6], the diagonal arrows are equivalences. Moreover, by [100, Thm. 4.5.2.1],

if C satisfies (***), then the co-operad Mod (€)% := ModG°™™(€)® is a symmetric monoidal (oo, 1)-
category and its tensor product can be identified with the composition

Mod(€) x Mod(C) —= 4BModA(C) x 4BModa(€) 22—~ 4 BMod(€) (3.3.17)

|

LMOdA(e) >~ MOdA(e)

Moreover, if € admits all small colimits, this monoidal structure agrees with the therefore existing
abstract-nonsense structure provided by the discussion in 3.3.3.
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3.3.8 Base Change

We now review the procedure of base change. If €% is a symmetric monoidal (oo, 1)-category and
f: A — B is a morphism of commutative algebras, the pre-composition with f produces a forgetful
functor

fx: Modp(C) = Mod(C) (3.3.18)

which in general is not a monoidal functor. Assuming € satisfies the condition (#x*x), the relative tensor
product discussed in the previous section provides monoidal structures in Mod4(€) and Modg(C).
The [100, Thm. 4.5.3.1] enhances this result with the additional fact that p : Mod(€)® — C Alg(C) x
N(Fin,) is a cocartesian fibration. The construction of p-cocartesian liftings is achieved using the
relative tensor product construction: every morphism of algebras f : A — B admits p-cocartesian
liftings which we can informally describe with the formula

M s Lag(M):=M, B (3.3.19)

Using the Grothendieck construction, this formula assembles to a left adjoint to the forgetful func-
tor f.. Moreover, the properties of the relative tensor product in [100, 4.4.2.9] imply that this left
adjoint is monoidal.

It is also evident by the nature of the construction (obtained via cocartesian liftings) that for any
composition A — B — C and for any A-module M, there are natural equivalences (M ®4 C) ~
(M®4B)®pC.

3.3.9 Transport of Modules via a monoidal functor

Our goal in this section is to explain how given f : C® — D® a monoidal functor between symmetric
monoidal (oo, 1)-categories, we can associate to every commutative algebra A € C'Alg(C) a natural
map

Mod s (€) — Mod(4)(D) (3.3.20)

and under some nice hypothesis on f, C® and D® this new map will again be monoidal with respect
to the monoidal structure on modules described in 3.3.3 and 3.3.7. Moreover, we want to see that if
A — B is map of commutative algebras, then the diagram

ModA(€) — Mod ;4 (D) (3.3.21)
\L—@)AB i@j‘(A)f(B)
Modp(€) — Mod ) (D)

commutes. Here the vertical maps are the base change maps of 3.3.8.

We start with the construction of the maps fa. For that, we recall that the generalized operads
Mod(€)® and Mod(D)® are defined in terms of a universal property as simplicial sets over N (Fin.,)
(See [100, Construction 3.3.3.1, Definition 3.3.3.8]). Using this universal property we can deduce that
f induces a map F': Mod(C)® — Mod(D)® sending inert morphims to inert morphisms, and fitting
in a commutative diagram

Mod(€)® —— X+ Mod(D)® (3.3.22)

lp )

CAlg(€) x N(Fin,) 22 € A1g(D) x N(Fin,)
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where the map f, is the transport of algebras explained in 3.2.5. We obtain the maps f4 as the
restriction of F to the fiber over A. In the commutative case, the [100, Theorem 4.5.3.1] explained in
the previous section tells us that if € and D both satisfy (xxx*), then both maps p and ¢ are cocartesian
fibrations. Our goal follows immediately from the following property

Proposition 3.3.3. Let €® and D® be symmetric monoidal (0o, 1)-categories such that both C and
D both admit geometric realizations of simplicial objects and the tensor product preserves them on
each variable. Let f : C® — D® be a monoidal functor commuting with geometric realizations of
simplicial objects. Then, the induced map F in the diagram (3.3.22) sends p-cocartesian morphisms
to q-cocartesian morphisms.

Proof. As F is a functor, because of [99, Lemma 2.4.2.8] we are reduced to showing that F' sends
locally p-cocartesian morphisms in Mod(€)® to locally g-cartesian morphisms in Mod(D)®. One can
now easily check that both p and ¢ satisfy the requirements of the Lemma [100, 4.5.3.4] so that, as F
preserves inert morphisms, we are reduced to showing that the induced maps

MOdA(€)® MOdf(A)(D)® (3.3.23)

N(Fin,)

and

Mod(C) —— Mod(D) (3.3.24)

L

CAlg(€) —— CAlg(D)

both send locally cocartesian morphisms to locally cocartesian morphisms. By the inspection of the
proofs of [100, 4.5.2.1] for the first case and [100, 4.5.3.6, 4.6.2.17] for the second, we conclude that
everything is reduced to showing that f sends the relative tensor product in € to the relative tensor
product in D. By inspection of [100, Construction 4.4.2.7 and Theorem 4.4.2.8] we conclude that this
follows immediately from our assumptions on f.

O

3.4 Endomorphisms Objects

In this section we review the theory of endomorphism objects as developed in [100, Sections 6.1
and 6.2]. Let €% be a monoidal (co,1)-category. As reviewed in the section 3.3.6, to every object
A € Alg(C) we can associate a new (0o, 1)-category LM od 4(€) whose objects consist of objects m in €
equipped with a multiplication A ® m — m satisfying the usual coherences for modules. We can now
generalize the notion of an A-module to include objects m belonging to any (oo, 1)-category M where
C acts. More precisely, recall that € can be understood as an object in Algass(Cats) and therefore
C itself admits a theory of left-modules LMode(Cats,) - the objects of this (0o, 1)-category can be
understood as (oo, 1)-categories M equipped with an action e : € x M — M satisfying the standard
coherences for module-objects in Cat,. We generalize the notion of an A-module to include objects
m € M endowed with a multiplication A e m — m satisfying the standard coherences for modules.
This can be made precise as follows. Let M be an object in LMode(Cats,). Explicitly, M is a map
of oo-operads

Cat, (3.4.1)

> |

LM® — = N(Fin,)
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whose restriction to Ass® C LM® is the monoidal (0o, 1)-category C® and whose evaluation at the
color m is another (0o, 1)-category M. Since Cat’ is cartesian, we have an equivalence Algza(Catoy) ~
Mon gy (Cats) and therefore we can use the Grothendieck construction to present the diagram M in
the form of a cocartesian fibration of co-operads O% — LM® where we recover O% X povpe Ass® ~ ¥

and O% X ove {m} ~ M and the action @ : € x M — M is again extracted from the cocartesian

property.
In this setting, an object m € LMod(C, M) := Alg/LM(Om) provides exactly the concept we seek:

the restriction | 4442 is an algebra-object in O% X cve Ass® ~ C¥: the value at m is an object m in
O% X e {m} ~ M and the image of canonical morphism (a, m) — m provides, via the cocartesian

property of O% — LM®, a map A e m — m which, also because of the cocartesian property, will
satisfies all the standard coherences we seek.

There are canonical projections LMod(€, M) — Alg(€) and LMod(C,M) — M induced, respec-
tively, by the composition with the inclusion Ass® C LM® and the inclusion {m} C LM® (see [100,
Def. 4.2.1.13]). For each associative algebra A in €, the fiber LMod (€, M) := LMod(C, M) X 414¢e)
{A} gathers the collection of objects m in M endowed with a left action of A satisfying the standard
coherences of being a module-object. Similarly, for each object m € M, the fiber LM od (€, M) x5t {m}
codifies all the different ways in which the object m can be endowed the structure of an A-module,
for some associative algebra A in C.

Remark 3.4.1. If €® — Ass® is a monoidal (0o, 1)-category, the tensor operation provides € with
the structure of a C-module and we recover LMod(C) ~ LM od(C,M = C).

Remark 3.4.2. This construction uses the data of symmetric monoidal (0o, 1)-category €% and a
module M over it as initial ingredients. However, the defining ingredient is the data of the cartesian
fibration O% — LM®. Dropping the cocartesian condition we can reproduce the situation with the
data of fibration of co-operads p : 0% — LM®. This gives rise to what in [100]-Definition 4.2.1.12 is
called a weak enrichment of M := 0% X g5 {m} over C® := 0% X ;0 Ass®.

We now have the following important result:

Proposition 3.4.3. (see [100, Cor. 4.7.2.42]) Let € be a monoidal (0o, 1)-category and M be an object
in LMode(Catw,). Let m be an object in M = M(m). Then, the canonical map p : LMod(C, M) X
{m} — Alg(C) is a right fibration (in particular it is a cartesian fibration and its fibers are oco-
groupoids).

In [100]-Section 4.7.2, the author proves this result by constructing a new monoidal (co,1)-
category Ct[m] whose objects can be identified with pairs (X,n) where X is an object in € and
n: X em — m is a morphisms in M. The canonical map Alg(C*[m]) — Alg(C) is a right fibration
([100, 4.7.2.39] ) and the conclusion follows from the existence of an equivalence of right-fibrations
LMod(C,M) x5 {m} ~ Alg(C*[m]) (see [100, Cor. 4.7.2.40]).

In the context of the previous result, we say that the object m € M admits a classifying object
for endomorphisms if the right fibration p is representable. Because of [99, Thm. 4.4.4.5], this
amounts to the existence an algebra-object End(m) € Alg(C) and an equivalence of right fibrations
LMod(C, M) xnt {m} =~ Alg(C)gnam) over Alg(C). In this case, for each associative algebra-object
A in € we have a canonical homotopy equivalence

Map ageey (A, End(m)) =~ {A} X g550 LMod(C, M) Xt {m} (3.4.2)

In other words, morphisms of algebras A — End(m) correspond to A-module structures on m.

Remark 3.4.4. Following the arguments in the proof of the previous result, and due to [100, Cor.
3.2.2.4], the existence of a classifying object for endomorphisms for m can be deduced from the exis-
tence of a final object in Alg(C*[m]).
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We will be mostly interested in finding classifying objects for endomorphisms in the case when
C =M is Cato with the cartesian product. In other words, we want to have, for any monoidal (oo, 1)-
category A € Algass(€C = Cats) and any (oo, 1)-category m € M = Catoo, a new monoidal (oo, 1)-
category End(m) such that the space of categories m left-tensored over A is homotopy equivalent to the
space of monoidal functors A — End(m). As expected, End(m) exists: it can be canonically identified
with the (oo, 1)-category of endofunctors of m - Fun(m,m) - equipped with the strict monoidal
structure End(m)® — Ass® induced by the composition of functors. The fact that End(m)® has the
required universal property follows from the universal property of Fun(m,m) as an internal-hom in
Cats, and from [100, 4.7.2.39, 3.2.2.4] (see also the Remark 6.2.0.5 of loc.cit).

3.5 Idempotent Algebras

In this section we review the theory of idempotents as developed in [100, Section 4.8.2]. Let C® be a
symmetric monoidal (oo, 1)-category with unit 1 and let E be an object in C. A morphisme:1 — F
is said to be idempotent if the product morphism idg ® e : E®1 — E® E is an equivalence. Since C®
is symmetric this is equivalent to ask for e ® idg to be an equivalence. We write (F,e) to denote an
idempotent. The first important result concerning idempotents is that a pair (E,e) is an idempotent
if and only if the product functor £ ® — : € — € makes Cg - the essential image of (£ ® —) - a full
reflexive subcategory of C (see [100, 4.8.2.4]). Notice that Cg equals the full subcategory of € spanned
by those objects in € which are stable under products with E. By [100, 4.8.2.7], this localization is
monoidal and therefore Cg inherits a symmetric monoidal structure C% where the unit object is F
and the product map (E ® —) extends to a monoidal map C¥ — C%. Its right adjoint (the inclusion)
is lax-monoidal and therefore induces an inclusion

CAlg(Cr) — CAlg(C) (3.5.1)

and since F is the unit in Cg we can use this inclusion to equip E with the structure of a commutative
algebra in € for which the multiplication map EQE — FE is an equivalence. In fact, by the [100, 4.8.2.9],
there is a perfect matching between idempotents and commutative algebras whose multiplication map
is an equivalence (these are called idempotent-algebras). More precisely, if we denote by C Alg®*™ (@)
the full subcategory of commutative algebra objects in € whose multiplication map A ® A — A is an
equivalence, the natural composition

CAlg'*“™(€) C CAlg(C) = CAlg(C),, — €y (3.5.2)

sending an commutative algebra object A to its unit 1 — A morphism, is fully-faithful and its image
consists exactly of the idempotent objects in €.

The main result for idempotents can be stated as follows:

Proposition 3.5.1. ([100/-Prop.4.8.2.10) Let C® be a symmetric monoidal (oo, 1)-category and let
(E,e) be an idempotent which we now know can be given by the unit of a commutative algebra object
A in C (which is unique up to equivalence). Then, the natural forgetful map Moda(€)® — C® induces
an equivalence Mod 4(C)® — €%.

3.6 Presentability

The results in this work depend crucially on the presentability of the closed cartesian symmetric
monoidal (oo, 1)-category Cato, (see [99, Prop. 3.1.3.9 and Cor. 3.1.4.4]). By [99, Prop. 5.5.4.15
], the theory of presentable (0o, 1)-categories admits a very friendly theory of localizations: every
localization with respect to a set of morphisms admits a description by means of local objects and,
conversely, every (small) local theory is a localization. This feature will play a vital role in the pro-
ceeding sections where we shall work with presentable symmetric monoidal (oo, 1)-categories.
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Let X be the collection of all small simplicial sets. By definition (see [100, 3.4.4.1]) a presentable
O-monoidal (00, 1)-category is an O-monoidal (oo, 1)-category compatible with K-colimits such that
for each color x € O, the fiber €, is presentable. In this case, it is a corollary of the Adjoint Functor
Theorem that C® is necessary closed.

Remark 3.6.1. Let C® is a presentable symmetric monoidal (oo, 1)-category and D be a reflexive
localization of C with left-adjoint L satisfying the hypothesis () of 3.1.7. Then the induced structure in
D® is again a presentable symmetric monoidal (oo, 1)-category. This follows because of the condition
(x) and because both colimits and tensor products in D® are determined by the ones in €®. In
particular, and following the discussion in 3.2.2, these same reasons together with [99, 5.5.4.20], imply
that the left-adjoint L® : €® — D® has the expected universal property of the monoidal localization
(along the collection of L-equivalences) within presentable symmetric monoidal (oo, 1)-categories.

Remark 3.6.2. Let O® be a small coherent (0o, 1)-operad and let C® be a presentable O-monoidal
(00, 1)-category. By [100, 3.2.3.5] Alg,o(C) is a presentable (oo, 1)-category and by [100, 3.4.4.2]
Mod9(€)® is presentable O-monoidal.

There is also monoidal version of the adjoint functor theorem that will be useful to us in the future:
by the Corollary [100, 7.3.2.7], if f® : €® — D® is a lax-functor between O-monoidal (oo, 1)-categories
such that for each color x € O the f has a right-adjoint, then f® itself admits a right adjoint, which
moreover is also map of oco-operads. In particular, if C® and D® are presentable symmetric monoidal
(00, 1)-categories and f© is a monoidal functor such that its underlying map f : € — D commutes
with colimits, then by the Adjoint Functor Thereom [99, 5.5.2.9] it has a right-adjoint g which by the
preceding discussion can be extented to a map of oo-operads g% : D® — €%,

3.6.1 The Monoidal Structure in Prt

Following the notations from [99] we write Prl for full subcategory of Cat?¥(X) (with X denoting
the collection of all small simplicial sets) spanned by the presentable (oo, 1)-categories together with
the colimit preserving functors. By [100, 4.8.1.14], Pr’ is closed under the monoidal structure in
Cat’9(K)® described by the formula (3.2.22) and therefore inherits a symmetric monoidal structure
(Pri)®: if Gy and €} are two small co-categories, the tensor product P(Co) ® P(C)) is given by
P(Cy x €)). More generally, if € and € are two presentable (co,1)-categories and S is a small
collection of morphism in €, the product (S~1C) ® €’ is the localization T~!(€ ® €’) where T is the
image of the collection S x {idx } xcopj(er) via the canonical morphism € x ¢’ — € ® €'. By [99,
Thm. 5.5.1.1] this is enough to describe any product and also to conclude that the unit object is the
(00, 1)-category of spaces 8 = P(x).

The objects in C Alg(Pr) can now be identified with the presentable symmetric monoidal (oo, 1)-
categories (see again [100, Remark 4.8.1.9]). Plus, this symmetric monoidal structure is closed: for any
pair of presentable (0o, 1)-categories A and B, the (0o, 1)-category Fun® (A, B) of colimit-preserving
functors A — B is again presentable and provides an internal-hom object in Pr&® (see [100, Remark
4.8.1.17]). Since Pr’ admits all small colimits (by the combination of [99, Corollary 5.5.3.4 and Theo-
rem 5.5.3.18 ]), we conclude that (Prf)® is a symmetric monoidal structure compatible with all small
colimits.

The following result will also be important to us:

Proposition 3.6.3. The symmetric monoidal (0o, 1)-category Pr® admits classifying objects for
endomorphisms: for each presentable (oo, 1)-category M, the (co,1)-category End®(M) of colimit-
preserving endomorphisms of M is the underlying (0o, 1)-category of a presentable monoidal (co0,1)-
category End®(M)® — Ass® whose monoidal operation is determined the composition of functors.
Moreover, for any presentable symmetric monoidal (0o, 1)-category, we have a canonical homotopy
equivalence

Maps ayg,..(prey(C%, End™(M)®) =~ {€¥} x 4450 LMod(Pr", Prl) xp,. {M} (3.6.1)
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Proof. For the part that concerns the monoidal structure on End” (M), we know that End(M) admits
a monoidal structure End(M)® — Ass® where the fiber over (n) is isomorphic to [y Fun(M, M).
We take Endl(M)®, by definition, the full subcategory of End(M)® spanned by those sequences
(f1, -, fn) where each f; is a colimit-preserving endofunctor of M. The fact that the composition
q : End*(M)® C End(M)® — Ass® is still a cocartesian fibration follows immediately from the
fact that the composition of colimit-preserving functors is colimit-preserving. It follows also that this
monoidal structure is strictly associative because this holds for End(M)®.

To prove that this monoidal structure is presentable (see [100, Def. 3.4.4.1]) it suffices to observe
that: (i) since M is presentable, End*(M) is also presentable (See [99, Prop. 5.5.3.8]); (ii) since
colimits in End® (M) are computed objectwise in M ([99, Cor. 5.1.2.3]) and the objects in End’ (M)
are, by definition, colimit-preserving functors, the cocartesian fibration ¢ is compatible with small
colimits (See [100, Def. 3.1.1.18]).

To conclude, the fact that End” (M) provides a classifying object for endomorphisms results from
the same arguments as in [100, Remark 6.2.0.5]: since End”(M) has the property of internal-hom
object in Prk it provides a final object in (PrL)*[Prl]. The Corollary [100, 3.2.2.4] applied to
End*(M)® concludes the proof.

O

3.6.2 The Monoidal Structure in PrZ

Let x be a regular cardinal. Following [100, 5.3.2.9 and 5.3.2.11]), the monoidal structure in Pr’
restricts to a monoidal structure in the (non-full) subcategory Prl C Prf. Moreover, if X denotes
the collection of x-small simplicial sets together with the simplicial set Idem, the equivalence

Ind, : Catoo(K) — Prk (3.6.2)

of the discussion in 2.1.20 is compatible with the monoidal structures (where on the left side we
consider the monoidal structure described in 3.2.8).

To see this we use the fact the monoidal structure in Pr” is the restriction of the monoidal structure
described in 3.2.8 for the (0o, 1)-category of big (0o, 1)-categories with all colimits together with colimit
preserving functors. The discussion in the same section implies also that Ind, is monoidal, so that the
product of k-compactly generated in Pr” is again compactly generated. Moreover, if z is a k-compact
object in € and y is a k-compact object in €', their product z ®y is a k-compact object in the product
C® € and the collection of k-compact objects in € ® €’ is generated by the objects of this form under
k-small colimits. This implies that if € and €’ and D are k-compactly generated, the equivalence in
(3.2.22) restricts to an equivalence between the full subcategory of Fung(C® €', D) spanned by those
functors which preserve k-compact objects and the full subcategory of Funggi(C x €', D) spanned
by the functors which preserve xk-compact objects.

Let now PrL+® denote the (non-full) subcategory of Prl+® spanned by the objects (€1, ..., C,) where
each C; is a k-compactly generated (oo, 1)-category, together with the maps (Cy,..,C,) = (D1, ..., D)
over some [ : (n) — (m) corresponding to those families of functors

{ui H C; = Ditie(r,...m) (3.6.3)
jef=r({i})
in Catgig where each functor commutes with colimits separately in each variable and sends x-compact
objects to k-compact objects. It follows that if f : (n) — (m) is amap in N(Fin,) and X = (Cy,...,Cp)
is a sequence of k-compactly generated (oo, 1)-categories, then the map in Pr’ corresponding to the
family of universal functors

H Gj — D, = ®j€f71({i})(3j ~ :nggjeffl({i}x( H GJ) (364)
Jef~r({s}) Jef~t({s}

is in PrLl (because it commutes with colimits separately in each variable and preserves compact objects
because of the discussion above) and provides a cocartesian lift to f at X. It follows that the non-full
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inclusion PrZ C Pr’ is monoidal.

3.7 Dualizable Objects

We recall a notion of duality. If €% is a monoidal (oo, 1)-category with a unit 1, we say that an object
X is right-dualizable, or that it has a right-dual, if there exist an object X together with morphisms

—%Xex XoXx X o (3.7.1)
such that the compositions
XoeXol 5%  xoXox X9 jox~X (3.7.2)
ax®[d)‘( Id);@)ﬁx

X~19X XXX X®1~X

are homotopic to the identity maps in €. These restraints are equivalent to asking that for any pair
of objects Y and Z in €, the multiplication with the dual induces a homotopy equivalence

Mape(X ®Y,Z) ~ Mape(Y, X @ Z) (3.7.3)

There is also an obvious notion of left-dual and of course if C® is symmetric the two notions
coincide.

Remark 3.7.1. In particular, if C®¥ admits internal-hom objects and X has a dual, then we have for
every object Y in €, a canonical equivalence YX ~ X @ Y.

It follows also from the definition that any monoidal functor preserves dualizable objects.

3.8 Stability

3.8.1 Stable Monoidal (oo, 1)-categories

Let Cat5® denote the (0o, 1)-category of small stable co-categories together with the exact functors.
The inclusion CatS® C Cato, preserves finite products (as a result of [100, Thm. 1.1.1.4]) and there-
fore CatS” inherits a symmetric monoidal structure (Cat$*)® induced from the cartesian structure
in Cato. By definition (see Def. 8.3.4.1 of [100]) a stable O-monoidal co-category is an O-monoidal
oo-category q : €® — 0% such that for each color X € O, the fiber Cx is a stable oo-category and
the monoidal operations are exact separately in each variable. In particular, the monoidal structure
commutes with finite colimits. The small stable symmetric monoidal co-categories can be identified
with commutative algebra objects in (CatS®)®.

If @® — 0% is an O-monoidal co-category compatible with all colimits, then it is stable O-monoidal
if and only if for each color x € O the fiber €, is stable. This is obvious because, by definition, the
monoidal structure preserves colimits on each variable and therefore is exact on each variable. These
will be called stable presentable O-monoidal co-categories. We know that stable presentable (oo, 1)-
categories form a full subcategory Prk,, of Prl which by [100, 4.8.2.10, 4.8.2.18] is closed under the
tensor structure in Pr¥. Moreover, following [100, 4.8.1.17], if € and D are stable presentabled (oo, 1)-
categories, Fun®(C, D) is again stable presentable so that the monoidal structure in fPrgtb is closed. We
can identify stable presentable symmetric monoidal (0o, 1)-categories with the objects in C Alg(PrL,,).
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Remark 3.8.1. Let C be a stable O-monoidal (0o, 1)-category compatible with all colimits. Then,
for any A € Alg;o(€) the symmetric monoidal (oo, 1)-categories Mod3(C)® is stable. This follows
immediately from the fact that for each colour z € O, pushouts and pullbacks in Mod9(€), are
computed in €, by means of the forgetful functor Mod4 (€)% — €, (which is conservative). Moreover,
since Mod4(€)® is again compatible with colimits, the multiplication maps of the monoidal structure
are exact on each variable. Notice however that the same is not true for algebras because colimits are
not computed directly as colimits in the underlying category.

Example 3.8.2. The canonical example of a stable symmetric monoidal (oo, 1)-category is the (oo, 1)-
category of spectra Sp with the smash product structure. One way to obtain this monoidal structure is
to prove that Sp is an idempotent object in PrX® [100, Prop. 4.8.2.18]. Our results in this work pro-
vide an alternative way to obtain this monoidal structure. We will return to this in the Example 4.2.16.

To conclude this section we recall an helpful characterization of compact generators in categories
of modules over a stable presentable (0o, 1)-category.

Proposition 3.8.3. Let C% be a stable presentable symmetric monoidal (oo, 1)-category. Suppose
that its underlying (oo, 1)-category C admits a family € = {E;}icr of k-compact generators in the
sense of 2.1.23. Then, for any commutative algebra object A in C, the family {A® E;}icr is a family
of Kk-compact generators in the (0o, 1)-category Moda(C) (this makes sense because by the previous
remark the category of modules is stable).

Proof. By definition, A® E; is the image of E; under the base-change monoidal functor (—®A4) : €% —
Mod 4 (€)®. This functor is a left adjoint to the forgetful functor. The result follows immediately from

this adjunction, together with the fact the forgetful functor is conservative and commutes with colimits
([100, 3.4.4.6]). O

3.8.2 Compatibility with t-structures

Let now €% be a stable symmetric monoidal (oo, 1)-category and suppose that € is equipped with a
t-structure ((€)<o, (€)>0). Following [100, 2.2.1.3] we say that the monoidal structure is compatible
with the ¢-structure if the full subcategory € contains the unit object and is closed under the tensor
product. In this case, it inherits a symmetric monoidal structure. Moreover, the truncation functors
T<n : (€)>0 — (€)>¢ are monoidal [100, 2.2.1.8] and in particular, the subcategories (C>9 N C<,,) are
monoidal reflexive localizations of €>¢ [100, 2.2.1.10]. In particular, the heart @Y inherits a symmetric
monoidal structure and the zero-homology functor Hy : €>¢ — €Y is monoidal.

Given an oco-operad 0%, we write Alge(€)" for the full subcategory of Alge(€) spanned by the
algebra objects whose underlying object in € is in €>(. Since €>( inherits a monoidal structure, we
have a fully-faithfull map Alge(C>o) C Alge(€) and its image can be identified with Alge(C)°™. It
follows from the discussion in 3.1.6 that the right adjoint 7>¢ : € = €>¢ extends to a right adjoint to
the inclusion

Algo ()™ < Algo(C) (3.8.1)

Assume now that the t-structure is left complete. In this case we have an equivalence C>g =~
lim, (C>0NCx<y,). In fact this equivalence in Cat lifts to an equivalence in C' Alg( Cats ) through the
forgetful functor CAlg(Catos) — Cats. Indeed, the functors 7<, : €59 — Cx¢ N C<,, are monoidal
and limits in C' Alg(Cat,) are computed in Cato, by means of the same forgetful map. In particular,
since the forgetful map C Alg(Cats) C Ops has a left adjoint (see 3.2.4), it commutes with limits
so that Ggo is the limit of (€0 N €<,)® in Opeo. In particular, for any oc-operad 0%, we have an
equivalence

Algo (€)™ =~ lim,, Algo (C>0 N C<y) (3.8.2)
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If we assume that C is presentable, then Algo(C) will also be presentable and in particular the
subcategory of n-truncated objects 7<, Algo (€) is a reflexive localization of Alge (C). Moreover, since
the truncation functor given by the ¢-structure is monoidal, it exhibits Algo (C>0NC<,,) also a reflexive
localization of Alge(C) (see 3.1.8) so that the two subcategories are equivalent. Together with the
equivalence (3.8.2) this implies that Postnikov towers converge in Alge(C)<™.

Again, an important example is the (oo, 1)-category of spectra Sp® [100, Lemma 7.1.1.7]. More
generally, for any connective Egyi-algebra R in Sp, the category of left modules LM odg(Sp) inherits
a natural left-complete t-structure [100, 7.1.1.10, 7.1.1.13] together with a compatible Ej-monoidal
structure [100, 7.1.2.5, 7.1.3.15].

3.9 From symmetric monoidal model categories to symmetric monoidal
(00, 1)-categories

3.9.1 The (monoidal) link

The link between model categories and (oo, 1)-categories described in the Section 2.2 can now be ex-
tended to the world of monoidal structures. Recall that a model category M equipped with a monoidal
structure ® is said to be a monoidal model category if the monoidal structure is closed, the tensor
functor is a left-Quillen bifunctor and the unit of the monoidal structure is a cofibrant object in M.
The main idea is that

Every symmetric monoidal model category "presents” a symmetric monoidal (0o, 1)-category.

Following the [100, Example 4.1.3.6], if M is a symmetric monoidal model category (see Definition
4.2.6 of [69]) then the underlying oco-category of M inherits a canonical symmetric monoidal struc-
ture which we denote here as N(M)[W ~1® — N(Fin,). It can be obtained as follows: first recall
that in a symmetric monoidal model category, the product of cofibrant objects is again cofibrant and
by the Ken Brown’s Lemma, the product of weak-equivalences between cofibrant objects is again a
weak-equivalence. This implies that the full subcategory of cofibrant objects in M inherits a monoidal
structure and we can regard it as a simplicial coloured operad (M¢)® enriched over constant simplicial
sets. This way, its operadic nerve N®((M¢)®) — N(F'in.) provides a trivial oo-operad which further-
more is a symmetric monoidal (0o, 1)-category with underlying oo-category equivalent to N(M¢) (see
the Example 3.1.6). Since the restriction of the monoidal structure to the cofibrant objects preserves
weak-equivalences, we can understand the pair (N®((M°)®), W) as an object in C'Alg(WCat ) and
we define the underlying symmetric monoidal (0o, 1)-category of M as the monoidal localization (see
3.2.2)

NI = NO(ME)®) W 1)® (3.9.1)

C

It follows from the definitions that its underlying oo-category is canonically equivalent to the
underlying oo-category of M. Moreover, it comes canonically equipped with a universal monoidal
functor N®((M¢)®) — N(M)[W~1]®.

At the same time, if M comes equipped with a compatible simplicial enrichment, then M°, although
not a simplicial monoidal category (because the product of fibrant objects is not fibrant in general),
can be seen as the underlying category of a simplicial coloured operad (M°)® where the colours are
the cofibrant-fibrant objects in M and the operation space is given by

Mapyeoye ({Xibier, Y) = Mapy(X) Xi, V) (3.9.2)

which is a Kan-complex because Y is fibrant and the product of cofibrant objects is cofibrant. With
this, we consider the oo-operad given by the operadic nerve N®((M°)®). By [100, 4.1.3.10], this
oc-operad is a symmetric monoidal (0o, 1)-category and the product of cofibrant-fibrant objects X, Y
is given by the choice of a trivial cofibration X ® Y — Z providing a fibrant replacement for the
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product in M. The key result, proved in [100, Cor. 4.1.3.16], is the existence an oco-symmetric-
monoidal-generalization of the Proposition 2.2.1. Namely, the symmetric monoidal (oo, 1)-category
N(M)[W 1% is monoidal equivalent to N®((M°)®).

A particular instance of this is when M is a cartesian closed combinatorial simplicial model cat-
egory with a cofibrant final object. In this case, it is a symmetric monoidal model category with
respect to the product and we can consider its operadic nerve N®((M°)*). From [100, 2.4.1.10], this
is equivalent to a Cartesian structure in the underlying oo-category of M - Na (M°)*.

A monoidal left-Quillen map ([69]-Def. 4.2.16) between monoidal model categories induces a
monoidal functor between the underlying symmetric monoidal (oo, 1)-categories. This is because the
monoidal localization was constructed as a functor CAlg(WCat) — C Alg(Cats). In the simplicial
case we can provide a more explicit construction:

Construction 3.9.1. Let M — N be a monoidal left-Quillen functor between two combinatorial
simplicial symmetric monoidal model categories. Let G be its right adjoint. We construct a monoidal
map between the associated operadic nerves

NE((M0)®) i NE((N°)2) (3.9.3)

T~

N(Fin,)
For that, we consider the simplicial category A whose objects are triples (i, (n), (X1, ..., X;,)) with
i €{0,1}, (n) € Fin, and Xy,..., X,, are objects in M if ¢ = 0 and in N if ¢ = 1. The mapping spaces
Mapa((i, (), (X1, ... X)), (4, (m), (Y1, ..., Yn))) (3.9.4)
are defined to be the mapping spaces in M () (resp. N) ifi,7 =0 (resp. 4,7 =1). If i =1 and j =0,
we declare it to be empty and finally, if i = 0 and j = 1, we define it as
Map g (((n), (F(X)1,...., F(X)n)), ((m), (Y1,...,Y3))) (3.9.5)

which by the adjunction (F,G) and the fact that F' is strictly monoidal, are the same as

Map; (((n), (X1, ..., X)), ((m), (G(Y1), ..., G(Yn)))) (3.9.6)

The composition is the obvious one induced from M and N. We consider the full simplicial subcat-
egory A° spanned by the objects (i, (n), (X1, ..., X, )) where each X; is cofibrant-fibrant (respectively
in M or N depending on the value of 7). It follows that A° is enriched over Kan-complexes (because
M and N are simplicial model categories and F' is left Quillen) and therefore its simplicial nerve is
an (0o, 1)-category. Moreover, it admits a canonical projection p : Na(A°) = N(Fin,) x A[l] whose
fibers

{0} XN (Fin.yxap) Na(A®) ~ N®((M°)®) (3.9.7)

and
{1} X N(Pinyxap) Na(A®) = N®((N°)®) (3.9.8)

recover the operadic nerves of M and N, respectively.

Proposition 3.9.2. The projection p : Na(A°) — N(Fin,) x A[l] is a cocartesian fibration of
(00, 1)-categories.

4consult the notation in the Construction 3.1.2
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Proof. We follow the arguments in the proof of [100, 4.1.3.15] using the characterization of p-cocartesian
morphisms of [99, 2.4.4.3]. We have to prove that for any edge u : (i, (n)) — (4, (m)) in N(Fin.)x A[l]
and any object C := (4, (n), (X1, ..., X)) over (i, (n)), there is a p-cocartesian lifting @ of u starting at
C'. In other words, we have to prove that for any morphism v : (4, (m)) — (k, (I)) and for any object
E lying over (1), the induced map

Mapyy, (o) (C', E) = Map 40/ (C, E) (3.9.9)

is an homotopy equivalence. By definition a morphism u consists of a pair (i — @', f : (n) = (m))
with ¢ — ¢/ an edge in A[l] and f a morphism in Fin,. Therefore, we are reduced to showing the
following cases:

e Case i =j =k = 0: Given an object C := (0, (n), (X1,..., X)) over (0,(n)) and f: (n) — (m)
we define objects X, by means of taking fibrant-replacements

Uy : ®aef—1({)\})Xa — X)m with A € {]., ,m} (3910)

where the maps u,, are the trivial cofibrations given by the fibrant replacement functor. Finally,

we set € := (0, (m), (X1, ..., X»)) and u : C' — € the unique map in Na(A°) induced by the
product of the trivial cofibrations uy. Let now E := (0, (I), (E1, ..., E})) be an object over (0, (I))
and g : (m) — (I) a morphism. Using the definitions, the map of (3.9.9) can be idntified with
the composition map along the product of the uy

H MapNA(Mo)( ® X)\,Eﬁ> — H MapNA(Mo)( ® X[”EB) (3.9.11)
pell) Aeg~ ({8}) Bell) o€(gof)~ ({8})

~ [] Mapyaoy( Q) () Xa).Ep) (3.9.12)
Bel) Aeg=1({B}) ac(H)1({AD)

is an homotopy equivalence. Here the last isomorphism follows from the natural identification of
the two products ®U€(gof)*1({[.3}) X}, and ®)\Eg*1({,8})(®ae(f)*1(.{>:}) Xa). Th.is follows becaus.e
each of the Ejg is a fibrant object in M and the maps u, are trivial cofibrations so that their
product is also a trivial cofibration (since the monoidal structure is assumed to be compatible
with the model structure).

e Case i = j = k = 1: Follows by the same arguments as in the previous case, this time using the
monoidal model structure in N

e Casei=0,j =k = 1: Given an object C := (0, (n), (X1, ..., Xy,)) over (0, (n)) we have to find a
new object C’ := (1, (m), (X1, ..., X;n)) together with a p-cocartesian morphism in Na (A°)

i:C—C (3.9.13)

defined over u. Recall that by definition, the connected component of the mapping space

Mapy a0y (2, (n), (Xo, ..y Xn)), (4, (M), (Y1, .., Yin))) (3.9.14)

spanned by the maps which are defined over v was defined to be the mapping space

[T Mapn-( Q) F(Xa).¥a) (3.9.15)
)

xe(m acf~1{\}

With this in mind, we define X to be a fibrant replacement for the product
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uy: Q) F(Xa) = Xa (3.9.16)
acf~H{A}

where each u) is the trivial cofibration that comes out from the device of the model structure pro-

viding the functorial factorizations. Finally, we take @ to be the point in Mapy (4 ((0, (Xo, .., X1)), (1, (X1, .y Xom)
corresponding the product of the trivial cofibrations uy. Notice that each X is cofibrant-fibrant

in N because the product of cofibrants is cofibrant and F' preserves cofibrant objects. We are

now reduced to the task of proving that u is a p-cocartesian morphism. In our situation, this is

equivalent to say that for any morphism v = (idy, g) : (1, {(m)) — (1, (1)) in A[1] x N(Fin,) and

any object E := (1, {l), (E1, ..., E})) over (1,(l)), the composition map with @

Map, 4oy (1, (n), (Xo, ... X0)), (1, (1), (B, ..., 1)) — (3.9.17)

Map¥aoy (0, (n), (Xo, ..., X1)), (1, (1), (Ex, ..., E1))) (3.9.18)

is a weak-equivalence of simplicial sets (here we denote by M AP, (A0 (—, —) the directed com-
ponent of Mapy, a°)(—,—) of those maps which are defined over v). It is immediate from the

definitions that the previous map is the composition map

Wpeqr,...nMapn, ove) ( ® Xy, Eg) = (3.9.19)
Xeg—r({B})
Hgeq1,....nMapy, ey ( ® F(X,),Eg) ~ (3.9.20)
o€(gof)~1({B})
~Tgeqr,. yMapy,onvy( Q) (1 Q) F(Xa)), Ep) (3.9.21)

AegTH({B}) ac(f)T({AD

where the last isomorphism follows from the natural identification of the two products @, ¢ (40 5)-1((5}) F'(Xo)
and @, cq-1(151) (Qac(p)-1((a) F'(Xa)). Finally, we can see that this previous map is the one

obtained by the product of the pos-composition with the trivial cofibrations wy. Since the

monoidal structure is given by a Quillen bifunctor, the product of trivial cofibrations is a trivial

cofibration and therefore as each of the Fj3 is fibrant, the map between the mapping spaces is

a trivial fibration and so a weak-equivalence. To conclude, the product of trivial fibrations is

always a trivial fibration.

e Case i = j =0,k = 1: In this case we define u : C' — C’ as in the first case. We need to check
that for any object E := (1,(l),(Ey,..., E;)) over (1,(l)) and for any morphism g : (m) — (I},
the composition map of (3.9.9) is an homotopy equivalence. Again using the definitions, the left
side of (3.9.9) is given by

Hgeqr,...nMapy, ney( ® F(X)), Ep) (3.9.22)
Aeg—1({8})

which as F' is monoidal is isomorphic to

geqr,.pMapyy oy (F( Q) X)), Ep) (3.9.23)
Aeg—1({B})

and the right side is given by

Hpeqa,...yMapn, ne) ( ® F(X,), Es) (3.9.24)
o€(gof)~t({B}H)
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which again because F' is monoidal, is isomorphic to

i, pMapyy vy (F( @) X,), Es) (3.9.25)
o€(gof)~1({B})

Finally, using the same change of variables in the tensor product applied in the previous case we
conclude that under these identifications the map in (3.9.9) can be identified with the composi-
tion map along the tensor product of the image maps F'(uy). As each of the Ej3 is fibrant and
each of the maps u) is a trivial cofibration and F is left-Quillen (thus preserving trivial cofibra-
tions), we conclude that the composition map is an homotopy equivalence of fibrant simplicial
sets.

This concludes the proof.
O

Finally, we can now extract the monoidal functor F'® using [99, 5.2.1.4]. It is also clear from the
proof of the Proposition 3.9.2 that the underlying functor of F'® is the map F described in [99, 5.2.4.6)
given by the composition of F' with a fibrant replacement functor in N.

3.9.2 Strictification of Algebras and Modules

In some very specific cases the theory of algebras can be performed directly within the setting of model
categories. In other words, it admits a strictification. An important result of [124] (Theorem 4.1) is
that if M is a combinatorial monoidal model category satisfying the monoid aziom (Definition 3.3 of
[124]), then the category Alg(M) of strict associative algebra objects in M admits a new combinatorial
model structure where:

e a map in Alg(M) is a weak-equivalence if and only if it is a weak-equivalence in M;
e a map in Alg(M) is a fibration if and only if it is a fibration in M;
e the forgetful functor Alg(M) — M is a right-Quillen map that preserves cofibrant objects.

e this model structure in Alg(M) is simplicial if the model structure in M is.

Using this results, we can create a comparison map between the underlying (oo, 1)-category of
Alg(M) and the (oo, 1)-category of algebra-objects in the underlying (oo, 1)-category of M. More
precisely, using the fact the forgetful functor Alg(M) — M preserves cofibrant objects, we have
natural inclusions Alg(M)¢ C Alg(M¢) C Alg(M) which preserve weak-equivalences. Passing to the
localizations (in the sense of 2.1.11), the cofibrant-replacement functor produces equivalences

N(AlgM)) W, ] = N (Alg(M)) W] = N(Alg(M0)[W ] (3.9.26)
where W, denotes the class of weak-equivalences between cofibrant algebras and W, is the class of

weak-equivalences between algebras whose underlying objects in M are cofibrant. Finally, using the
fact that the localization map N(M¢) — N (M¢)[W, 1] is monoidal, it provides a map Alg(N(M¢)) —
Alg(N (M€)W 1]) which sends weak-equivalences in M between cofibrant objects to equivalences.
The universal property of the localization provides a canonical map

N(AlgV))[We ]~ Alg(N (M) W] = = = Alg(N (M) [W]) (3.9.27)

R

Alg(N(M€))
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rendering the diagram homotopy commutative. By the [100, Thm. 4.1.4.4], if M is a combinatorial
monoidal model category and either (a) all objects are cofibrant or (b) M is left-proper, the cofibra-
tions are generated by the cofibrations between cofibrant objects and M is symmetric and satisfies the
monoid axiom, then, this canonical map is an equivalence of (0o, 1)-categories. In the next section we
will see this result applied to the theory of differential graded algebras.

Remark 3.9.3. This strictification result can be extended to a monoidal functor. More precisely,
recall from 3.2.6 that the category of algebras inherits a monoidal structure induced from the one in
the base monoidal category. As in the Remark 3.2.6, the functor Alg(N(M¢)) — Alg(N (M)W 1))
extends to a monoidal functor and using the monoidal localization of 3.2.2 we can also promote the
map in (3.9.27) to a monoidal functor.

There is also a strictification result for bimodules over associative algebras. Given two strictly
associative algebra objects A and B in a combinatorial monoidal model category M, we can set a
model structure in the classical category of bimodules in M, BiMod(A, B)(M) , for which the weak-
equivalences Wyy,q4 are given by the weak-equivalences of M [100, Prop. 4.3.3.15] and by [100, 4.3.3.17]
we have

N(BiMod(A, B)(M))[W;,L,] ~4 BModg(N(M)[W~1) (3.9.28)

A similar result holds for commutative algebras ([100, Thm 4.5.4.7]) whenever the strict theory
admits an appropriate model structure (as in [100, 4.5.4.6]). In particular, it works also for modules
over commutative algebras.

Remark 3.9.4. In the general situation, there are no model structures for algebras or modules. This
is exactly one of the main motivations to develop a theory of algebras and modules within the more
fundamental setting of (0o, 1)-categories. The theory of motives is one of those important cases where
model category theory does not work.

Remark 3.9.5. Recall that an (0o, 1)-category is presentable iff there exists a combinatorial simplicial
model category M such that € is the underlying oo-category of M (which means, € ~ Na(M?)) (see
[99, A.3.7.6]). There is a similar statement for presentable monoidal (0o, 1)-categories, replacing the
simplicial nerve by the operadic nerve (see [100, 4.1.4.9] for a sketch of proof).

3.10 Higher Algebra over a classical commutative ring £

The discussion in this section will be important later. Let k be a (small) commutative ring and denote
by Mod(k) the 1-category of small sets endowed with the structure of module over k. We will write
Ch(k) to denote the big category of (unbounded) chain complexes of small k-modules. This is a
Grothendieck abelian category. Recall also the existence of a symmetric tensor product of complexes
given by the formula

(E® E)n = €D (B; @ E)) (3.10.1)
i+j=n

where ®j, denotes the tensor product of k-modules. This monoidal structure is closed, with internal-
hom Homey, ) (E, E') given by the formula

Homep (B, E')y = HHomk(Ei7Ei+n) (3.10.2)

where the differential d,, : Homey, ) (E, E')n — Homep ) (E, E')nt1 sends a family {f;} to the fam-
ily {do f; = (=1)" fia}.
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The category Ch(k) carries a left proper combinatorial model structure [69, Theorem 2.3.11] where
the weak-equivalences are the quasi-isomorphisms of complexes, the fibrations are the surjections (and
so every object is fibrant). We will call it the projective model structure on complexes. The cofibrant
complexes (see the Lemma 2.3.6 and the Remark 2.3.7 of [69]) are the DG-projective complexes. In
particular, every cofibrant complex is a complex of projective (and therefore flat) modules and any
bounded below complexes of projective k-modules is cofibrant. Moreover, by the Proposition 4.2.13
of loc.cit, this model structure is compatible with the tensor product of complexes and so Ch(k) is a
closed symmetric monoidal model category. Following 3.9.1, the proper way to encode the study of
complexes of k-modules up to quasi-equivalences is the underlying (oo, 1)-category D (k) of the model
category Ch(k). This is a particular case of the Example 2.1.5 with X = Spec(k). In particular, D(k)
is stable with a compact generator k and with compact objects the perfect complexes. D(k) acquires
a symmetric monoidal structure D(k)® (as explained in 3.9.1).

Remark 3.10.1. This method to obtain D(k) is not the one described in 2.1. This is because the
projective model structure does not agree with the injective one. However, since the weak-equivalences
are the same, the resulting (0o, 1)-categories obtained by localization are equivalent.

We now review the theory of algebra objects over k. By definition, a strict dg-algebra over k is
a strictly associative algebra-object in C'h(k) with respect to the tensor product of complexes. We
will denote the category of dg-algebras as Algass(Ch(k)). As explained in the Example 3.2.1, the
nerve N(Algass(Ch(k))) is equivalent to Algass(N(Ch(k)) - the theory of algebras described in the
previous section - so that the notations are coherent. Thanks to [124, Thm 4.1] the model structure
in Ch(k) extends to a model structure in Algqss(Ch(k)) with fibrations and weak-equivalences given
by the underlying fibrations and quasi-isomorphisms of complexes®. This model structure satisfies
the condition (b) of the previous section (see [100, 7.1.4.6]). In this case, denoting its underlying
(00, 1)-category by N(Algass(Ch(k))¢)[W 1], the strictification result provides an equivalence

N (Algass(Ch(k))*) W] — Algass(D(K)) (3.10.3)

Remark 3.10.2. The situation for commutative algebras is not so satisfatory. In general the model
structure on complexes does not extend to the category of strictly commutative algebra objects in
Ch(k). However, if k contains the field of rational numbers Q, the model structure extends [100, Prop.
7.1.4.11] and the strictification result holds [100, 7.1.4.7]. Writing C DG Ay, to denote its underlying
(00, 1)-category, the canonical map given by the universal property of the localization

CDG A, — CAlg(D(k)) (3.10.4)

is an equivalence.

The (00,1)-category D(k) carries a natural right-complete ¢-structure where D(k)>¢ is the full
subcategory spanned by the complexes with zero homology in negative degree. Its heart is the category
of modules over k and the functor H,, : € — €Y corresponds to the classical nth-homology functor H,,.
This t-structure is also left-complete. Indeed, this follows because k is a generator in D(k) and using
the formula H;(X) ~ mi(Mapp iy (k, X)), Vi > 0 we see that if all the homology groups of an object X
are zero so is X. Moreover, the monoidal structure in D(k) is compatible with this t-structure (as we
can suppose that our complexes are cofibrant, this follows directly from the Kunneth spectral sequence,
or alternatively, using the same methods as in [100, 7.1.1.7]). Following the discusion in 3.8.2, the left-
completness implies that for any oo-operad O®, we have 1<, Algo (D (k)™ ~ Algo(D(k)>oND(k)<n)
and that Postnikov towers converge

Algo (@(k‘))cn >~ limnAlgo (@(k)zo N D(k‘)gn) (3105)

5This model structure is left proper if k is a field
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In particular, the heart D (k)% = D(k)>oND(k)<o inherits a symmetric monoidal structure which
we can identify with the classical tensor product of k-modules. In the associative (resp. commutative)
case the category of algebras 7<gAlgass(D(k))™ (resp. 7<oCAlg(D(k))™) can be identified with the
nerve of the classical category of associative (resp. commutative k-algebras). Moreover, since the map
Hy : C>0 — €Y is monoidal, it extends to a map of algebras Hy : Algass(C)" — Algass(CY) so that
if A is a connective associative (resp. commutative) algebra object in D(k), Hy(A) is an associative
(resp. commutative) algebra in the classical sense.

As in the non-connective case, the theory of connective algebras admits a strictification result.
More precisely, Algass(D(k))™ is equivalent to the underlying (oo, 1)-category SRy of a simplicial
model structure in the category of simplicial associative algebras over k, where the weak equivalences
are the maps of simplicial algebras inducing a weak-equivalence between the underlying simplicial sets
[100, 7.1.4.18].

Remark 3.10.3. Asin 3.10.2, if k contains the field of rational numbers, C' Alg(D(k))™ is equivalent
to the underlying (oo, 1)-category SC Ry, of a simplicial model structure in the category of simplicial
commutative k-algebras, with weak-equivalences given by the weak-equivalences between the under-
lying simplicial sets [100, 7.1.4.20]. In fact, the model structure for simplicial commutative algebras
exists for any ring k and it can be proved that SC Ry, is equivalent to the completion of the 1-category
of commutative k-algebras of the form k[X;, ..., X,], n > 0, under sifted colimits [97, 4.1.9].

Remark 3.10.4. The study of higher algebra over a commutative ring k£ can be understood as a small
part of the much vaster subject of higher algebra in the (oo, 1)-category of spectra Sp. Indeed, we
can understand a commutative ring k as O-truncated connective commutative algebra object in Sp®
and using the same ideas as in [123] we can deduce an equivalence of stable presentable symmetric
monoidal (0o, 1)-categories Mody(Sp)® ~ D(k)® defined by sending a complex F to the mapping
spectrum subjacent to Mapp ) (k, E) (see [100, 7.1.2.6, 7.1.2.7, 7.1.2.13]). Moreover, the category of
modules Mody,(Sp) inherits a left-complete t-structure induced from the one in Sp (see [100, 7.1.1.13])
and we can easily check that the formula £+ Mapp ) (k, E) is compatible with the ¢-structures. In
particular, this implies that for any co-operad 0%, we have an equivalences Algo (D(k)) ~ Algo (Sp)k,
and Algo(D(k))e" ~ Algo(Sp)Z’}.

3.11 Cotangent Complexes and Square-Zero Extensions

Later on in Chapter 6 we construct a functor L,. connecting the classical theory of schemes to the
noncommutative world. One of the steps (see Prop. 6.3.8) requires the following noncommutative
analogue of [144, Prop. 2.2.2.4] and [100, 7.4.3.18]:

Lemma 3.11.1. Let A be an object in Algass(D(k))™. The following are equivalent:

1) A is a w-compact object in Algass(D(k));

2) Ho(A) is a finitely presented associative algebra over k and the cotangent complex L4 is a compact

object in Mod4**(D(k));

In order to prove this we need to say what is the cotangent complex of a connective dg-algebra.
This is a particular instance of a more general notion. Following [52] we recall how to define the cotan-
gent complez of an 0-algebra-object in a stable symmetric monoidal (0o, 1)-category C® compatible
with colimits.

Let C® be a stable symmetric monoidal (0o, 1)-category compatible with colimits. Let O® be a
k-small coherent oco-operad and let A € Algo(C) be an algebra-object in €. Given a module-object
MeM odg(e) and using the hypothesis that the monoidal structure is compatible with colimits we
expect that the direct sum A @ M comes naturally equipped with the structure an O-algebra-object
in € where the multiplication is determined by
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(AeM)@(AeM)~(ARA)®(AM)®(AM)®d (Mo M) - Ad M (3.11.1)

where in the last step we use the multiplication A ® A — A, the module action A ® M — M and the
zero map M ® M — M. This new O-algebra-object comes naturally equipped with a morphism of
O-algebras A ® M — A which we can informally describe via the formula (a,m) — a. Its fiber can be
naturally identified with the module M. This construction should give rise to a functor

Mod3(€) — Algo(€)./a (3.11.2)

In [52, Thm. 3.4.2] the author provides a precise way to perform this construction, proving that
for any stable symmetric monoidal (oo, 1)-category €% compatible with colimits and any coherent
oo-operad O®, there is a canonical equivalence

Stab(Alge(€)./4) = Funo (0, Mod3(C)) (3.11.3)

for any O-algebra A in € (see also [100, 7.3.4.13]). In particular, if the operad only has one color, we
have an equivalence between the category of modules and the stabilization of algebras. Also in this
case, this equivalence recovers the functor in (3.11.2) as the delooping functor 2> (See Section 4.2.2
for an explanation of the notations).

By definition, a derivation of A into M is the data of a morphism of O-algebras A — A & M over
A. Tt is an easy exercice to see that this notion recovers the classical definition using the Leibniz rule.
We set Der(A, M) := Map aige (e).a (A, A® M) to denote the space of derivations with values in M.
The formula M + Der(A, M) provides a functor (Mod9(€))°P — 8 which, through the Grothendieck
construction, corresponds to a left fibration over Mod3(€). By definition, the (absolute) cotangent
complex of A is an object Ly € Mod$(€) which makes this left fibration representable. In other
words, it has the universal property

MapModg(e)(ILA, M) ~ Mapaig, (e ,a (A, A M) (3.11.4)

which allows us to understand the formula A — L4 as a left adjoint L4 to the functor in (3.11.2),
evaluated in A. In particular, if € is presentable this left adjoint exists because of the adjoint functor
theorem together with the fact that (3.11.2) commutes with limits [52, Lemma 3.1.3]. Moreover,
under the equivalence between modules and the stabilization of algebras, L4 can be identified with
the suspension functor 3.

Example 3.11.2. When applied to the example €® = D(k)® and for E; ~ Ass, this definition
recovers the classical associative cotangent complex introduced by Quillen and studied in [91], given
by the kernel of the multiplication map A ®j A°? — A in the (0o, 1)-category Mod+**(D(k)). Recall
also that Mod4**(D(k)) is equivalent to 4 BModa(D(k)) which by the discussion in 3.9.2 is equivalent
to the underlying (oo, 1)-category of the model category of strict A-bimodules in the model category
of complexes Ch(k). This example will play an important role later on.

Remark 3.11.3. The notion of cotangent complex is well-behaved with respect to base-change. If
f: A— A is a morphism of O-algebras we can put together the functors A ® — and A’ ® — in a
diagram
0 49—
Modj(C) —— Algo(C) /a (3.11.5)
For (7><A’ A)

ModS, (€) 2= Alge(€) /4
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where For is the map that considers an A’-module as an A-modules via f and the map (— x’y A) is
obtained by computing the fiber product of a morphism C' — A’ with respect to f. The fact that this
diagram commutes follows from the equivalence relating modules and the stabilization of algebras and
from the definition of tangent bundle studied in [100, Section 8.3.1]. Moreover, the commutativity of
this diagram implies the commutativity of the diagram associated to the left adjoints

Mod3(€) <7 Algo(€) /a (3.11.6)

J/A/®A— J{f"—

MOdg/ (G) T Algo (@)/A/

where now A’ ® 4 — is the base change with respect to f and the (f o —) is the map obtained by
composing with f. In particular, we find that A’ ® 4 L4 is equivalent to L 4/ evaluated at f: A — A'.

Remark 3.11.4. The notion of cotangent complex has a relative version. For any O-algebra R in
€, the (00, 1)-category Mod%(€) is again a stable symmetric monoidal (oo, 1)-category compatible
with colimits. In particular, under the equivalence Algo(Mod%(C)) ~ Algo(C)g,., for any R-algebra
f+ R — A the previous discussion provides a functor

Mod3(€) ~ Mod3(Mod$(€)) — Algo(Mod3(€)) /4 ~ (Alge(C)r/.)./a (3.11.7)

sending a A-module M to the R-algebra A@® M defined over A. The relative cotangent complez of f :
R — A is by definition the absolute cotangent complex of f as an algebra-object in Algg (M od%(e)) ~
(Algo(C)gy.).;a. This definition recovers the absolute version when R is the unit object. In what
follows we will only need the absolute case.

Remark 3.11.5. In [52, Theorem 3.1.10] the author provides a characterization of L4 for any E,-
algebra A in a stable presentable symmetric monoidal (oo, 1)-category €% such that € is generated
under small colimits by the unit: 3™(LL4) is the cofiber of the canonical map Free(l) — A in
Mod% (@), where 1 is the unit of the monoidal structure and Free : € — Mody" (€) is the left adjoint
to the forgetful functor M od]i" (€) — €. This adjoint exists because colimits of modules are computed
in C (See also [100, Theorem 7.3.5.1]).

The notion of derivation can also be presented using the idea of a square-zero extension. If
d:A— A® M is a derivation, we fabricate a new O-algebra A as the pullback in Alge(C)

ATl o4 (3.11.8)
do
A——= AP M

where dy : A - A@® M is the zero derivation a — (a,0). Since the functor Alge(€) — € preserves
limits, the diagram (3.11.8) provides a pullback diagram in € and given a morphism * — A in C, we
can identify the fiber A X 4 * in € with the loop Q(M). Indeed, we have a pullback in €

AXA*4f>(A><A*)2* (3.11.9)

| id

*:(AXA*)i>(A€9M)><A*

and since the fiber of the canonical map A®M — A can be identified with M, we find A x 4% ~ Q(M).



72 Preliminaries IT - A World Map of Higher Algebra

A morphism of algebras B — A is said to be a square-zero extension of A by Q(M) if there is a
derivation d of A with values in M ~ %(Q(M)) such that B ~ A. Thanks to [100, Theorem 7.4.1.26]
if €® is a stable presentable Ej-monoidal (0o, 1)-category with a compatible t-structutre, then the
formula (A — A® M) ~ (f : A — A) establishes an equivalence between the theory of derivations
and the subcategory of Fun(A[l], Algg, (C)) spanned by the square-zero extensions (see [100, Section
7.4.1] for a precise formulation).

Remark 3.11.6. In the presence of a square-zero extension (3.11.8), every O-algebra B induces a
pullback diagram of spaces.

Map g (e)(B, A) —— Map aig, (e) (B, A) (3.11.10)

| |

Map aig,e)(B, A) ——= Map 14, (c)(B, A® M)

Let ¢ : B — A be a morphism of algebras. It follows that we can describe the fiber of the morphism
Map ag, () (B, fl) — Map 14, (e)(B, A) over the point corresponding to ¢ with the help of the cotan-
gent complex of B. More precisely, we observe first that the mapping space Mapaig, (e). . (B,A® M)
(where B is defined over A via ¢) fits in a pullback diagram

Map aigy(e) 0 (B, A® M) ——= Mapaig,e) (B, A® M) (3.11.11)

i |

A0] Map aige)(B, A)

where the right vertical map is the composition with the canonical map A ® M — A. By tensoring
with (— X Map argy (o) (B,A) A[0]) the diagram (3.11.10) produces a new pullback diagram

MapAlgo(e)(B7A) xMapA,go(g)(B,A) A[O] - Ma'pAlgo(G) (B7A) X]\/IapAl_qo(@)(B,A) A[O] (31112)

| |

MapAlgo(e)(B’ A) XMapAlgo((:’)(BvA) A[O] - MapAlgo(e)./A (B’ A® M)
with
MapAlgo(@)(B, A) XMapAlgo(@)(BvA) A[O} ~ A[O] (31113)
so that the fiber Map 414, (e)(B, A) X Map argy (o) (B,A) A[0] becomes the space of paths in

Mapaigo(e)., 4 (B, A® M) (3.11.14)

between the point B . A—% A® M and the point B v, A—% 4 @ M . To conclude,

we can use the adjunctions of the Remark 3.11.3 to find equivalences
MapAlgo(e)./A(B,A O M)~ MapModg(e)(LA(@, M) ~ MapModg(e)(A ®pLp, M) (3.11.15)

= MapModg(e)(LBv For(M))

which combined, provide
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Map aigy (€)(Bs A) X Mapargy ey (B,4) Al0] = Q0,009 Mapyroqg ) (L, For(M)) (3.11.16)

In particular we identify an obstruction to the existence of liftings: if the point corresponding to
dog € Mapy;eq9e)(Lip, For(M)) is not in the same connected component of the point corresponding
to the zero derivation, there wont’t be any liftings.

We now collect the last ingredient to prove the Lemma 3.11.1:

Theorem 3.11.7. (Lurie [100, Corollary 7.4.1.28]) Let C? be a stable presentable symmetric monoidal
(00, 1)-category equipped with a compatible t-structure (in the sense of 8.8.2). Then for every k > 0
and any algebra A € Algg, (€)™ the morphisms in the Postnikov tower

—>T§2A—>TS1A—>T§0A (31117)

are square-zero extensions. More precisely, and following the Remark 2.1.14, for every n > 0 the
truncation map T<nA — T<p_1A is a square-zero extension of T<p—1A by a module-structure in
H,,(A)[n]. This is equivalent to the existence of a derivation dy, : T<p—14 — T<pn—1A ® H, (4)[n + 1]
and a pullback diagram of algebras

TenA ——————> 71, 1A (3.11.18)

| -

Tgn—lA — Tgn_lA ¥ HH(A)[TL + 1]
We have now all the ingredients to prove the lemma.

Proof of the Lemma 3.11.1:
We follow the same methods as in [144, Prop. 2.2.2.4]. We first prove that 1) implies 2).

The fact that Hy(A) is finitely presented as an associative algebra follows from the fact that Hy
commutes with colimits (it is a left adjoint), together with the fact that my commutes with colimits
in the (00, 1)-category of spaces. The fact that L 4 is compact follows from the universal property of
the cotangent complex together with the following facts:

i) As explained before, the functor (A @ —) of (3.11.2) can be identified with a delooping functor
Q°°. Therefore it commutes with filtered colimits;

ii) by assumption, A is compact.

We now prove that 2) implies 1). To start with, we observe that since A is by assumption
connective, it is enough to check that A is compact in the full subcategory Algass(D(k))" spanned
by the connective objects. Indeed, recall from 3.8.2 that the truncation functor 7< is a right adjoint
to the inclusion Algass(D(k))" C Algass(D(k)). We can easily check that 7<¢ commutes with filtered
colimits (because the homology groups commute with filtered colimits) so that for any filtered system
{Ci}ier in Algass(D(k)) we have

Mapaig,,.. ) (A, colimiCy) ~ Mapag, ., (D (k))en (A, T<ocolimCy) (3.11.19)
~ MapAlgASS('D(k))C" (A, COlim[Tgoci)
so that A is compact in Algass(D(k))°" if and only if it is compact in Algss(D(k)).

We start now by proving that A is almost compact, meaning that A is compact with respect to any
filtered system in Algass(D(k))Z:,, for every n > 0. We proceed by induction. The case n = 0 follows
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by the hypothesis. Let us suppose we know this is true for n — 1 and prove it for n. Let {C;}ics be a
filtered system in Algass(D(k))<,,. The discussion in 3.10 together with the Theorem 3.11.7 implies
that for each i, C; admits a Postnikov decomposition

where each morphism is a square-zero extension providing a pullback diagram

Ci=(Ci)<n — (Ci)<n-1 (3.11.21)
| -
(Ci)<n—1

(Ci)<n—1 ® Hy(Ci)[n +1]

in Algass(D(k))°™ where the lower horizontal map is the zero map and right vertical map corresponds
to the canonical derivation d,, associated to the square-zero extension C; = 7<,_1C;. This diagram
induces a pullback diagram of spaces

Mapaig,,.ok)(A,Ci) Mapaig,,. k) (A, 7<n-1(Ci)) (3.11.22)

| l

Mapaig,..ow)) (A, (Ci)<n—1) —= Mapag, ..ok (A, T<n-1(Ci) ® H,(C;)[n + 1])

and the Remark 3.11.6 implies that the fiber of the map

Map aig ..y (A; Ci) ——= Mapaig,,, (o (k) (4, T<n-1(Cs)) (3.11.23)
over a map u : A — 7<,_1(C;) is given by the space of paths in MapModﬁss(]LA,Hn(Ci)[n + 1))

between the zero derivation and the point corresponding to the composition d,, o u. This reduces
everything to the analysis of the diagram

colimyQo,d, oudM approgsss (p(ry) (La, Hn(Ci)[n + 1)) ——= Qo,d,0u M appgoqass (pxy) (La, Hi (colim C;)[n + 1])

i |

COlZ‘mIMapAlg_ASS(D(k)) (A, Cz) MapAlgASS(D(k:)) (A, colim;C’i)
COlimIMapAlgASS(D(k)) (A, T<n-—1 (CZ)) MapAlgASS(D(k)) (A, T<n—1 (COlim[Ci))
(3.11.24)

We observe that

a) The left column is a fiber sequence because filtered colimits are exact in the (oo, 1)-category of
spaces. For the same reason, there is an equivalence between the top left entry in the diagram and

Q0,d, oucolimpMapyrogazs (pxy) (La, Hn (Ci)[n + 1)) (3.11.25)

b) The right column is also a fiber sequence. This follows from the result of 3.11.7 and the Remark
3.11.6 applied to the colimit algebra colim;Cy;

c¢) The top entry on the right is equivalent to

QO,dnouMapModj{SS(fD(k)) (L a, colimH,, (C;)[n + 1]) (3.11.26)
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This is because the functor H,, is equivalent to the classical nth-homology functor and therefore
commutes with filtered colimits.

Finally, the induction hypothesis together with the fact that (—)<,, is a left adjoint (and therefore
commutes with colimits), implies that the lower horizontal arrow is an equivalence. The assumption
that L4 is compact implies that the top horizontal map is also an equivalence. It follows that the
middle one is also an equivalence. This proves that A is almost compact in Algss(D(k))™.

We now complete the proof by showing that A is compact. Since the (0o, 1)-category Mod4**((D(k)))
is equivalent to the underlying (oo, 1)-category of the model structure on strict A-bimodules in Ch(k)
(see 3.11.2) and the last is compactly generated in the sense of 2.2.2, the Proposition 2.2.3 implies
that L4 is a compact object in Mod4**((D(k))) if and only if it is given by a finite strict cell object in
the model category of bimodules. In this case, with our hypothesis that IL4 is compact, we can find a
natural number ng > 0 such that for any object M € Mod4**(D(k)) concentrated in degrees strictly
bigger than ng we have WOM@pModﬁSS(@(k))(LAv M) ~ 0. In particular, for any connective algebra
C, the combination of the fiber sequence of the Remark 3.11.6 and the Theorem 3.11.7 implies that
homotopy classes of maps A — C are in bijection with homotopy classes of maps A — 7<,,(C), In
other words, we have

WOMapAlgASS(D(k))(Aa C) ~ ﬂ-OMapAlgASS(D(k:))(Aa T<ng @) (3.11.27)

We now use this to showing that A is compact. Let {C; }ier be a filtered system in Algqss(D(k))™.
Using the fact that m,, commutes with filtered homotopy colimits of spaces and that Algass(D(k))"
admits all limits (it is a co-reflexive localization of Alg.ss(D(k))), we are reduced to showing that the
natural map

colimIWOMapAlgASS(rD(k))(A, QnCZ) — WOMapAlgASS(’D(k))(Aa colimIQ”Ci) (31128)

is an equivalence. We show that the formula is true for any filtered system of algebras {U; };c s, because
we have a commutative diagram

colimpmoMap g, .. (D (k) (A, Us) moMap g, .. (k) (A, colimUs) (3.11.29)

. |

colimymoMapaig, (D k) (A, T<n, (Ui)) ——= moMapag,.. (k) (A, colimi<n, (U;))

where the vertical arrows are equivalences because of (3.11.27) together with fact that 7<,,, is a left
adjoint, and the lower horizontal map is an equivalence because A is almost compact. This concludes
the proof.
O
This completes our preliminaries
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CHAPTER 4

Inversion of an Object in a Symmetric
Monoidal (0o, 1)-category and the Relation
with Symmetric Spectrum Objects

In 4.1 and following some ideas of [144], we deal with the formal inversion of an object in a symmetric
monoidal (0o, 1)-category. First we deal with the situation for small (oo, 1)-categories (Propositions
4.1.1 and 4.1.2) and then we extend the result to the presentable setting (Prop. 4.1.11). This method
allow us to invert any object and the result is endowed with the expected universal property. In 4.2 we
deal with the notion of spectrum-objects. These can be defined either via a limit kind of construction
or via a colimit. When applied to a presentable (oo, 1)-category both methods coincide. Still in this
section, we recall a classical theorem (see [150]) which says that, under a certain symmetric condition
on X, the formal inversion of an object in a symmetric monoidal category is equivalent to the standard
1-category of spectra with respect to X. In the Corollary 4.2.13 we prove that this results also holds
in the co-setting: if the object we want to invert satisfies the symmetry condition then the underlying
(00, 1)-category of the formal inversion is nothing but the stabilization with respect to the chosen
object.

Finally, in 4.3 we use the results of [71] to compare our formal inversion to the more familiar notion
of symmetric spectra. Our main result (Theorem 4.3.1) ensures that the construction of symmetric
spectrum objects with respect to a given symmetric object X together with the convolution product,
is the "model category” incarnation of our oco-categorical phenomenon of inverting X.

4.1 Formal inversion of an object in a Symmetric Monoidal
(00, 1)-category

Let €% be a symmetric monoidal (0o, 1)-category and let X be an object in C. We will say that
X is invertible with respect to the monoidal structure if there is an object X* such that X ® X*
and X* ® X are both equivalent to the unit object. Since the monoidal structure is symmetric, it is
enough to have one of these conditions. It is an easy observation that this condition depends only
on the monoidal structure induced on the homotopy category h(C), because equivalences are exactly
the isomorphisms in A(C). Alternatively, we can see that an object X in € is invertible if and only if
the map "multiplication by X” = (X ® —) : € — € is an equivalence of (oo, 1)-categories. Indeed, if
X has an inverse X* then the maps (X ® —) and (X* ® —) are inverses since the coherences of the
monoidal structure can be used to fabricate the homotopies. Conversely, if (X ® —) is an equivalence,
the essential surjectivity provides an object X* such that X ® X* ~ 1¢. The symmetry provides an
equivalence 1¢ ~ X* ® X.

Our main goal is to produce from the data of €® and X € €, a new symmetric monoidal (oo, 1)-
category C®[X 1] together with a monoidal map C® — €®[X ~1] sending X to an invertible object
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and universal with respect to this property. In addition, we would like this construction to hold within
the world of presentable symmetric monoidal (0o, 1)-categories. Our steps follow the original ideas of
[144], where the authors studied the inversion of an element in a strictly commutative algebra object
in a symmetric monoidal model category.

We start by analyzing the theory for a small symmetric monoidal (oo, 1)-category C®. In this
case, and following the discussion in 3.2.2, C® can be identified with an object in CAlg(Caty,).
The objects of Mode(Cats) can be identified with (oo, 1)-categories endowed with an ”action” of €
and we will refer to them simply as €®-Modules. By the Proposition 3.3.1, CAlg(Modee (Cats)) is
equivalent to C'Alg(Cato)ee . where the objects are small symmetric monoidal (oo, 1)-categories D&
equipped with a monoidal map C® — D®. We denote by CAlg(Catoo)é%/. the full subcategory of
CAlg(Cats)ew, spanned by the algebras C® — D® whose structure map sends X to an invertible
object. The main observation is that the objects in CAlg(Catoo)é(@) /. can be understood as local
objects in CAlg(Caty)ee . with respect to a certain set of morphisms: there is a forgetful functor

CAlg(Catoo)ew ). ~ CAlg(Modes (Cats)) — Modee (Cat) (4.1.1)

and since Cat}, is a presentable symmetric monoidal (0o, 1)-category, this functor admits a left adjoint
Freege (—) assigning to each €¥-module D the free commutative C®-algebra generated by D (see [100,
3.1.3.5] and our survey in the previous chapter). We will denote by Sx the collection of morphisms
in CAlg(Cat)es . consisting of the single morphism

Free,g(X®—
Freees (C) freces (X57)

Freees (C) (4.1.2)
where € is understood as a C®-module in the obvious way using the monoidal structure. We prove
the following

Proposition 4.1.1. Let C® be a symmetric monoidal (oo, 1)-category. Then the full subcategory
CAlg(Catoo)éi@/_ coincides with the full subcategory of CAlg(Cat)ee,. spanned by the 8x-local

objects. Moreover, since Catl, is a presentable symmetric monoidal (oo, 1)-category, the (oo,1)-
categories C'Alg(Cato,) and CAlg(Cato)ew,. are also presentable (see Corollary 3.2.3.5 of [100])
and the results of the Proposition 5.5.4.15 in [99] follow. We deduce the existence a left adjoint

Llee x)
L?@&X)
CAzg(oatoo)gg/—local = CAlg(Catee)Ss = CAlg(Catoo)es (4.1.3)

In particular, the data of this adjunction provides the existence of a symmetric monoidal (0o, 1)-
category L(?e@,x)(e@) equipped with a canonical monoidal map f : €® — L%&X)(G@) sending X to
an invertible object.

Proof. The only thing to check is that both subcategories coincide. Let ¢ : €® — D® be a C-

algebra where X is sent to an invertible object. By the definition of the functor Freeece (C) we have
a commutative diagram

Mapc aig(Cata) e, (Freees(C), D®) —— Mapc aig(Cata) e, (Freees (C), D?) (4.1.4)

I I

Map]V[odC@(Catoo)(ev D) MapModC@)(Catoo)(ev D)
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where the lower horizontal map is described by the formula a — a o (X ® —). Since ¢ is monoidal,
the diagram commutes

e X9 ¢

I I

D .
X))

(4.1.5)

and the lower map is in fact homotopic to the one given by the formula o — (¢(X) ® —) o a. Since
¢(X) is invertible in D®| there exists an object A in D such that the maps ¢(X)® —) and (A ® —) are
inverses and therefore the lower map in (4.1.4), and as a consequence the top map, are isomorphisms
of homotopy types.

Let now C® — D® be a C®-algebra, local with respect to Sx. In particular, the map

Mapprod,s (Cato) (€, D) = Mapnrod, e (Catay) (C; D) (4.1.6)

induced by the composition with (X ® —) is an isomorphism of homotopy types and in particular we
have wo(MapMOde® (Cat) (€, D)) =~ Wo(MapMode® (Cat)(€,D)). We deduce the existence of a dotted
arrow

X®-

D—— (4.1.7)
»

¥
D

rendering the diagram of modules commutative and since « is a map of €®-modules and ¢ is monoidal
we find ¢(1) ~ a(X®1) ~ ¢(X)®a(1). Using the symmetry we find that a(1@X) ~ a(1)Q¢(X) ~ 1
which proves that ¢(X) has an inverse in D?®. O

We will now study the properties of the base change along the morphism €% — L(?e@ X)(€®). In
order to establish some insight, let us point out that everything fits in a commutative diagram

CAlg(Catoo) po €8/, = CAZQ(MOdL?@ (Cato,)) — CAlg(Modee (Cato)) =~ CAlg(Cato)ew.

(e®,x)

Mod e (ee)(Catoo)

(e®,x)

8 x)(€%)

Modes (Catoo)

(4.1.8)
where the horizontal arrows are induced by the forgetful map given by the composition with €® —
Lf%@ X)(Cf@) and the vertical arrows are induced by the forgetful map produced by the change of
oc-operads Triv® — Comm®. Since Cat,, with the cartesian product is a presentable symmetric
monoidal (oo, 1)-category, there is a base change functor

Lie®,x)

RN

MOdeae@’X)(e@)(Catoo) — Modes (Catoo) (4.1.9)

and by the general theory we have an identification of f.(Lee x)(M)) =~ M Qco (L%&X)(G@)) given

by the tensor product in Modee (Caty,). This map is monoidal and therefore induces a left adjoint
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Z(C‘X’,m
(e®,X)

which by the discussion in 3.2.5 fits in a commutative diagram

Z c X
CAlg(Cat) oo (eey,. = CAlg(Mod (ee(Cato)) BaCad c'Alg(Mod(g@(Catoo)) ~ CAlg(Catoso)ee.
e®,x) (e®,x)
lfo'fg"i’t forget
Modz?;@’x) (eoy(Catog) r— Modes (Cat )
(4.1.11)

where the vertical maps forget the algebra structure. We now prove the following statement, which
was originally proved in [144] in the context of model categories:

Proposition 4.1.2. Let C® be a small symmetric monoidal (0o, 1)-category and X be an object in C.
Let f:C® — L%g x)(C¥) be the natural map constructed above. Then

1. the composition map

C’Alg(Catoo)L@® (ewy,. = CAlg(Cats)es,. (4.1.12)
(€®,x)

is fully faithful and its image coincides with C Alg(Catos)s ;

2. the forgetful functor

fe: Mod (eey(Catoo) = Modes (Cat o) (4.1.13)

(€®,x)

is fully faithful and its image coincides with the full subcategory of Modee(Cats,) spanned by
those C-modules where X acts as an equivalence.

A major consequence is that

Corollary 4.1.3. The left adjoint Z(e(g,X) provided by the base change is naturally equivalent to the
left adjoint L%%QX) provided by Proposition 4.1.1.

Moreover, since the diagram (4.1.11) commutes, we have the formula £ ee x)(D) ~ L(?G&X) (D®) 1y
for any D® € CAlg(Catos)eo-

In order to prove Proposition 4.1.2, we will need some preliminary steps. We start by recalling some
notation: Let €® be a symmetric monoidal (oo, 1)-category. A morphism of commutative algebras
A — Bin € is called an epimorphism (see [144]-Definition 1.2.6.1-1) if for any commutative A-algebra
C, the mapping space Mapcaige)(B,C) is either empty or weakly contractible. In other words, the
space of dotted maps of A-algebras

c (4.1.14)
-
A

rendering the diagram commutative is either empty or consisting of a unique map, up to equivalence.
We can rewrite this definition in a different way. As a result of the general theory, if €% is compatible
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with all small colimits, the oo-category C'Alg(€),, inherits a coCartesian tensor product (see [100,
3.2.4.7]) which we denote here as ® 4. In this case it is immediate the conclusion that a map A — B
is an epimorphism if and only if the canonical map B — B ®4 B is an equivalence. Of course, this
is happens if and only if the induced colimit map B ® 4 B — B is also an equivalence. We prove the
following

Proposition 4.1.4. Let €2 be a symmetric monoidal (oo, 1)-category compatible with all small col-
imits and let f: A — B be a morphism of commutative algebras in E. The following are equivalent:

1. f is an epimorphism;
2. The natural map f. : Modg(&) — Moda(€) is fully faithful;
Moreover, if these equivalent conditions are satisfied, the forgetful map
CAlg(&)p). — CAlg(€)ay. (4.1.15)
is also fully faithful.

Proof. With the hypothesis that the monoidal structure is compatible with colimits, the general theory
gives us a base-change functor
(—®a B): Moda (&) = Modg(€) (4.1.16)

left adjoint to the forgetful map f,. In this case f, will be fully faithful if and only if the counit of the
adjunction is an equivalence. If the counit is an equivalence in particular we deduce that the canonical
map B®4 B — B is an equivalence and therefore A — B is an epimorphism. Conversely, if A — B
is an epimorphism, for any B-module M we have

M®asB~(M®pB)®4sB)~(M®p (B®4B))~ (Mg B)~M (4.1.17)

It remains to prove the additional statement concerning the categories of algebras. Let us consider
u:B —U,v:B —V two algebras over B. We want to prove that the canonical map

Mapcageys, (U, V) = Mapcage),, (f(U), f(V)) (4.1.18)

is an isomorphism of homotopy types. The points in Mapc aige).,,. (f(U), f«(V))) can be identified
with commutative diagrams

U 4.1.19
A I, B
\
vof v
and therefore we can rewrite Mapcaige),,. (f(U), f+(V)) as an homotopy pullback diagram
Mapc aigie) (B, f+(V)) XMapeaigie,, (A£.(v)) MaPCatg(e) s, (UsV) (4.1.20)

which by the fact A — B is an epimorphism and MapCAlg(g)A/_(A, f+«(V)) =~ %, is the same as
Mapcaigey,, (U, V). [

The following is the main ingredient in the proof of the Proposition 4.1.2.

Proposition 4.1.5. Let C® be a small symmetric monoidal co-category and let X be an object in C.
Then, the canonical map C® — L%e(@ X)(€®) is an epimorphism.
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Proof. This is a direct result of the characterization of LE%@ x) @s an adjoint in the Proposition 4.1.1.

Indeed, for any algebra ¢ : C® — D®, either ¢ does not send X to an invertible object and in this
case MapCAlg(Catoo)e@/ (L(E%® X)((:’@), D®) is necessarily empty or, ¢ sends X to an invertible object
and we have by the universal properties

MapCAlg(Catoo)C,@/_ (L(%@,X) (G®)’ ®®) ~ MapCAlg(Catoo)C@)/_ (G®’ fD®) ~ % (4121)
O
Proof of Proposition 4.1.2: By the results above we know that both maps are fully faithful. It suffices
now to analyze their images.
1. If ¢ : €% — D® is in the image, D® is an algebra over L%e&x)(e@)v there exists a monoidal
factorization

¢

@2 o (4.1.22)
.
Lies x)(€%)

and therefore X is sent to an invertible object. Conversely, if ¢ : €® — D® sends X to
an invertible object, ¢ : €® — D¥ is local with respect to Freeee (X ® —) : Freees (C) —
Freees () and therefore the adjunction morphisms of the Proposition 4.1.1 fit in a commutative
diagram

e® D® (4.1.23)
l £® (¢) J’
(e®,Xx)
Lies x)(CF) ————> L x)(D?)

where the right vertical map is an equivalence and we deduce the existence of a monoidal map
presenting D% as a L%&X)(@@)—algebra, therefore being in the image of f,.

2. Again, it remains to prove the assertion about the image. If M is a €®-module in the image, by
definition, its module structure is obtained by the composition C® x M — L(?(‘}@Z’,X) (XM — M
and therefore the action of X on M is invertible. Conversely, let M be a C®-module where X
acts as a equivalence. We want to show that M is in the image of the forgetful functor. Since
we know it is fully faithful, this is equivalent to showing that the unit map of the adjunction

M = fo(Les,x) (M) = M Qes Lips x)(€F) (4.1.24)

is an equivalence. To prove this we will need a reasonable description of Freege (M) - the free
C® algebra generated by M. Following the Construction 3.1.3.7 and the Example 3.1.3.12 of
[100] we know that the underlying €®-module Freees (M) ) can be described as a coprodut

I Sym"(M)es (4.1.25)

n>0

where Sym™(M)ee is a colimit diagram in Modes (Cats) which can be informally described
as M®e® /3, where ®eo refers to the natural symmetric monoidal structure in Modes (Cat o).
Let us proceed.
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e The general machinery tells us that Freeee (M) exists in our case and by construction
it comes naturally equipped with a canonical monoidal map ¢ : C® — Freege(M). We
remark that the multiplication map (¢(X) ® —) : Freegs (M) 1y — Freegs (M)1y can be
identified with the image Freees (X ® —) ) of the multiplication map (X ® —) : M — M.
Since this last one is an equivalence (by the assumption), we conclude that Freeee (M) is
in fact a C® algebra where X is sent to an invertible object. This means that it is in fact a
L?G&X)(G@)—algebra and therefore Freees (M) is in fact a L%®7X)(G®)—module, which

means that the unit map

Freeee (M) 1y — f«(Lee x)(Freece (M)ny)) ~ Freeee (M) 1) ®ce L?G@,X)(e@)
(4.1.26)
is an equivalence.
o We observe now that we have a canonical map M — Freees (M) 1) because Sym!' (M) = M

and that this map is obviously fully faithful. The unit of the natural transformation
associated to the base-change gives us a commutative diagram

M M ®¢o L{peo x)(C®) (4.1.27)

|

Freege (M) 1y — Freees (M) 1) Qce L((@e@’X)((?@)

where the lower arrow is an equivalence from the discussion in the previous item. Since the
monoidal structure is compatible with coproducts and using the identification Sym™(M)es =~
M®e® /%, we have

Freees (M) ) ®eo Lo ) (%) = [[IMe0)Eo L5 ) (€))/Sn (4.1.28)

and finally, using the fact C® — Lf@e@, X)((°,®) is an epimorphism, we have

(Liee x)(€))%ee > Lo ¢ (C%) (4.1.29)

for any n > 0. We find an equivalence

Freees (M)<1> Reo L%%&X)(G@) ~ Freece (M Re L%®7X)(e®))<1> (4130)

The first diagram becomes

M M ®co Lpe x)(C®)

|

Freece (M)<1> = ano Sym”(M)e® — ano Sym"™(M ®¢e LE%@,’X)(G@))@@
(4.1.31)
where both vertical maps are now the canonical inclusions in the coproduct. Therefore,
since Caty, has disjoint coproduts (because coproducts can be computed as homotopy
coproducts in the combinatorial model category of marked simplicial sets and here coprod-
ucts are disjoint), we conclude that the canonical map M — M Ree L‘(%&X)(G@) is also
an equivalence.

This concludes the proof.
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Remark 4.1.6. Let €% be a symmetric monoidal (oo, 1)-category. Let X and Y be two objects in
C and let X ® Y denote their product with respect to the monoidal structure. Since the monoidal
structure is symmetric, it is an easy observation that X ® Y is an invertible object if and only if X

and Y are both invertible. Therefore, we can identify the full subcategory CAlg(Catoo)é{g@/Y with the
full subcategory C’Alg(Catoo)é(é}; spanned by the algebra objects €® — D® sending both X and Y
to invertible objects. As a consequence, we can provide a relative version of our methods and by the

universal properties the diagram

base—change

A

CAlg(OatOO)L‘(@G&X)(e@)/ = CAlg(Catoo)é(®/C CAlg(Cateo)ew )
base—change g j\ J > base—change
XY
CAlg(Catoo)L(@c&X@m(e@)/ = CAlg(Cateo) s, CAlg(Catoo) e, = CAlg(Catoo)L?c&m(e@)/
w
base—change
(4.1.32)

has to commute.

Remark 4.1.7. The results of 4.1.1 and 4.1.2 also hold if we restrict our attention to symmetric
monoidal (0o, 1)-categories that are co-groupoids. More precisely, if C® is an object in C'Alg(8) and
X is an object in €, the inclusion

CAlg(S)é(®/vC—> CAlg(8)ee/, (4.1.33)

spaces,®
C® X

that 8 is presentable. Moreover, as in 4.1.2, we can identify C’Alg(S)é((@/. with the (oo, 1)-category of

admits a left adjoint £ This follows from the same arguments as in 4.1.1, using the fact

commutative £ c>® (C®)-algebras.

Recall now that the existence of a a fully-faithful inclusion i : § C Cat,. This inclusion is monoidal
with respect to the cartesian structures and produces an inclusion i : CAlg(8) C CAlg(Cat).
Therefore, for every symmetric monoidal co-groupoid €% together with the choice of an object X € C,
we have a commutative diagram

CAlg(Catoo)f((e®)/.C—> CAlg(Cato)i(ee),. (4.1.34)

OAZQ(S)é(@)/,C—) CAZQ(S)G®/.

from which, using the universal property of the adjuntion in 4.1.1, we can deduce the existence of a
canonical monoidal map of symmetric monoidal (oo, 1)-categories

L (i(C®)) — i(L TP (€9)) (4.1.35)

®
i(€®),X

Later on (see the Remark 4.2.15) we will see that under an extra assumption on X this comparison
map is an equivalence.

Our goal now is to extend our construction to the setting of presentable symmetric monoidal co-
categories. The starting observation is that, if €® is a small symmetric monoidal (0o, 1)-category the
inversion of an object X can now be rewritten by means of a pushout square in C Alg(Caty,): Since
Cat oo is a symmetric monoidal (oo, 1)-category compatible with all colimits, the forgetful functor
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CAlg(Catso) — Cato (4.1.36)

admits a left adjoint free® which assigns to an oco-category D, the free symmetric monoidal (0o, 1)-
category generated by D. An object in € can be interpreted as a monoidal map free®(A[0]) — C%
where free®(A[0]) is the free symmetric monoidal category generated by one object *. By the universal
property of 13((&}7“66@-9(A[O])’*)(free®(A[O]))7 a monoidal map €® — D® sends X to an invertible object
if and only if it factors as a commutative diagram

freej/(A[O]) — 'a%ree@(A[O]),*) (free®(A0])) (4.1.37)
X
: i

and by the combination of the universal properties, the pushout in C Alg(Catw)

c® H L%me@@@[o])’*)(free®(A[O])) (4.1.38)
free® (A[0])

is canonically equivalent to Lf%® X)(Ef@). The existence of this pushout is ensured by the fact that

Cat, is compatible with all colimits (see [100, 3.2.3.2, 3.2.3.3])

We will use this pushout-version to construct the presentable theory. By the tools described in the
section 3.2, if C® is a presentable symmetric monoidal (co, 1)-category (not necessarily small) and X
is an object in €, the universal monoidal property of presheaves ensures that any diagram like (4.1.37)

factors as
free®(A[0]) —— L%MCQ@(A[O])’*)(free®(A[O])) (4.1.39)

ij :

P(free®(AD])® —— PLE, oo a0 Free®(A[0])?

! |

| |

Y Y
C® De

where P®(—) is the natural extension of the symmetric monoidal structure to presheaves, the vertical
maps j and j' are the respective Yoneda embeddings (which are monoidal maps) and the dotted
arrows are given by colimit-preserving monoidal maps obtained as left Kan extensions.

Definition 4.1.8. Let €% be a presentable symmetric monoidal (0o, 1)-category and let X be an object
in C. The formal inversion of X in C® is the new presentable symmetric monoidal (0o, 1)-category
C®[X 1] defined by pushout

C¥IX 1] :=c® 11 PLE eee (afo)) ) (free®(A[0])® (4.1.40)
P(free® (A[0])®

in CAlg(Prt)

Remark 4.1.9. Recall that Pr2® is compatible with colimits. By [100, 3.2.3.2, 3.2.3.3] the (oo, 1)-
category C'Alg(Prl) has all small colimits so that the previous definition makes sense.

Remark 4.1.10. Let €% be a small symmetric monoidal (0o, 1)-category and let X be an object in
C. Again by the monoidal universal property of presheaves, the monoidal structure in € extends to
a monoidal structure in P(€) and it makes it a presentable symmetric monoidal (0o, 1)-category. It
is automatic by the universal properties that the inversion P(€)®[X 1] in the setting of presentable
(00, 1)-categories is canonically equivalent to ?(L%&X)(G@))@
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As in the small context, we analyze the base change with respect to this map. Since (Prf)® is
compatible with all small colimits, all the machinery related to algebras and modules can be applied.
The composition with the canonical map €¥ — €®[X 1] produces a forgetful functor

Modes(x-11(Pr’) — Modes (Pr') (4.1.41)

and the base-change functor L{g® x) = (— ®eo C®¥[X1]) exists, is monoidal and therefore induces
an adjunction

Pr,®
L(e®,x)

TN

CAlg(:PTL)@Qb[X—l]/' HCAZQ(:PTL)G(XJ/' (4.1.42)
Our main result is the following:
Proposition 4.1.11. Let C® be a presentable symmetric monoidal (oo, 1)-category. Then

1. the canonical map

CAlg(T'r'L)@@)[X—l]/_ — CAZg(TTL)e@)/. (4.1.43)

is fully faithful and its essential image consists of full subcategory spanned by the algebras
C® — D® sending X to an invertible object; In particular we have a canonical equivalence

Lgay (@) = 2[X 1]

2. The canonical map

MOde@[Xfll(fPTL) — MOd@@ (fP’I’L) (4144)

is fully faithful and its essential image consists of full subcategory spanned by the presentable
(00, 1)-categories equipped with an action of C where X acts as an equivalence.

Proof. Since (Pr¥)® is a closed symmetric monoidal (0o, 1)-category (see the discussion in the section
3.6), it is compatible with all colimits and so the results of the Proposition 4.1.4 can be applied.
We prove that C® — C®[X 1] is an epimorphism. Indeed, if ¢ : C¥ — D® does not send X to
an invertible object, by the universal property of the C®[X~1] as a pushout, the mapping space
MapCAlg(Catoo)e®/(G®[X_1],ZD‘X’) is empty. Otherwise if ¢ sends X to an invertible object, by the
universal property of the pushout we have

MapCAlg(?rL)e(g,/ (C¥[X 1], D¥) ~ Mapc arg(prey(C® (X', D%) (4.1.45)
and the last is given by the homotopy pullback of

Mapcarg(riy(PEG oo a0 (Free® (Al0)2, D9)  (4.1.46)

|

MapCAlg(fPTL) (G®, D®) MapCAlg((PrL) (fP® (f’f‘€6® (A[O])), D®)

which, by the universal property of P®(—) is equivalent to

Mapc aig(re) (€% D)X Mape arg(cuns y (Free® (A[0]),02) M aPO Alg(Catos) (£ frecs (afo)) ) (Free (A[0])), DP)
(4.1.47)
and we use the fact that free®(A[0]) — L‘?}Tae@(A[o])’*)(free®(A[0])) is an epimorphism to conclude
the proof.
It remains now to discuss the images.
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1. It is clear by the universal property of the pushout defining €*[X ~1];

2. If M is in the image, the action of X is clearly invertible. Let M be a C®-module with an
invertible action of X. By repeating exactly the same arguments as in the proof of Prop. 4.1.11
we get a commutative diagram in Prk

M M ®ce Lo x)(C®) (4.1.48)

|

Freege (M) 1y = [1,50 Sym™(M)ee ——= 1,50 Sym™ (M ece L%G&X)(G@))e@

where the vertical maps are the canonical inclusions in the colimit and Sym™(—)ee is now a
colimit in Modes (Pr’). We recall now that coproducts in Pr’ are computed as products in Prf.
Let u: A— Bandv: X — Y be colimit preserving maps between presentable (0o, 1)-categories
and assume the coprodut map u[Jv: A[[ X — B]][Y is an equivalence. The coproduct AJ] X
is canonically equivalent to the product A x X and we have commutative diagrams

A - B (4.1.49)

and

A _ B (4.1.50)

P

A]_[X:AXXTB]_[Y:BXY

with ¢ and j the canonical inclusions and p and ¢ the projections. The maps in the second
diagram are right adjoints to the maps in the first, with qu ~ 4 X ¥ and therefore u [] v and
4 X U are inverses. Since the projections are essentially surjective, the inclusions ¢ and j are
fully faithful and we conclude that u has to be fully faithful and u is essentially surjective. To
conclude the proof is it enough to check that u is essentially surjective or, equivalently (because
w is fully faithful), that @ is fully-faithful. This is the same as saying that for any diagram as
in (4.2.30) with @ x o fully faithful, @ is necessarily fully faithful. This is true because Y is
presentable and therefore has a final object e and since ¥ commutes with limits, for any objects
bo, b1 € Ob_j(ﬂ) we have

Mapp(bo,b1) =~ Mapp(bo,b1) x Mapy (e, €) ~ Mapa(u(bo), u(b1)) x Mapx (v(e),v(e)) £4.1.51)
o~ MapA(ﬂ(bo),ﬂ(bl()@JﬁZ)
O

Remark 4.1.12. The considerations in the Remark 4.1.6 work, mutatis mutandis, in the presentable
setting.



Inversion of an Object in a Symmetric Monoidal (0o, 1)-category and the Relation with Symmetric
90 Spectrum Objects

4.2 Connection with ordinary Spectra and Stabilization

In the previous section we studied the formal inversion of an object X in a symmetric monoidal
(00, 1)-category. Our goal for this section is to compare our formal inversion to the more familiar
notion of (ordinary) spectrum-objects.

4.2.1 Stabilization

Let C be an (0o, 1)-category and let G : C — C be a functor with a right adjoint U : € — €. We define
the stabilization of C with respect to (G,U) as the limit in Cat®¥
U

U U

Stab(G,U)(G) = C ¢ e (4.2.1)

We will refer to the objects of Stabq,)(C) as spectrum objects in C with respect to (G,U). As a

limit, we have a canonical functor ”evaluation at level 0” which we will denote as QF : Stab,)(C) —
C.

Remark 4.2.1. Let C is a presentable (oo, 1)-category together with a colimit preserving functor
G : € — C. By the Adjoint Functor Theorem we deduce the existence a right adjoint U to G. Using
the equivalence Pr ~ (Prf)°P and the fact that both inclusions Prl, Prf C C’atf;ig preserve limits,
we conclude that Stab(g 1) (€) is equivalent to the colimit of

G G G

C ¢ C

(4.2.2)

Example 4.2.2. The construction of spectrum objects provides a method to stabilize an co-category:
Let € be an (00, 1)-category with final object *. If € admits finite limits and colimits we can construct
a pair of adjoint functors Xe : €, — €, and Q¢ : €., — C,, defined by the formula

Se(X) === (4.2.3)
X
and
Qe(X) =% xx * (4.2.4)

and by [100, Prop. 1.4.2.24] we can define the stabilization of € as the co-category

Stab(@) = Stab(ze,ge)((f*/) (425)

By [100, Cor. 1.4.2.17], Stab(C) is a stable co-category and by [100, Corollary 1.4.2.23] the functor
Q% : Stab(C) — C has a universal property: for any stable (0o, 1)-category D, the composition with
Q°° induces an equivalence

Fun'(D, Stab(€)) — Fun'(D, €) (4.2.6)

between the full subcategories of functors preserving finite limits. Suppose now that C is presentable.
Since Q¢ by definition commutes with all limits and Pr® is closed under limits, Stab(C) will also be
presentable and Q°° will also commute with all limits. Therefore, by the Adjoint Functor Theorem
it will admit a left adjoint ¥°° : € — Stab(€). Using the equivalence Prl ~ (Prf)°r we find (see
[100, Cor. 1.4.4.5]) that X°° is characterized by the following universal property: for every stable
presentable (0o, 1)-category D, the composition with 3°° induces an equivalence

Fun®(Stab(C), D) — Fun®(€,D) (4.2.7)
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Our goal for the rest of this section is to compare this notion of stabilization to something more
familiar. Let us start with some precisions about the construction of limits in Cato,. By [99, Thm.
4.2.4.1], the stabilization Stab(g ¢)(€C) can be computed as an homotopy limit for the tower

U U U

(o ef ef (4.2.8)

in the simplicial model category A, of (big) marked simplicial sets of the [99, Prop. 3.1.3.7] (as a
marked simplicial set, € is the notation for the pair (€, W) where W is the collection of all edges
in € which are equivalences). By [99, Thm. 3.1.5.1], the cofibrant-fibrant objects in A+ are exactly
the objects of the form € with € a quasi-category and, forgetting the marked edges provides a right-
Quillen equivalence from A+ to A with the Joyal model structure. Therefore, to obtain a model
for the homotopy limit in A+ we can instead compute the homotopy limit in A (with the Joyal’s
structure).

Let now us recall some important results about homotopy limits in model categories. All the
following results can be deduced using the Reedy/injective model structures (see [69] or the Appendix
section of [99]) to study diagrams in the underlying model category. The first result is that for a
pullback diagram

X (4.2.9)

:

Y —7
g

to be an homotopy pullback, it is enough to have Z fibrant and both f and g fibrations. In fact, these
conditions can be a bit weakened, and it is enough to have either (i) the three objects are fibrant and
one of the maps is a fibration; (i) if the model category is right-proper, Z is fibrant and one of the
maps is a fibration (this last one applies for instance in the model category of simplicial sets with the
standard model structure). Secondly, we recall another important fact related to the homotopy limits
of towers (again, this can be deduced using the Reedy structure). For the homotopy limit of a tower

Ts Ts T

X X, Xo (4.2.10)

to be given directly by the associated strict limit, it suffices to have the object X fibrant and all
the maps T; given by fibrations. In fact, these towers are exactly the fibrant-objects for the Reedy
structure and therefore we can replace any tower by a weak-equivalent one in these good conditions.
The following result provides a strict model for the homotopy limit of a tower:

Lemma 4.2.3. Let M be a simplicial model category and let T : N°P — M be tower in M

Box, ox, DX, (4.2.11)

with each X, a fibrant object of M. In this case, the homotopy limit holimer)T), is weak-equivalent
to the strict pullback of the diagram

I, X2 (4.2.12)

|

IL, Xn —=11, Xn x X

where the vertical arrow is the fibration' induced by the composition with the cofibration OA[1] — A[1]
and the horizontal map is the product of the compositions Hn X, = X, X Xpt1 — X x X, where
the last map is the product Idx, x T,. Notice that every vertice of the diagram is fibrant.

Proof. See [61]-VI-Lemma 1.12. O

it is a fibration because of the simplicial assumption
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Back to our situation, we conclude that the homotopy limit of

U U U

eh ef ef (4.2.13)

is given by the explicit strict pullback in A+

[T, (eH)A0F (4.2.14)

|

[T, € — T, € x &

where A[1)# is the notation for the simplicial set A[1] with all the edges marked and (GH)A[W is the coac-
tion of A[1]f on C8. In fact, it can be identified with the marked simplicial set Fun’(A[1], )% where
Fun/(A[l],€) corresponds to the full-subcategory of Fun(All],C) spanned by the maps A[l] — €
which are equivalences in C.

Let us move further. Consider now a combinatorial simplicial model category M and let G : M —
M be a left simplicial Quillen functor with a right adjoint U. Using the technique described in [99,
5.2.4.6], from the adjunction data we can extract an endo-adjunction of the underlying (oo, 1)-category
of M

Na (W) % Na (M) (4.2.15)

where U can be identified with the composition QoU with @ a simplicial?® cofibrant-replacement functor
in M, which we shall fix once and for all. We can consider the stabilization Stab g, g)(Na(M°)) given
by the homotopy limit

I NAOE) T NA(VO)E T Na (M) (4.2.16)

which we now know, is weak-equivalent to the strict pullback of

[1,, Fun'/(A[1], Na(M°))" (4.2.17)

|

[T, Na(M®)F ——T1,, Na(M°)* x Na(M°)*

and we know that its underlying simplicial set can be computed as a pullback in A by ignoring all the
markings. Moreover, by [99, Prop. 4.2.4.4], we have an equivalence of (0o, 1)-categories between

Na((MF)°) == Na(M0)20 (4.2.18)

where I is the categorical interval and M’ denotes the category of morphisms in M endowed with the
projective model structure (its cofibrant-fibrant objects are the arrows f : A — B in M with both
A and B cofibrant-fibrant and f a cofibration in M). Moreover, the equivalence above restricts to a
new one between the simplicial nerve of (MZ) .~ (the full simplicial subcategory of (M)° spanned
by the arrows f : A — B which have A and B cofibrant-fibrant and f a trivial cofibration) and
Fun/(A[l], Na(M?)). Using this equivalence, we find an equivalence of diagrams

2(see for instance the Proposition 6.3 of [115] for the existence of simplicial factorizations in a simplicial cofibrantly
generated model category)
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Na((M5)gi,) = Fun/(A[1], Na(M?))

triv

l |

[1,, Na(M®) x Na(M?) [T, Na(M®) x Na(M?)

_— _—

[T, Na(°) i [T, Na (M)

(4.2.19)

The homotopy pullbacks of both diagrams are weak-equivalent but since the vertical map on the left
diagram is no longer a fibration, the associated strict pullback is no longer a model for the homotopy
pullback. We continue: the simplicial nerve functor Na is a right-Quillen functor from the category
of simplicial categories with the model structure of [15] to the category of simplicial sets with the
Joyal’s structure. Therefore, it commutes with homotopy limits and so, the simplicial set underlying
the pullback of the previous diagram is in fact given by the simplicial nerve of the homotopy pullback
of

Hn(MI)griv (4220)

|

[, M° ——T], M°® x M°
in the model category of simplicial categories.

Let us now progress in another direction. We continue with M a model category together with
G : M — M a Quillen left endofuctor with a right adjoint U. We recall the construction of a
category Sp" (M, G) of spectrum objects in M with respect to (G, U): its objects are the sequences
X = (Xo, X1, ...) together with data of morphisms in M, o; : G(X;) — X, 41 (by the adjunction, this
is equivalent to the data of morphisms &; : X; — U(X;41)). A morphism X — Y is a collection of
morphisms in M, f; : X; — Y;, compatible with the structure maps o;. If M is a cofibrantly generated
model category (see Section 2.1 of [69]) we can equipped Sp™(M,G) with a stable model structure.
First we define the projective model structure: the weak equivalences are the maps X — Y which are
levelwise weak-equivalences in M and the fibrations are the levelwise fibrations. The cofibrations are
defined by obvious left-lifting properties. By the Theorem 1.13 of [71] these form a model structure
which is again cofibrantly generated and by the Proposition 1.15 of loc. cit, the cofibrant-fibrant
objects are the sequences (Xp, X1, ...) where every X, is fibrant-cofibrant in M, and the canonical
maps G(X;) — G(X;11) are cofibrations. We shall write Sp™ (M, G),r; to denote this model structure.
The stable model structure, denoted as Sp™(M, G) stapie, is obtained as a Bousfield localization of the
projective structure so that the new fibrant-cofibrant objects are the U -spectra, meaning, the sequences
(X0, X1, ...) which are fibrant-cofibrant for the projective model structure and such that for every i,
the adjoint of the structure map o;, X; — U(X;+1) is a weak-equivalence. (See Theorem 3.4 of [71]).

By [71, Thm 6.3], this construction also works if we assume M to be a combinatorial simplicial
model category and G to be a left simplicial Quillen functor 2. In this case, Sp(M, G) (both with the
stable and the projective structures) is again a combinatorial simplicial model category with mapping
spaces given by the pullback

3The reader is left with the easy exercise of checking that the following conditions are equivalent for a Quillen
adjunction (G, U) between simplicial model categories: () G is enriched; (¢¢) G is compatible with the simplicial action,
meaning that for any simplicial set K and any object X we have G(K ® X) ~ K ® G(X); (¢it) U is compatible with
the coaction, meaning that any for any simplicial set K and object Y we have U(Y®) ~ U(Y)X; (iv) U is enriched.
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[1,, Mapn(X;,Y;) (4.2.21)

|

[, Mapn(Xi,Y:) —[1,, Mapn(Xi,U(Yit1))

where

e the horizontal map is the product of the maps

Mapy(Xi,Yi) = Mapy(Xi, U(Yiq)) (4.2.22)

induced by the composition with the adjoint &; : ¥; — U(Y;11);

e The vertical map is the product of the compositions

Mapy(Xit1,Yig1) = Mapy(U(Xiv1), U(Yig1)) = Mapy(Xi, U(Yiq)) (4.2.23)
where the first map is induced by U and the second map is the composition with X; — U(X;11).

Its points correspond to the collections f = {f;}ien for which the diagrams

Xi — > U(Xi1) (4.2.24)

\Lﬁ iU(fiJrl)

Y; ——=U(Yit1)
commute.

By the Proposition 2.2.1, the underlying (0o, 1)-categories of Sp™(M, G)pro; and SpN(M, G) stabie
are given, respectively by the simplicial nerves Na ((Sp™(M, G)proj)°) and Na((SpN (M, G)stavie)®)
and by construction the last appears as the full reflexive subcategory of the first, spanned by the
U-spectrum objects.

Up to this point we have two different notions of spectrum-objects. Of course they are related. To
understand the relation we observe first that Sp™(M, G) fits in a strict pullback diagram of simplicial
categories

SpN (M, G) —[[,,(m?) (4.2.25)

| l

[T, M —— T, M x M

where the top horizontal map is the product of all maps of the form (X;);eny — (X; = U(X;41)) and
the vertical-left map sends a spectrum-object to its underlying sequence of objects. The right-vertical
map sends a morphism in M to its respective source and target and the lower-horizontal map is the
product of the compositions (X;);en — (X;, Xiv1) — (X1, U(Xi41)). All the maps in this diagram are
compatible with the simplicial enrichment. We fabricate a new diagram which culminates in (4.2.20).
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- Hn(wg)griv
PN L ILOUY
SNV, G2t > SN, )30, = SPN(M, G) —— [, (MF) ——2— T, (M)
>l |
a ~ N V
Hn MOC\ Hn M — Hn M x M Hn M° x M°
IR N JA /
Hn Mo X Mfz’b

(4.2.26)
where the maps

1. z, y, z, w are the maps in the diagram (4.2.25);

2. a is the restriction of the projection Sp™(M, G) — [],, M (it is well-defined because the cofibrant-
fibrant objects in Sp™(M, G) are supported on sequences of cofibrant-fibrant objects in M)

3. d’ is the composition of a with the canonical inclusion;

4. b is the product of the compositions

M — LM M ——= ! (4.2.27)

where Q is the machine associated to our chosen simplicial functorial factorization of the form
”(cofibration, trivial fibration)” ( sending a morphism f : A — B in M to the pair (u: A —
X,v: X — Y) with v a cofibration and v a trivial fibration) and the second arrow is the
projection in the first coordinate.

5. ¢ is induced by composition of w with the canonical inclusion. Given a sequence of cofibrant-
fibrant objects (X;)ien, we have w((X;)ien) = (Xi,U(X; + 1))seny with X; fibrant-cofibrant
and U(X;41) fibrant (because U is a right-Quillen functor). Therefore, the composition factors
through [], M° x M7 and c is well-defined;

6. To obtain d, we consider first the composition

MO x M ——> M° x ML e 5 (M x M) ——= MO x M ——= M x M (4.2.28)

where the first arrow sends (X,Y) — (X,0 — X), the third arrow is induced by the projection
of MI x M! — M on the first coordinate and the last arrow is induced by taking the source.
All together, this composition is sending a pair (X,Y") to the pair (X, Q(Y")) with @ a cofibrant-
replacement of Y using the same factorization device of the item (4). In particular, if YV is
already fibrant, Q(Y") will be cofibrant-fibrant and we have a dotted arrow

MP X M—M° xM (4.2.29)

M x MF® — — = M° X M°



Inversion of an Object in a Symmetric Monoidal (0o, 1)-category and the Relation with Symmetric
96 Spectrum Objects

rendering the diagram commutative.

By definition, d is the product of all these dotted maps;

7. e is the map induced by composing b o z with the canonical inclusion and it is well-defined for
the reasons given also in (2);

8. fis deduced from e by restricting to the U-spectra objects: If (X;);en is a U-spectra, the canoni-
cal maps X; — U(X;4+1) are weak-equivalences and therefore, when we perform the factorization

encoded in the composition b o x, the first map is necessarily a trivial cofibration and therefore
f factors through [T (M%),

Finally, the fact that everything commutes is obvious from the definition of factorization system.
All together, we found a commutative diagram

SP (M, G)Zrape — [, (M) (4.2.30)

| N

1, [T, M° x M

In summary, the upper horizontal map sends a U-spectra X = (X;);en to the list of trivial
cofibrations (X; — Q(U(X;41)))ien and the left-vertical map sends X to its underlying sequence of
cofibrant-fibrant objects. By considering the simplicial nerve of the diagram above and using the
equivalence of diagrams in (4.2.19), we obtain, using the universal property of the strict pullback, a
map

¢ : Na((Sp"(M, G)stabie)®) — Stabg, iy (Na(M°)) (4.2.31)
where we identify Stabig )(Na(M°)) with the strict pullback of the diagram (4.2.17).

The following result clarifies this already long story:

Proposition 4.2.4. Let M be a combinatorial simplicial model category and let G : M — M be a
left simplicial Quillen functor with a right adjoint U. Let SpN(M, G)*t%¢ denote the combinatorial
simplicial model category of [T71] equipped the stable model structure. Then, the canonical map induced
by the previous commutative diagram

¢ : Na((SP" (M, Q) stapie)®) — Stab g,y (Na(M?)) (4.2.32)
is an equivalence of (00, 1)-categories.

Proof. We will prove this by checking the map is essentially surjective and fully-faithful. We start
with the essential surjectivity. For that we can restrict ourselves to study of the map induced between
the maximal oco-groupoids (Kan-complexes) on both sides .

Na((SPN (M, G)stabie)®)™ = Stabc gy (Na(M°))~ (4.2.33)

To conclude the essential surjectivity it suffices to check that the map induced between the my’s

7o(Na((Sp" (M, G)stabie)®)™) — mo(Stabia gy (Na(M?))™) (4.2.34)

is surjective. We start by analyzing the right-side. First, the operation (—)~ commutes with homotopy
limits. To see this, notice that both the (oo, 1)-category of homotopy types 8 and the (oo, 1)-category
of small (00, 1)-categories Cat., are presentable. The combinatorial simplicial model category of
simplicial sets with the Quillen structure is a strict model for the first and A+ models the second. By
combining the Theorem 3.1.5.1 and the Proposition 5.2.4.6 of [99], the inclusion 8§ C Cat is in fact
a Bousfield (a.k.a reflexive) localization and its the left adjoint can be understood (by its universal
property) as the process of inverting all the morphisms. By combining the Proposition 3.3.2.5 and
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the Corollaries 3.3.4.3 and 3.3.4.6 of [99], we deduce that the inclusion § C Cato, commutes with
colimits. Since 8 and Cat, are presentable, by the Adjoint Functor Theorem (see Corollary 5.5.2.9 of
[99]), the inclusion 8 C Cats, admits a right adjoint which, by its universal property can be identified
with the operation (—)~. An immediate application of this fact is that mo(Stabg g)(Na(M?))7) is
in bijection with the my of the homotopy limit of the tower of Kan-complexes

N e Na ) — T NA (M) (4.2.35)

Using the Reedy structure (on A with the Quillen structure), we can find a morphism of towers

— LN s Na ) s NA (MO (4.2.36)
Ty T T,

where the vertical maps are weak-equivalences of simplicial sets for the Quillen structure, every object
is again a Kan-complex but this time the maps in the lower tower are fibrations. By the nature of the
weak-equivalences, this morphism of diagrams becomes an isomorphism at the level of the my’s

e o (NAVME)2) L A VE)2) T2 o (VA (M9)) (4.2.37)
mo(T2) mo(T1) ———— mo(Tp)

and therefore the limits limyo»mo(Na(M®)™) and limyerm(T;) are isomorphic. Finally, using the
Milnor’s exact sequence associated to a tower of fibrations together with the fact that fibrations of
simplicial sets are surjective (see Proposition VI-2.15 and Proposition VI-2.12-2 in [61]) we deduce an
isomorphism

mo(limyor T;) = limyor o (T}) (4.2.38)

and by combining everything we have

mo(Stab g, oy (Na(M®))™) = Limuyermo(Na(M°)) (4.2.39)

where the right hand side can be identified with the strict limit of the tower of sets

e o (Na(V)™) 2O  (Na(V2)2) T2 o (VA (M°)%) (4.2.40)

and since U can be identified with Q o U, the elements of the last can be presented as sequences
([Xi])ien with each [X;] an equivalence class of an object X; in Na (M°), satisfying [QU (X;+1)] = [Xi],
which is the same as stating the existence of an equivalence in Na(M°) between X; and QU (X;41).
Since we are dealing with cofibrant-fibrant objects, we can find an actual homotopy equivalence
X; = QU(X;+1) and by choosing a representative for each [X;] together with composition maps
X; = QU(X;41) = U(X;41) we retrieve a U-spectra. This proves that the map is essentially surjec-
tive.

It remains to prove ¢ is fully-faithful. Given two U-spectrum objects X = (X;);en and Y = (Y;);en,
the mapping space in Na ((Sp™ (M, G)stapic)®) between X and Y is given by the pullback? of the
diagram

4see the formula (4.2.21)
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[1,, Mapy(X;,Y7) (4.2.41)

|

Hn MapM(X'i? }/1) - Hn MapM(X'L" U(YZ+1))

All vertices in this diagram are given by Kan-complexes (because M is a simplicial model category,
each Y; and X is cofibrant-fibrant and U is right-Quillen) and the vertical map is a fibration. Indeed,
it can be identified with product of the compositions

Mapyi(Xit1,Yip1) = Mapy(G(Xi), Yiq1)) = Mapp(Xi, U(Yiq1)) (4.2.42)

where the last isomorphism follows from the adjunction data and the first map is the fibration induced
by the composition with structure maps G(X;) — X;+1 of X (which are cofibrations because X is a
U-spectra). Therefore, the pullback square is an homotopy pullback.

At the same time, because of the equivalence of diagrams (4.2.19) the mapping spaces in Stab(, 7y (Na (M°))
between the image of X and the image of Y can obtained® as the homotopy pullback of

[1,, Mapn(X;,Yi) (4.2.43)
U

[1,, Mapn(U(X;),U(Y3))

Q

[1,, Mapm(QU(X;), QU(Y7))

I1, Mapn(Xi,Yi) —— 1, Mapn(Xi, QU(Yit1))

To conclude the proof it suffices to produce a weak-equivalence between the formulas. Indeed,
we produce a map from the diagram (4.2.43) to the diagram (4.2.41), using the identity maps in the
outer vertices and in the corner we use the product of the maps induced by the composition with the
canonical map QU (Yi41) = U(Yiy1).

Mapy (Xi, QU(Yig1)) = Mapy(Xi, U(Yiq1)) (4.2.44)

Of course, this map is a trivial fibration: M is a simplicial model category, X; is cofibrant and
QU (Y;11) = U(Y;41) is a trivial fibration.
O

In the situation of the Proposition 4.2.4, with M a combinatorial simplicial model category and G
a left-simplicial Quillen functor, we know that SpN(M, G)%,,;;. is again combinatorial and simplicial
and so, both the underlying (oo, 1)-categories Na (M®) and Na (Sp™ (M, G)2, 1) are presentable (see
the Proposition A.3.7.6 of [99]). Finally, using the Remark 4.2.1 we deduce the existence of canonical
equivalence between Na (Sp™(M, G)°,,..) and the colimit of the sequence

Na(MC) —E = Na(v©) & (4.2.45)

5The mapping spaces in the homotopy pullback are the homotopy pullback of the mapping spaces
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4.2.2 Stabilization and Symmetric Monoidal Structures

Let us proceed. Our goal now is to compare the construction of spectra with the formal inversion
C[X~1]®. The idea of a relation between the two comes from the following classical theorem:

Theorem 4.2.5. (see Theorem 4.3 of [150])
Let C be a symmetric monoidal category with tensor product ® and unit 1. Let X be an object in C.
Let Stabx (C) denote the colimit of the sequence
X®—

X®— X®—

X®—

e e e (4.2.46)

in Cat (up to equivalence). Then, if the action of the cyclic permutation on X @ X ® X becomes an
identity map in C after tensoring with X an appropriate amount of times (which is the same as saying
it s the identity map in Stabx(C)) the category Stabx (C) admits a canonical symmetric monoidal
structure and the canonical functor € — Stabx (C) is monoidal, sends X to an invertible object and
is universal with respect to this property.

Proof. We can identify the colimit of the sequence with the category of pairs (A,n) where A is an
object in € and n an integer. The hom-sets are given by the formula

Homgiapy e)((A,n), (B,m)) = colim(;@_n,_m)Hom(g(X”Jr]C ® A, X™* ® B) (4.2.47)

The composition is the obvious one. There is a natural wannabe symmetric monoidal structure on
Stabx (€), namely, the one given by the formula (A,n) A (B,m) :== (A® B,n + m). When we try
to define this operation on the level of morphisms, we find the need for our hypothesis on X: Let
[f]: (Z,n) = (Y,m)and [g] : (A,a) — (B,b) be two maps in Stabx (). Let f : X*t"(Z) — X*t™(Y)
and g : X7T%(A) — X7*?(B) be representatives for [f] and [g]. Their product has to be a map in
Stabx (C) represented by some map in C, X"t H*(Z ® A) — X™+b+k(Y @ B). In order to define this
map from the data of f and g we have to make a choice of which copies of X should be kept together
with Z and which should be kept with A. These choices will differ by some permutation of the factors
of X, namely, for each two choices there will be a commutative diagram

Xn+a+a+'y(Z ® A)

Xntataty(Z @ A) (4.2.48)

Jo€Xntataty

iUse Choice 1 iUse Choice 2

Xm+b+a+7(y ® B) X mtbtaty (Y ® B)

30 €S mtbtaty

The reason why we cannot adopt one choice once and for all, is because if we choose different
representatives for f and g, for instance, idx ® f and idx ® g, we will need a permutation of factors
to make the second result equivalent to the one given by our first choice. Therefore, in order to have
a well-define product map, it is sufficient to ask for the different permutations of the p-fold product
XP to become equal after tensoring with the identity of X an appropriate amount of times. In other
words, they should become an identity map. For this, it is sufficient to ask for the action of the cyclic
permutation (123) on X? to become the identity. This is because any permutation of p-factors can
be built from permutations of 3-factors, by composition.

It is now an exercise to check that this operation, together with the object (1,0) and the natural
associators and commutators induced from C, endow Stabx(C) with the structure of a symmetric
monoidal category. Moreover, one can also check that the object (X,0) becomes invertible, with in-
verse given by (1,—1).

The fact that Stabx (C) when endowed with this symmetric monoidal structure is universal with
respect to the inversion of X comes from fact that any monoidal functor f: € — D sending X to an
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invertible element produces a morphism of diagrams (in the homotopy category of (small) categories)

X®— X®— X®@— X®—

“ “

(4.2.49)

C
P
F(X)®— D F(X)®— D F(X)®- D F(X)@—

together with an associated colimit map Stabx (€) — Stabx (D). To conclude the proof we need two
observations: let D be a symmetric monoidal category and let U be an invertible object in D, then
we the following facts:

1. U automatically satisfies the cocyle condition. This follows from a more general fact. If U is an
invertible object in €, we can prove that the group of automorphisms of U in € is necessarily
abelian. This follows from the existence of an isomorphism U ~ U ® U* ® U and the fact that
any map f : U — U can either be written as f ® idx ® idx or idx ® idx ® f. Given two maps
f and g we can write

gof= (g®idx ®idx)o(idy Qidx @ f) = (f ®idx Ridx)o (idx Qidx ®g) = fog (4250)

The fact that U satisfies the cocycle condition is an immediate consequence, because the actions
of the transpositions (i,7 + 1) and (i + 1,7 4+ 2) have to commute and we have the identity
((i,i4+ 1) o (i+1,i42))3 = id.

2. the functor U ® — : D — D is an equivalence of categories with inverse given by multiplication
with U*, the inverse of U in D. In this case, multiplications by the powers of U and U* make
D a cocone over the stabilizing diagram. It is an easy observation that the canonical colimit
Staby (D) — D (which can be described by the formula (A, n) — (U*)” ® A) is an equivalence.
Moreover, since U satisfies the cocycle condition (following the previous item), Staby (D) comes
naturally equipped with a symmetric monoidal structure and we can check that the colimit map
is monoidal. Under these circumstances, any monoidal functor f : € — D with f(X) invertible,
gives a canonical colimit map Stabx (C) — Stabsx)(D) ~ D. It is an observation that this map
is monoidal under our hypothesis on X. This implies the universal property.

O

Remark 4.2.6. The condition on X appearing in the previous result is trivially satisfied if the action
of the cyclic permutation (X ® X ® X)(1’2*3) is already an identity map in C. For instance, this
particular situation holds when € is the pointed A'-homotopy category and X is P! (See Theorem 4.3
and Lemma 4.4 of [150]).

Our goal now is to find an analogue for the previous theorem in the context of symmetric monoidal
(00, 1)-categories.

Definition 4.2.7. Let C® be a symmetric monoidal (0o, 1)-category and let X be an object in C.
We say that X is symmetric if there is a 2-equivalence in C between the cyclic permutation o :
XX X)(1’273) and the identity map of X ® X ® X. In other words, we demand the existence of
a 2-simplex in C

XXX 2-XXeX (4.2.51)
idl >/
id
XXX

providing an homotopy between the cyclic permutation and the identity. This is equivalent to the
condition that o is the identity of X @ X @ X in h(C).
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This notion of symmetry is well behaved under equivalences. Moreover, it is immediate that
monoidal functors map symmetric objects to symmetric objects.

Remark 4.2.8. Let V be a symmetric monoidal model category with a cofibrant unit 1. Recall that
a unit interval I is a cylinder object for the unit of the monoidal structure I := C(1), together with
amap I ® I — I such that the diagrams

1@l~I1"—=1 (4.2.52)

80®1L11\L 30l

I@l~TZ 1 (4.2.53)

and
I®l~] (4.2.54)

dr

81®1d1l
I —1

commute, where dy,0; : 1 — I and 7 : [ — 1 are the maps providing I with a structure of cylinder
object.

Recall also that two maps f,g: A — B are said to be homotopic with respect to a unit interval I
if there is a map H : A ® I — B rendering the diagram commutative

A~A®1 (4.2.55)

f
m
H

AR ——=B
g
A~A®1

In [71, Defn. 10.2], the author defines an object X of V to be symmetric if it is cofibrant and if
there is a unit interval I, together with an homotopy

H: XXXl > X0X0X (4.2.56)

between the cyclic permutation o and the identity map. We observe that if an object X is symmetric
in the sense of [71] then it is symmetric as an object in the underlying symmetric monoidal (oo, 1)-
category of V in the sense of the Definition 4.2.7. Indeed, since V is a symmetric monoidal model
category with a cofibrant unit, the full subcategory V¢ of cofibrant objects is closed under the tensor
product and therefore inherits a monoidal structure, which moreover preserves weak-equivalences in
each variable. In Section 3.9 we used this fact to define the underlying symmetric monoidal (oo, 1)-
category of V, N((V¢)®)[W 1] (see Section 3.9 for the notations). Its underlying (oo, 1)-category
is N(V¢)[W~1] and its homotopy category is the classical localization in Cat. Moreover, it comes
canonically equipped with a monoidal functor L : N®((V¢)®) — N®((V)®)[W 1. Now, if X is
symmetric in V in the sense of [71], the homotopy H forces o to become the identity in h(N (V¢)[W 1))
(because the classical localization functor is monoidal and the map I — 1 is a weak-equivalence). The

conclusion now follows from the commutativity of the diagram induced by the unit of the adjunction
(h,N)
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NV~ N(V)[W] (4.2.57)

| i

N(h(N(V°))) — N(h(N (V)[W~1]))

and the fact that the both horizontal arrows are monoidal and therefore send the cyclic permutation
of the monoidal structure in V to the cyclic permutation associated to the monoidal structure in

N((V)#)[We .

We now come to the generalization of the Theorem 10.3 of [71]. The following results relate our
formal inversion of an object to the construction of spectrum objects.

Remark 4.2.9. Let C® be a small monoidal (0o, 1)-category and let M be an object in Modee (Cat )
(which we will understand as a left-module). Since Cato, admits classifying objects for endomorphisms
given by the categories of endofunctors, the data of M is equivalent to the data of an (0o, 1)-category
M := M (m) together with a monoidal functor T® : €% — End(M)® where the last is endowed with
the associative monoidal structure induced by the composition of maps of simplicial sets (see [100,
6.2.0.2]). If X is an object in €, the endofunctor T(X) : M — M corresponds to the action of X
in M by means of the operation € x M — M encoded in the module-structure. We will call it the
multiplication by X.

Notice that if the monoidal structure €® is symmetric, the map T'(X) acquires the structure of a
map of C-modules. Indeed, as T® is monoidal, it will send an object (Y, X) € G% to (T'(Y),T(X))
in End(M)%> and the twisting equivalence 7y x : (Y, X) ~ (X,Y) to an equivalence (T'(Y"),T(X)) ~
(T(X),T(Y)). By the definition of coCartesian morphisms in End(M)®, the last equivalence provides
a natural equivalence T(Y)oT(X) ~ T(X)oT(Y) that gives the coherence data making T'(X) a map of
modules. These coherences define commutative diagrams A[1] x A[1l] — Cato, that we can informally
describe as

T(Y)
M——" M (4.2.58)
o % T
TY,X
|/ —, V)
T(Y)

More generally, the extra coherences that make T'(X) a map of modules are given by the higher
order cyclic permutations of factors in ®. The importance of this fact will become clear in the next
proposition.

The following is our key result:

Proposition 4.2.10. Let C® be a small symmetric monoidal (00, 1)-category and X be a symmetric
object in C. Then, for any C®-module M, the colimit of the diagram of C®-modules

T(X)

- — — T(X) — T(X
Stabx (M) = colimitysoq,, (Ca) (- M gy y A (4.2.59)

is a C®-module where the multiplication by X is an equivalence.

Proof. Let d: N(Z) — Mode(Cats) be the diagram corresponding to the multiplication by X. Since
Cat’, is compatible with all small colimits, the Corollary 3.4.4.6 of [100] ¢ implies that d can be
extended to a colimit diagram d' : N(Z)* — Mode(Cats). Moreover, this extension is a colimit

diagram if and only if the composition with the forgetful functor to Cat, is a colimit diagram. Let

6Since we are working the commutative setting, we could also refer to the Corollary 4.2.3.5 of [100]
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oo denote the new joint vertice in N(Z)” and set Stabx (M) := d’(c0). Moreover, let ¢; := d'(i — 0).
As a first step we need to understand how an object Y € € acts on this new module Stabx (M). For
that purpose we observe that as the ¢; are, by definition, maps of modules, we have commutative

diagrams

My

Lk

Stabx (M) -~ = Stabx (M)

and as the T(X)'s are maps of C-modules, this action of Y on Stabx (M) appears as the canonical map
(induced by the universal property of colimits) produced by the morphism of diagrams D’ : N(Z)> x
A[l] = Mode(Cato) levelwise given by T'(Y'). This can be obtained as follows: we consider the dia-
gram D : N(Z) x A[1] - Mode(Cats) obtained by composing the commutative diagrams described
in the Remark 4.2.9 side by side. This can also be written as D : N(Z) — Fun(A[l], Mode(Cats)).
By [99, 5.1.2.3] this diagram admits a colimit cone D’ : N(Z)* — Fun(A[1l], Mode(Cats)) charac-
terized by the fact that both the source and targe of D’(c0) are colimit cones of the restrictions to
1 and 0. This presents the action of Y on Stabx (M) as a colimit of the actions of Y on M. More
informally, we now can picture the situation as

Stabyx (M) My Ty (4.2.60)
|
ly T(Y T(Y) (Y

Staby (M) ME e MM

Our goal now is to understand this action when ¥ = X. But before that it, is important to
understand the consecutive composition of two commutative diagrams

T T(Z

M S ) M
T(Y (Y (Y
( )\L %i ) (t2,v) l o
M M
)

M
T T(Z)

(4.2.61)

This can be informally describe as a new commutative square

T(Z)oT(X)

M (4.2.62)

T(Y T(Y
( )J{ szy)oT(Txyy)J( )

T(Z)oT(X)

and our main observation is that the horizontal composition T'(7zy) o T(7y,x) can be identified
with the natural transformation T'(cz x,y) induced by the cyclic permutation oz xy : (Z,X,Y) —
(Y,Z,X) in G%. Indeed, T® being monoidal, the equivalence oz xy produces an equivalence
(T(Z), T(X), T(Y)) ~ (T(Y),T(Z),T(X)) which by choosing coCartesian morphisms in End(M)®
over (3) — (1), give the commutativity T(Z) o T(X) o T(Y) ~ T(Y) o T(Z) o T(X). The key point
to complete the argument is that the permutation oz xy : (Z,X,Y) — (Y, Z,X) can be written
as a composition of two consecutive twists, namely oz xy ~ (7zv,idx) o (idz,Tx,y) and as T% is
functorial we have T'(1zy) o T (txy) ¥ T(0zxy)

Let us now go back to the case when Y and Z are X. In this case, since by assumption X is
symmetric, there is a 2-simplex in € providing an homotopy between o and the identity of X @ X ® X.
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In this case T'(0) is equivalent to the identity and the 2-simplex rendering the commutativity of the
composition (4.2.62) are the identity faces. By confinality, the map Stabx (M) — Stabx (M) induced
by the morphism of diagrams D is equivalent to the map induced by the Z-indexed diagram given by
the composition of the commutative squares

T(X) M T(X) M T(X) M T(X)

(4.2.63)
T(X)\L - T(x)l / iT(X)
M M
T(X) T(X) T(X) T(X)
and therefore, by definition of colimit cone, it is an equivalence.
O

Remark 4.2.11. A similar argument shows that the same result holds if X is n-symmetric, meaning
that, there exists n € N,n > 2 such that 7™ is equal to the identity map in h(C).

Remark 4.2.12. The Remark 4.2.9 and the Proposition 4.2.10 applies mutatis-mutandis in the pre-
sentable setting. This is true because of the Proposition 3.6.3 - Pr’ admits classifying objects for
endomorphisms. If M is a presentable (0o, 1)-category, End” (M) is a classifying object for endomor-
phisms of M, with the associative monoidal structure given by the composition of functors.

We can finally establish the connection between the adjoint L{g@, X) and the notion of spectra.

Corollary 4.2.13. Let C® be a presentable symmetric monoidal (0o, 1)-category and let X be a
symmetric object in €. Given a C®-module M, Stabx (M) is a C®-module where X acts as an
equivalence and therefore the adjunction of Proposition 4.1.11 provides a map of C®-modules

L(PETQ@,X)(M) — Stabx (M) (4.2.64)

This map is an equivalence. In particular, the underlying oco-category of the formal inversion
C®[X 1Y is equivalent to the stabilization Stabx (€).

Proof. The map can be obtained as a composition

L{da x)(M) = L{go x)(Stabx (M)) — Stabx (M) (4.2.65)

where the first arrow is the image of the canonical map M — Stabx (M) by the adjunction Lfé@’x)
and the second arrow is the counit of the adjunction. In fact, with our hypothesis and because of
the previous Proposition, the action of X is invertible in Stabyx (M) and therefore, by the Proposition
4.1.11 the second arrow is an equivalence It remains to prove that the first map is an equivalence. But
now, since Stabx (M) is a colimit and Lfg& x) lsa left adjoint and therefore commutes with colimits,
we have a commutative diagram

L{te x) (M) — L{Zs x)(Stabx (M)) (4.2.66)

\ NT
Stabx (L{gs x,(M))

where the diagonal arrow is the colimit map induced by the stabilization of Lfé;@ X) (M). Tt is enough

now to observe that if M is a C®-module where the action of X is already invertible, then the canonical
map M — Stabx (M) is an equivalence of modules. The 2 out of 3 argument concludes the proof.
O

In particular
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Corollary 4.2.14. Let C® be a stable presentable symmetric monoidal (0o, 1)-category and let X be
a symmetric object in €. Then C®[X '] is again a stable presentable symmetric monoidal (oo, 1)-
category.

Proof. If C® is stable presentable, the multiplication by X is an exact functor. Moreover, since X
is symmetric, the previous corollary provides an equivalence C[X 1] ~ Stabx(€) where the last is
a colimit in Pr¥. Moreover, since the whole diagram is in ?rétb and the last has all colimits and
the inclusion Prk,, C Prf commutes with them?, we find that C[X '] is stable. Moreover, since by
construction €®[X ~!] is a presentable symmetric monoidal (0o, 1)-category, we conclude it is a stable
presentable symmetric monoidal (oo, 1)-category. O

Remark 4.2.15. Let C® be a small symmetric monoidal oco-groupoid and let X be a symmetric
object in €. Then, using the same arguments as in the proof of the previous corollary together
with the fact that the (oo, 1)-category of spaces 8 admits classifying objects for endomorphisms, we
deduce that the underlying (oo, 1)-category of the formal inversion £ AC;S’®(G®) of the Remark 4.1.7
is equivalent to the stabilization Stab¥“““*(€) obtained as the colimit in 8 of the diagram induced by
the multiplication by X. Moreover, since the inclusion 8§ C Cat, admits a right adjoint (the ”maximal
oo-groupoid”), it preserves colimits and we see that the comparison map of 4.1.7 is an equivalence

Lee x (1(€%)) (1) == Stabx (i(C)) = i(Stab¥****(€)) = LT L (€¥) ) (4.2.67)

)
where Stabx (i(C)) is the stabilization in Caty.

Example 4.2.16. In [100] the author introduces the (oo, 1)-category of spectra Sp as the stabilization
of the (00, 1)-category of spaces. More precisely, following the notations of the Example 4.2.2 it is
given by

Sp = 5p(s5 05)(8+/) (4.2.68)

where 8 denotes the (0o, 1)-category of spaces. By the Propositions and 1.4.3.6 and 1.4.4.4 of [100]
this (o0, 1)-category is presentable and stable and by the Proposition 4.8.2.18 of [100] it admits a
natural presentable stable symmetric monoidal structure Sp® which can be described by means of a
universal property: it is an initial object in C Alg(Prk,,). The unit of this monoidal structure is the
sphere-spectrum.

Our corollary 4.2.13 provides an alternative characterization of this symmetric monoidal structure.
We start with 8, the (oo, 1)-category of pointed spaces. Recall that this (0o, 1)-category is presentable
and admits a monoidal structure given by the so-called smash product of pointed spaces. (see the
Remark 4.8.2.14 of [100] and the section 5.2 below). We will denote it as 8. According to the
Proposition 4.8.2.11 of [100], 8, has an universal property amongst the presentable pointed symmetric
monoidal (oo, 1)-categories: it is a initial one. The unit of this monoidal structure is the pointed space
SY = % ][ *. We will see below (Corollary 5.2.3 and Remark 5.2.4) that 8/ is the underlying symmetric
monoidal (0o, 1)-category of the combinatorial simplicial model category of pointed simplicial sets A,
equipped with the classical smash product of spaces. Since S! is symmetric in A, with respect to
this classical smash (see the Lemma 6.6.2 of [69]), by the Remark 4.2.8 it will also be symmetric in
8. Our inversion 82[(S1)~!] provides a new presentable symmetric monoidal (oo, 1)-category and
because of the symmetry of S*, the fact that (S* A —) can be identified with ¥s and the Corollary
4.2.13, we conclude that the underlying (oo, 1)-category of 8, [(S')~!] is the stabilization defining Sp
and therefore that 8/\[(S!)~!] is a presentable stable symmetric monoidal (0o, 1)-category. By the
universal property of Sp® there is a unique (up to a contractible space of choices) monoidal map

Sp® — 82 [(SY) 7 (4.2.69)

"To see this we can use the equivalence between PrL,, and Modg,(Prl) [100, 4.8.2.18] and the identification of the
inclusion ?rétb C Prl with the forgetful functor Mods, ('J’TL) — Prl. Now we use the fact that Pr&® is compatible

with colimits (its has internal-hom objects) and therefore colimits of modules are computed in PrZ using the forgetful
functor [100, 3.4.4.6).
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At the same time, since every stable presentable (oo, 1)-category is pointed, the universal property
of 87 ensures the existence of a canonical morphism

8N — Sp® (4.2.70)

which is also unique up to a contractible space of choices. This morphism is just the canonical
stabilization morphism and it sends S! to the sphere-spectrum in Sp and therefore the universal
property of the localization provides a factorization

SNM(SHT — Sp® (4.2.71)

which is unique up to homotopy. By combining the two universal properties we find that these two
maps are in fact inverses up to homotopy

Remark 4.2.17. The technique of inverting an object provides a way to define the monoidal stabiliza-
tion of a pointed presentable symmetric monoidal (0o, 1)-category €%. It follows from the Proposition
4.8.2.11 of [100] that for any such C®, there is an essentially unique (base-point preserving and col-
imit preserving) monoidal map f : 8 — C%. Let f(S!) denote the image of the topological circle
through this map. The (presentable) universal property of inverting an object provides an homotopy
commutative diagram of commutative algebra objects in Pr’

Sp® ~ 8N [(SY) 7 =~—— 82 (4.2.72)

v ;

CELf(SH) T =—C"
The monoidal map 8 — Sp® produces a forgetful functor

CAlg(Prt)g,e , — CAlg(Pr)ss, (4.2.73)

which by the Proposition 4.1.11 is fully faithful and admits a left adjoint given by the base-change
formula C® — Sp® ®sp €%, The combination of the universal property of the adjunction and the
universal property of inverting an object ensures the existence of an equivalence of pointed symmetric
monoidal (oo, 1)-categories

COLf(S") ] ~ 8p® @s, CF (4.2.74)

Finally, combining this with the Example 4.8.1.22 of [100] we deduce that the underlying (oo, 1)-
category of C®[f(S')~!] is the stabilization Stab(C).

Moreover, we deduce also that if €% is a stable presentable symmetric monoidal (oo, 1)-category
and X is any object in C, in order to conclude that the inversion C®[X 1] is stable presentable it
is enough to show that €[X 1] is pointed, thus extending the result 4.2.14. Indeed, by the previous
discussion, € is stable if and only if f(S*) is invertible. Since the inversion functor €® — C®[X 1]
is monoidal, the image of f(S!) in €[X~!] will again by invertible. Finally, if C[X ~!] is pointed,
the image of f(S') will necessarily correspond to the image of S in C[X ~!], which therefore will be
invertible, and so, by the previous discussion, C[X ~!] will be stable.

4.3 Connection with the Symmetric Spectrum objects of Hovey

We recall from [71] the construction of symmetric spectrum objects: Let V be a combinatorial simpli-
cial symmetric monoidal model category and let M be a combinatorial simplicial V-model category.
Following the Theorem 8.11 of [71], for any object X in V we can produce a new combinatorial simpli-
cial V-model category Sp™ (M, X) of spectrum objects in M endowed with the stable model structure
and where X acts by an equivalence. In particular, by considering V as a V-model category (using



4.3 Connection with the Symmetric Spectrum objects of Hovey 107

the monoidal structure) the new model category Sp*(V, X) inherits the structure of a combinato-
rial simplicial symmetric monoidal model category and there is left simplicial Quillen monoidal map
V — Sp*(V, X) sending X to an invertible object.

This general construction sends an arbitrary combinatorial simplicial V-model category to a com-
binatorial simplicial V-model category where the action of X is invertible. In fact, by the Theorem
8.11 of [71] Sp¥(M, X) is a combinatorial simplicial Sp*(V, X)-model category. This is a first sign of
the fundamental role of the construction of symmetric spectrum objects as an adjoint in the spirit of
Section 4.1. We have canonical simplicial left Quillen maps

sz(va X) — SpN(SpE(Va X)v X) — SpE(SpN(V7 X)7 X) -~ SpN(v, X) (431)

but in general the last map is not an equivalence. By the Theorem 9.1 of [71] for the last map to be an

equivalence we only need SpN(V, X) to be a V-model category where X acts as an equivalence. This

is exactly the functionality of the symmetric condition on X (see Theorems 10.1 and 10.3 in [71]).
We now state our main result

Theorem 4.3.1. Let V be a combinatorial simplicial symmetric monoidal model category whose unit
is cofibrant and let X be a symmetric object in V in the sense of the Remark 4.2.8. Let Sp*(V,X)
denote the combinatorial simplicial symmetric monoidal model category provided by the Theorem 8.11
of [71], equipped the convolution product. Let €% and Sp%(C)® denote their underlying presentable
symmetric monoidal (0o, 1)-categories.. The left-Quillen monoidal map V — Sp*(V,X) induces a
monoidal functor C® — Sp%(C)®° which sends X to an invertible object, endowing Sp%(C)® with
the structure of object in CAlg(?rL)é%/. In this case, the adjunction of the Prop.4.1.11 provides a
monoidal map

COX ) = L{ge% (%) = Sp%(€)® (4.3.2)

We claim that this map is an equivalence of presentable symmetric monoidal (0o, 1)-categories.

Proof. By the remark 4.2.8 if X is symmetric in the sense of [71] then it is symmetric in €% in the
sense of the Definition 4.2.7.
By definition, the map is obtained as a composition

L{gé?x)(e@b) I L&Téé?x)(Sp?((e)@) - Sp)zc(e)é9 (4.3.3)

where the last arrow is the counit of the adjunction of Proposition 4.1.11. To prove that this map is
an equivalence it is enough to verify that the map between the underlying (oo, 1)-categories

L{ds x)(€) = SpX(€) (4.3.4)

is an equivalence. But now, by the combination of the Corollary 4.2.13 with the main result of the
Corollary 10.4 in [71], we find a commutative diagram of equivalences

(e x)(©) Sp%(€) = Na(Sp=(V, X)°) (4.3.5)
Stabx (€) ~ Na(SpH(V, X)°) — Stabx (Na(Sp*(V, X)°)) =~ Na(SpN(Sp*(V, X), X)°)

where the left vertical map is an equivalence because X is symmetric in C®; the equivalence Staby (€) ~
Na(SpN(V, X)°) follows from the Proposition 4.2.4 with G = (X ® —) (it is a left Quillen functor

8 By the Corollary 4.1.3.16 of [100] we have monoidal equivalences C® ~ N%((VO)‘X’) and Sp%(Q)® ~
NR((Sp™(V,X)°)®) and therefore both €® and Sp%; (C)® are presentable symmetric monoidal (oo, 1)-categories
9 see the Prop. 3.9.2
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because X is cofibrant), and the fact that C is presentable; the right vertical map is an equivalence
because X is already invertible in Na(Sp™(V, X)°) and because a Quillen equivalence between combi-
natorial model categories induces an equivalence between the underlying (0o, 1)-categories (see Lemma
1.3.4.21 of [100]). This same last argument, together with the Corollary 10.4 of [71], justifies the fact
that the lower horizontal map is an equivalence.

O

Remark 4.3.2. In the proof of Theorem 4.3.1, we used the condition on X twice. The first using
the result of [71] and the second with the Proposition 4.2.4. We believe the use of this condition
is not necessary. Indeed, everything comes down to prove an analogue of Proposition 4.2.4 for the
construction of symmetric spectrum objects, replacing the natural numbers by some more complicated
partially ordered set. If such a result is possible, then the construction of symmetric spectra in the
combinatorial simplicial case can be presented as a colimit of a diagram of simplicial categories. In
this case, the Proposition 4.2.10 would follow immediately even without the condition on X. We will
not pursue this topic here since it won’t be necessary for our goals.

Example 4.3.3. The combination of the Theorem 4.3.1 together with the Remark 4.2.8 and the Ex-
ample 4.2.16 provides a canonical equivalence of presentable symmetric monoidal presentable (00, 1)-
categories Sp® >~ NY(Sp¥(A,, S1)).

4.4 Compact Generators in the Stabilization

To finish this chapter we use the results of the previous sections to prove a technical result concerning
the existence of compact generators on the stabilization with respect to a given object. More pre-
cisely, let € be a presentable (0o, 1)-category with a zero object #, together with a colimit preserving
endofunctor G : € — € (with right adjoint U). Then, we prove that if € admits a family of compact
generators € (in the sense earlier discussed in 2.1.23), then the stabilitzation Stab,)(€) (which
in this case we can identify with the colimit in the Remark 4.2.1) also admits a family of compact
generators that we can easily describe in terms of €. By the results in the previous section, this result
can then be applied to the inversion of a (symmetric) object in a presentable symmetric monoidal
(00, 1)-category. In the later chapters of this thesis we will use these results to give a gentle description
of a generating family in the motivic stable homotopy theory of schemes.
The crutial point is the following observation

Proposition 4.4.1. Let C be a presentable (0o, 1)-category with a zero object x, together with a colimit
preserving endofunctor G. Consider the colimit cone (in Prl ) of the Remark 4.2.1

e—¢% e 9 e ¢ (4.4.1)
ol

Py

Fo

Stab(GﬁU)(G)

Let € = {Ea}aca be a (small) family of compact generators in the sense discussed in Section
2.1.23. Then, if the right adjoint U of G preserves filtered colimits, the family {F,,(Eqy)tnen,aca 1S a
family of compact generators in Stabq,uy(C).

Proof. As discussed earlier in this chapter, this colimit cone in Pr’ is equivalent to the limit cone in
Cat®9 of

Stab(g}U)(e) (4.4.2)
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where the maps in the diagram are right-adjoints to the maps in (4.4.1). As also discussed before, it
can be computed as the homotopy pullback of the diagram (4.2.14). It follows that if U commutes with
filtered colimits, as colimits of diagrams are computed objectwise, both arrows in (4.2.14) preserve
filtered colimits. By [99, 5.4.5.5, 5.4.5.7] we deduce that the canonical maps ev,, (which are equal to
the composition of the projection Stab(g,)(€) — ][, oy € with the canonical projections) preserve
filtered colimits. It follows then from the adjunctions (F,,ev,) and from the definitions that the
family {Fy(Ea)}nen,aca consists of compact objects in Stab(g, 1) (€) and because of the description
of the initial object in the pullback (see [99, 5.4.5.5]) is again generating. O

Essentially the same argument allows us to prove the following result:

Proposition 4.4.2. Let C® be a presentable symmetric monoidal (0o, 1)-category and let X be a sym-
metric object in C. Let € = {Eq}aca be a (small) family of compact generators in the sense discussed
in Section 2.1.23. Then, if the internal-hom functor Home (X, —) preserves filtered colimits, the un-
derlying (oo, 1)-category of the monoidal inversion C®[X ] admits a family of compact generators
given by {(X 1" @ Eq }nenaca. Here, (X™1)" @ E, denotes the tensor product in C¥[X 1] of the
®-inverse of X and E, denotes the image of the E, along the canonical map C® — C®[X ~1].

Proof. In this case, by the Corollary 4.2.13, the stabilization with respect to the multiplication by X
is equivalent to the underlying (oo, 1)-category of the formal inversion €¥[X ~!] and the important
point is that the colimit is taken inside the (oo, 1)-category of €®-modules (see the Proposition 4.2.10)

6 T 5 T 5 TX) (4.4.3)
N s
F1
F>
Stabx (C)

As colimits of modules are computed by means of the forgetful functor (see [100, 3.4.4.6]) we can
use exactly the same arguments of the previous proposition to prove again that the family {F,,(E,)} is
a generating family: as the internal-hom functor Home (X, —) preserves filtered colimits, these objects
will be compact in the stabilization. The new important thing to this situation is the fact that the F),
are now maps of €®-modules, where now thanks to the Corollary 4.2.13 we know that the €®-module
structure in the stabilization is given by the monoidal structure in C®[X ~!]. It follows that for any
object C' € @€, we have structural equivalences F,,(T(X)(C)) =~ X ® F,,(C) where the last term is
the tensor product in C®¥[X 1] with the image of X along the canonical map C® — C®[X~1] (by
definition, canonically equivalent to Fp). This, together with commutativity of the diagram (4.4.3)
implies that for any n > 0 we have Fy ~ X" ® F, or in other words F}, ~ (X ~1)"® Fy thus concluding
the proof. O

Example 4.4.3. Let € = 8, be the (00, 1)-category of pointed spaces equiped with the smash product.
It has a zero object and the image of the point along the pointing map (—)4+ : 8 — S, is a compact
generator. After the Example 4.2.16 the family of objects Q2™ (X°°((x)4)) with n > 0 is a family of
compact generators in spectra. Here ¥°° denotes the canonical map 8, — Sp.






CHAPTER 5

Universal Characterization of the Motivic
Stable Homotopy Theory of Schemes

In this chapter we use the results of Chapter 4, together with the techniques of [99, 100], to completely
characterize the A'-homotopy theory of schemes and its associated motivic stabilization by means of
a universal property inside the world of symmetric monoidal (oo, 1)-categories.

Let U € V € W be universes. In the following sections, we shall write Sm’*(S) to denote the
V-small category of smooth separated U-small schemes of finite type over a Noetherian U-scheme S
of finite Krull dimension.

5.1 A'-Homotopy Theory of Schemes

The main idea in the subject is to ”do homotopy theory with schemes” in more or less the same way
we do with spaces, by thinking of the affine line A' as an ”interval”. One first difficulty is that the
category of schemes does not admit all colimits. In [105], the authors constructed a place to realize
this idea. The construction proceeds as follows: start from the category of schemes and add formally
all the colimits. Then make sure that the following two principles hold:

I) the line A! becomes contractible;

IT) if X is a scheme and U and V are two open subschemes whose union equals X in the category
of schemes then make sure that their union continues to be X in the new place;

The original construction in [105] was performed using the techniques of model category theory
and this place is the homotopy category of a model category My:. During the last years their methods
were revisited and reformulated in many different ways. In [46], the author presents a ”universal”
characterization of the original construction using the theory of Bousfield localizations for model
categories' together with a universal characterization of the theory of simplicial presheaves, within
model categories. The construction of [46] can be summarized by the expression

My = L1 Lypernis((SPsh(Sm'(S)))) (5.1.1)

where SPsh(—) stands for simplicial presheaves with the projective model structure, Lgypernis COI-
responds the Bousfield localization with respect to the collection of the hypercovers associated to the
Nisnevich topology (see below) and L1 corresponds to the Bousfield localization with respect to the
collection of all projection maps X x Al — X.

It is clear today that model categories should not be taken as fundamental objects, but rather,
we should focus on their associated (oo, 1)-categories. In this section, we use the insights of [46] to

Lsee [68]
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perform the construction of an (0o, 1)-category H(S) directly within the setting of co-categories. By
the construction, it will have a universal property and using the link described in Section 2.2 and the
theory developed by J.Lurie in [99] relating Bousfield localizations to localizations of oo-categories,
we will be able to prove that 3(.9) is equivalent to the co-category underlying the A! model category
of Morel-Voevodsky.

The construction of H(S) proceeds as follows. We start from the category of smooth schemes
of finite type over S - Sm'*(S) and consider it as a trivial V-small (oo, 1)-category N(Sm’*(S)).
Together with the Nisnevich topology ([109]), it acquires the structure of an oco-site (see Definition
6.2.2.1 of [99]). By definition (see Def. 1.2 of [105]) the Nisnevich topology is the topology generated
by the pre-topology whose covering families of an S-scheme X are the collections of étale morphisms
{fi : Ui = X }iecs such that for any z € X there exists an ¢ € I and u; € U; such that f; induces an
isomorphism between the residual fields k(z) ~ k(u;). Recall from [105] (Def. 1.3) that an elementary
Nisnevich square is a commutative square of schemes

v
ip

_* . X

p Y (U) —— (5.1.2)

é

such that

a) i:U < X is an open immersion of schemes;

)

b) p:V — X is an étale map;

¢) the square (5.1.2) is a pullback. In particular p~1(U) — V is also an open immersion.
)

d

the canonical projection p~1(X — U) — X — U is an isomorphism where we consider the closed
subsets Z := X — U and p~'Z both equipped with the reduced structures of closed subschemes;

and from this we can easily deduce that

e) the square

p~H(2) (5.1.3)

X<~—7=X-U
is a pullback with both Z and p~!(Z) equipped with the reduced structures;
e) the square (5.1.2) is a pushout.

The crucial fact is that each family (V — X, U — X) as above forms a Nisnevich covering and
the families of this form provide a basis for the Nisnevich topology (see the Proposition 1.4 of [105]).
We consider the very big (oo, 1)-category PY9(N(Sm'*(9))) := Fun(N(Smft(S))Op,g) of presheaves
of (big) homotopy types over N(Sm?*(S)) (See Section 5.1 of [99]) which has the expected univer-
sal property (Thm. 5.1.5.6 of [99]): it is the free completion of N(Sm/*(S)) with V-small colimits
(in the sense of co-categories). Using the Proposition 4.2.4.4 of [99] we can immediately identify
Pig (N (SmT(S))) with the underlying co-category of the model category of simplicial presheaves on
Sm'*(S) endowed with the projective model structure. The results of [99] provide an oc-analogue
for the classical Yoneda embedding, meaning that we have a fully faithful map of oco-categories
j : N(SmTH(S)) — PVie(N(Sm''(S))) and as usual we will identify a scheme X with its image
§(X). We now restrict to those objects in P9 (N (Sm/*(S))) which are sheaves with respect to the
Nisnevich topology. Because the Nisnevich squares form a basis for the Nisnevich topology, an object
F € PY9(N (Smf £(S))) is a sheaf iff it maps Nisnevich squares to pullback squares. In particular, every
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representable j(X) is a sheaf (because Nisnevich squares are pushouts). Following [99, 5.5.4.15], the
inclusion of the full subcategory Sh%gs(S’mft(S)) C PY9(N(Sm’*(S))) admits a left adjoint (which
is known to be exact - Lemma 6.2.2.7 of [99]) and provides a canonical example of an oo-topos
(See Definition 6.1.0.4 of [99]). More importantly to our needs, this is an example of a presentable lo-
calization of a presentable (0o, 1)-category and we can make use of the results discussed in Section 3.8.

Remark 5.1.1. When S is Noetherian of finite Krull dimension, the category of smooth schemes
Smft(S) can be replaced by the category of affine smooth schemes of finite type over .S, N(AﬁSmft)(S),
and the resulting (0o, 1)-categories Sh%gs(Smft(S)) and Sh%ﬁs(N(AﬁSmft)(S)) are equivalent. This
follows because we can identify Sm/*(S) with a full subcategory of P (N (AffSm’")(S)) using the map
sending a smooth scheme X to the representable functor Y € N (AfSm’* (k)) — Homg,, s (5)(Y, X),
and this identification is compatible with the Nisnevich topologies. For more details see [104]. See
also [96, Section 2].

Next step, we consider the hypercompletion of the oco-topos Sh%ﬁ’s(Smft(S)) (see Section 6.5.2
of [99]). By construction, it is a presentable localization of Sh%ﬁS(Smf £(S)) and by the Corollary
6.5.3.13 of [99] it coincides with Sh%gs(Smft(S’))hW: the localization of PY9(N(Sm'*(S))) spanned
by the objects which are local with respect to the class of Nisnevich hypercovers.

Finally, we reach the last step: We will restrict ourselves to those sheaves in S h?\’,‘fs(Smf (S))hvp sat-
isfying Al-invariance, meaning those sheaves F' such that for any scheme X, the canonical map induced
by the projection F(X) — F(X x A!) is an equivalence. More precisely, we consider the localization
of Sh%?s(Smft(S))hyp with respect to the class of all projection maps {X x A" = X} xcopj(smst(s))-
We will write H(S) for the result of this localization and write 41 : Sh%‘gs(Smﬁ(S))hW — H(S) for
the localization functor. Notice that H(S) is very big, presentable with respect to the universe V. It is
also clear from the construction that H(S) comes naturally equipped with a universal characterization:

Theorem 5.1.2. Let Smft(S) be the category of smooth schemes of finite type over a base noetherian
scheme S and let L : N(Sm7'(S)) — H(S) denote the composition of localizations

N(SmIt(S)) = PY9(N(SmTt(S))) — ShY. (SmTH(S)) — ShYI (Smt(S))"wP — H(S)  (5.1.4)
Then, for any (0o, 1)-category D with all V-small colimits, the map induced by composition with L

Fun®(H(S),D) = Fun(N(Sm'*(S)), D) (5.1.5)

is fully faithful and its essential image is the full subcategory of Fun(N(Sm't(S)), D) spanned by those
functors satisfying Nisnevich descent and A'-invariance. The left-side denotes the full subcategory of
Fun(H(S), D) spanned by the colimit preserving maps.

Proof. The proof follows from the combination of the universal property of presheaves with the univer-
sal properties of each localization in the construction and from the fact that for the Nisnevich topology
in Sm7*(S), descent is equivalent to hyperdescent (see [152, Prop. 5.9] or [105, 3- 1.16] or [96, Section
1)) and therefore the localization Sh%Y, (Sm¥*(S)) — ShYI. (Sm!*(S))"? is an equivalence. O

Our goal now is to provide the evidence that 3(S) really is the underlying (oo, 1)-category of the
A'- model category of Morel-Voevodsky. In fact, we already saw that our first step coincides with the
first step in the construction of My: - simplicial presheaves are a model for co-presheaves. It remains
to prove that our localizations produce the same results as the Bousfield localizations. But of course,
this follows from the results the appendix of [99] applied to the model category M := SPsh(Sm’*(S)).
(See our introductory survey 2.2.1).

Remark 5.1.3. It is important to remark that the sequence of functors in the Theorem 5.1.2 can be
promoted to a sequence of monoidal functors with respect to the cartesian monoidal structures
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N(SmP*(8)) = PN (Sm*(5)))* = Shi (SmT*(8))* = (ShR,(SmT*(8))"P) " — H(S)"
(5.1.6)
The first is the Yoneda map which we know commutes with limits. The second map is the
sheafification functor which we also know is left exact. The last functor is a monoidal localization
because of the definition of the Al-equivalences. These localized monoidal structures are cartesian

because of the existence of fully faithful right adjoints. Furthermore, they are presentable (see the
Remark 3.6.1).

5.2 The monoidal structure in H(S5).

Let H(.S) be the (00, 1)-category introduced in the last section. Since it is presentable it admits a final
object * and the (0o, 1)-category of pointed objects H(.S), is also presentable (see [99, Prop. 5.5.2.10]).
In this case, since the forgetful functor H(S). — H(S) commutes with limits, by the Adjoint Functor
Theorem (see [99, Cor. 5.5.2.9]) it admits a left adjoint ()4 : H(S) — H(S). which we can identify
with the formula X — X := X []*. In order to follow the stabilization methods of Morel-Voevodsky
we need to explain how the cartesian product in H(S) extends to a symmetric monoidal structure in
H(S). and how the pointing morphism becomes monoidal.

This problem fits in a more general setting. Recall that the (0o, 1)-category of spaces 8 is the unit
for the symmetric monoidal structure Pr®. In [100, Prop. 4.8.2.11] it is proved that the pointing
morphism — [[* : § — 8, endows 8, with the structure of an idempotent object in Pr%® and proves
that its associated local objects are exactly the pointed presentable (oo, 1)-categories. It follows from
the general theory of idempotents that the product functor € — C®S8, is a left adjoint to the inclusion
functor (PTILDt C Prl. Also from the general theory, this left adjoint is monoidal. The final ingredient
is that for any presentable (0o, 1)-category € there is an equivalence of (00, 1)-categories C, ~ C® 8.
(see the [100, Example 4.8.1.20]) and via this equivalence, the pointing map € — €, is equivalent to
the product map ide ® ()4 : C®8 — C®8, where () denotes the pointing map of spaces. Altogether,
we have the following result

Corollary 5.2.1. (Lurie) The formula € — C,. defines a monoidal left adjoint to the inclusion
Prk, C Prl and therefore induces a left adjoint to the inclusion C' Alg(Prk,) C CAlg(Prl). In other

words, for any presentable symmetric monoidal (0o, 1)-category C®, there exists a pointed presentable

)

symmetric monoidal (0o, 1)-category L@ whose underlying (0o, 1)-category is C., together with a

monoidal functor C® — Gi\(@)) extending the pointing map C — C., and satisfying the following uni-

versal property:

(x) for any pointed presentable symmetric monoidal (0o, 1)-category D®, the composition
Fun®’L(Gi\(®),D®) — Fun®L(@® D%) (5.2.1)
is an equivalence.

Remark 5.2.2. In the situation of the previous corollary, given a functor F' : € — D with D being
pointed, its canonical extension F

e— =D (5.2.2)

. T
F s

s/
s/

C.
is naturally identified with the formula (u : x — X) — cofiberF(u) € D.

The symmetric monoidal structure 2 ®) will be called the smash product induced by C®. Of

Gi\(@))

course, if C® is already pointed we have an equivalence ~ C%®, In the particular case when C®
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is Cartesian, we will use the notation €2 := (‘ff(x).

Let us now progress in a different direction. Let M be a combinatorial simplicial model category.
Assume also that M is cartesian closed and that its final object x is cofibrant. This makes M a
symmetric monoidal model category with respect to the cartesian product and we have an monoidal
equivalence

NE((M°)*) = Na(M®)* (5.2.3)

Moreover, because the cartesian product provides a Quillen bifunctor, Na(M°)* is a presentable
symmetric monoidal (0o, 1)-category and therefore, using the Corollary above, we can equip Na (M°®),
with a canonical presentable symmetric monoidal structure Na(M®°)% for which the pointing map
becomes monoidal

NA(M®)X — Na(M®)2 (5.2.4)

Independently of this, we can consider the natural model structure in M, (see the Remark 1.1.8
in [69]). Again, it is combinatorial and simplicial and comes canonically equipped with a left-Quillen
functor (—); : M — M, defined by the formula X — X [[*. Moreover, it acquires the structure
of a symmetric monoidal model category via the usual definition of the smash product, given by the
formula

(X,z) x (Y,y)
(X,z) v (Y,y)

It is well-known that this formula defines a symmetric monoidal structure with unit given by
(%) and by the Proposition 4.2.9 of [69] it is compatible with the model structure in M,. Let
NR(((M,)°) uswat) be its underlying symmetric monoidal (oo, 1)-category. The same result also tells
us that the left-Quillen map M — M, is monoidal. By the Proposition 3.9.2, it induces a monoidal
map between the underlying symmetric monoidal (0o, 1)-categories.

(X,z) A (Y y) = (5.2.5)

FE NADE)X = NE((M,)°) wewet) (5.2.6)

Of course, N (((M,)°)" esuet) is a pointed presentable symmetric monoidal (0o, 1)-category and
by the universal property defining the smash product we obtain a monoidal map

Na ()2 = NE((()e) ) (5:2.7)
Corollary 5.2.3. The above map is an equivalence of presentable symmetric monoidal (0o, 1)-categories.

Proof. Since the map is monoidal, the proof is reduced to the observation that the underlying map

=18, s Na(M). = Na((M.)°) (5.2.8)

is an equivalence. To prove this, we observe first that since * is cofibrant, we have an equality of
simplicial sets Na(M°), = Na((M°),). Secondly, we observe that the cofibrant-fibrant objects in
(M) are exactly the pairs (X,* — X ) with X cofibrant-fibrant in M and * — X a cofibration. This
means there is a natural inclusion of (0o, 1)-categories i : Na(((M,)°) € Na((M°),). It follows from
the definition of the model structure in M, that this inclusion is essentially surjective: if (X, * — X)
is an object in Na ((M°®),), we consider the factorization of * — X through a cofibration followed by
a trivial fibration in M,

= X'~ X (5.2.9)

Of course, (X', — X') is an object in Na(((M,)°) and it is equivalent to (X,*+ — X) in
Na((M?)y).

Finally, we notice that the composition i o f : NA(M°) — Na((M,)°) € Na((M°),) yields the
result of the canonical pointing map Na(M®) — Na(M°).. Indeed, the pointing map is characterized
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by the universal property of the homotopy pushout, and since * — X in Na((M,)°) is a cofibration
and X is also cofibrant, the coproduct X ] * is an homotopy coproduct. The result now follows from
the universal property of the pointing map. O

Remark 5.2.4. If M = A is the model category of simplicial sets with the cartesian product, it satis-
fies the above conditions and we find a monoidal equivalence between 8 and the underlying symmetric
monoidal (oo, 1)-category of A, endowed with the classical smash product of pointed spaces.

Remark 5.2.5. If € is a simplicial category, the left-Quillen adjunction A — A, extends to a left
Quillen adjunction SPsh(€) — SPsh.(C), where SPsh.(C) corresponds to the category of presheaves
of pointed simplicial sets over €, endowed with the projective model structure (see [99]-Appendix). It
follows that SPsh(C) has all the good properties which intervene in the proof of the Corollary 5.2.3
and we find a monoidal equivalence Na (SPsh(€)°)) — NX ((SPsh.(C)®) \usuat) where the last is the
underlying symmetric monoidal (0o, 1)-category associated to the smash product in SPsh(C),.

The Corollary 5.2.3 implies that

Corollary 5.2.6. Let H(S)* be the presentable symmetric monoidal (0o, 1)-category underlying the
model category My: encoding the A'-homotopy theory of Morel- Voevodsky together with the cartesian
product. Let (My1 ). be its pointed version with the smash product given by the Lemma 2.13 of [105].
Then, the canonical map induced by the universal property of the smash product

I(S)2 = NE(Ma))*)) (5.2.10)
is an equivalence of presentable symmetric monoidal (oo, 1)-categories.

A
*

In other words and as expected, H(.S)
the classical construction.

is the underlying symmetric monoidal (oo, 1)-category of

5.3 The Stable Motivic Theory

As in the original setting, we may now consider a stabilized version of the theory. In fact, two
stabilizations are possible - one with respect to the topological circle S* := A[1]/0A[1] (pointed by
the image of A[1]) and another one with respect to the algebraic circle defined as G,, := Al — {0}.
The motivic stabilization of the theory is by definition, the stabilization with respect to the product
G A ST which we know is equivalent to (P!, 00) in H(S),: consider the Nisnevich covering of (P!, 1)
given by two copies of A! both pointed at 1, together with the maps A' — P! sending z ~ (1 : z),
respectively,  + (z : 1). Their intersection is A — {0} (also pointed at 1). The result follows because
this square is a pushout (as a consequence of forcing Nisnevich descent), because Al is contractible
in H(S). (as a consequence of forcing Al-invariance and the Remark 5.2.2) and finally, because the
suspension H(S), is canonically identified with the smash product with the circle (as explained by
the Example 4.2.16). The conclusion follows because (P!, 00) and (P!, 1) are Al-homotopic via the
map z — (1: z).

Definition 5.3.1. (/150, Definition 5.7]) Let S be a base scheme. The stable motivic Al oo-category
over S is the underlying (oo, 1)-category of the presentable symmetric monoidal co-category SH(S)®
defined by the formula

8H(S)® := H(S)2[(P*, 00) ™) (5.3.1)

as in the Definition 4.1.8.
The standard way to define the stable motivic theory is to consider the combinatorial simplicial
symmetric monoidal model category Sp™((My1)s, (P, 00)) where M, is equipped with the smash

product. By the [150, Lemma 4.4] together with the Remark 4.2.7, we know that (P!, c0) is symmetric
and consequently the Theorem 4.3.1 ensures that 8H(S)® recovers the classical definition. In addition,
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since we have an equivalence (P!, 00) ~ G,, A S!, the universal properties provide canonical monoidal
equivalences of presentable symmetric monoidal (oo, 1)-categories

83(S)® = (FUS))(Gm A S 1 = (H(S)DI((PH, 00) A SH)TH = (H(S)D)[(SH DI, 0025_13} )
Since S! is symmetric in 87 (see [69, Lemma 6.6.2] together with the Remark 4.2.8) it is also
symmetric in H(S), (because it is given by the image of the unique colimit preserving monoidal
map 8, — H(S)2). In this case, we can use the Proposition 4.2.13 to deduce that the underly-
ing co-category of (H(S)2)[(S1)~] is equivalent to the stable co-category Stab(3(S)). Plus, since
(H(S)M)[(SY)~1] is presentable by construction, the monoidal structure is compatible with colim-
its, thus exact, separately on each variable. We conclude that it is a stable presentable symmetric
monoidal (oo, 1)-category.
Finally, because (P!, 00) is symmetric, the Corollary 4.2.14 tells us that 83(S)® is a stable pre-
sentable symmetric monoidal co-category. In particular its homotopy category is triangulated and
inherits a canonical symmetric monoidal structure.

Corollary 5.3.2. Let S be a base scheme and Smft(S) denote the category of smooth schemes of
finite type over S, together with the cartesian product. The composition of monoidal functors

0% : N(Sm'(S))* — PY9(N(SmT'(S)))* — H(S)* — H(S)) — H(S)2[(SH) ] — 8H(S)®
(5.3.3)
satisfies the following universal property: for any pointed presentable symmetric monoidal (00,1)-
category D®, the composition map

Fun®*(83(5), D¥) — Fun®(N(Sm''(5))*, D?) (5.34)

is fully faithful and its image consists of those monoidal functors N(Sm’'(8))* — D® whose under-
lying functor satisfy Nisnevich descent, A'-invariance and such that the cofiber of the image of the

point at co, S —=>P' is an invertible object in D¥. Moreover, any pointed presentable symmetric
monoidal (0o, 1)-category D% admitting such a monoidal functor is necessarily stable.

Proof. Here, N (Smf £(8)) denotes the standard way to interpret an ordinary 1-category as an (oo, 1)-
category using the nerve. The Yoneda map j : N(Sm''(S)) — PY9(N(Sm’'(S))) extends to a
monoidal map because of the monoidal universal property of presheaves (consult our introductory
section on Higher Algebra). By the Proposition 2.15 pg. 74 in [105], the localization functor
Prig(N(Sm’t(S))) — H(S) is monoidal with respect to the cartesian structure and therefore extends
to a monoidal left adjoint to the inclusion H(S)* C PY(N(Sm't(S)))*. The result now follows from
the discussion above, together with the Corollaries 5.2.1 and 5.2.6, the Corollary 4.2.14, the Theorem
4.3.1 and Remark 5.2.2.

The last assertion follows from the Remark 4.2.17, together with the fact that P! mod out by the
point at infinity is the tensor product of S' and G,,, so that, since we are dealing with monoidal
functors, the conditions defining the image of the composition map force the image S! to be tensor
invertible in D®. O

To conclude this section we provide a useful description of a family of compact generators in
S8H(S). This follows almost immediately from the Proposition 4.4.2:

Proposition 5.3.3. The stable presentable (0o, 1)-category SH(S) admits a family of compact genera-
tors in the sense discussed in 2.1.23. In precise terms it consists of the family of objects (PL)™"@6(V)
for ® the tensor product in 8H(S), n > 0 and V a smooth scheme of finite type over S.
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Proof. After the Prop. 4.4.2 we are left to check that the collection of all objects in H(S). given by
the image of the canonical map N(Sm'*(S)) — H(S). is a family of compact generators. The fact
that they are generators follows from the Yoneda Lemma. The fact that they are compact follows
because a filtered colimit in P9 (N (Sm?*(S))) of Nisnevich+A' local-objects is again Nisnevich local
(because filtered colimits in spaces commute with homotopy pullbacks) and Al-invariant. O

Remark 5.3.4. Thanks to the results of [116] and to our discussion in the Prop. 2.1.2, if k is a field
admitting resolutions of singularities then the results of the previous proposition can be improved:
it is enough to take the collection generated by the image of smooth projective varieties. In this
case, it corresponds to the dualizable objects in 8H(k)®. In particular the (oo, 1)-category SH(k) is
compactly generated by dualizable objects.

5.4 Description using Spectral Presheaves

In this section we give an alternative description of the symmetric monoidal (oo, 1)-category 8H(k)®
using presheaves of spectra.

Remark 5.4.1. (Spectral Yoneda’s Lemma) Recall (for instance, see the discussion in 2.1.23) that
any stable (oo, 1)-category has a natural enrichment over spectra, determined by means of a universal
property. In this remark we recall how to use this universal property to deduce an enriched version of
Yoneda’s lemma for spectral presheaves. More precisely, if € is a small (oo, 1)-category, we consider
the composition of the Yoneda’s embedding with the pointing map followed by stabilization ¥5° o j :
C— P(C) — P(C), — Stab(P(C)) ~ Fun(C°?, Sp) (because the stabilization is a limit). Now, given
an object X in C, we can use Yoneda’s lemma for P(€) to construct a natural equivalence of functors
Mappyn(eer,sp) (X 05(X), =) = Q¥ oevy, where evx : Fun(C, Sp) — Sp is the evaluation map at
X. This is possible because the delooping of presheaves is computed objectwise. To conclude, since
the composition with Q> induces an equivalence Exzc,(C, Sp) ~ Exc.(C,8), we can lift the previous
natural equivalence to a new one

S 0o .
MapFI:ML(GOP7Sp) (E-‘r © j(X)7 _) — evx (541)

which, when evaluated at F' gives us the Yoneda’s formula we seek. This holds for any universe: if
C is only V-small for some universe V we apply the same arguments as above to the V-small (oo, 1)-
category of spectra obtained from the stabilization of the V-small (0o, 1)-category of spaces.

Now, we start from the (oo, 1)-category N(Sm’*(S)) and consider the very big (oo, 1)-category
Fun(N(Sm(S))°p, 3}))2 which is canonically equivalent to Stab(PY9(N(Sm’*(S))).). Using the Re-
mark 4.2.17 we obtain a canonical monoidal structure Fun(N (Sm'*(S))P, @)@’ defined by the inver-
sion Tl’ig(N(Smft(S)))Q((@)[(Sl)*l]® where (Pbig(N(Smft(S)))f@) is the canonical monoidal smash
structure given by the Prop. 5.2.1 extending the monoidal structure P*9(N(Sm7*(S)))® of 3.2.7.

We proceed as before and perform the localization with respect to the Nisnevich topology and
Al. Extra care is needed, for the class of maps with respect to which we need to localize is not
the same as for presheaves of spaces. In order to describe these two classes we recall first that
Fun(N(Sm7*(S))°P, Sp) is a stable presentable (oo, 1)-category and by the discussion in 2.1.23, for any
G € Fun(N(Sm''(S))p, gﬁ) we have a mapping spectrum functor MapS? (G, —) : Fun(N(Sm'*(S))°?, g})) —
5;9 which when composed with Q> recovers the mapping space functor in Fun(N (Smf L(8))er, EE)
Moreover, because of the universal property that defines it and because the composition Q> MapS? (G, —)
commutes with all limits, we conclude that Map®?(G, —) also commutes with all limits. In partic-
ular, by the Adjoint functor theorem [99, 5.5.2.9], it admits a left adjoint which we shall denote as
S¢ : Sp — Fun(N(Sm’*(S))°p, @) and for any K € Sp and F € Fun(N(Smft(S))"p,gg\)) we have

2Here 3’; denotes the big (oo, 1)-category of spectra, obtained from the stabilization of the big (oo, 1)-category of
spaces 8
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M(Zpsp (K7 Mapsp(Ga F)) = Ma’pFun(N(Smft(S))op,g'Z\)) (66’ (K), F) (5'4'2)

We can now use this to define the class of maps that generate the Nisnevich localization. Namely,
for any Nisnevich square

W—>V (5.4.3)
U——X
we consider its image through ¥%° o j
YP o j(W) ——=2xF o j(V) (5.4.4)

l |

P o0 j(U) —=XF 0 j(X)

in Fun(N (Smf t(S))"p , @) Every commutative square like this produces a commutative diagram of
natural transformations

5Zi°oj(W) E—— 523%;‘(\/) (5.4.5)

| |

Ox0j(U) = Onxoj(X)
and in particular for each K € Sp, a commutative diagram in Fun(N(Sm'(8))or, 3’;)

I ojw) () ——= dseoj(v) (K) (5.4.6)
Is200(17) (K) —— Osi00(x) (K)

Finally, we localize with respect to the class of maps

Oseojn(K)  J] Oumojon/(B) = dsseojx) (K) (5.4.7)
5zfoj(w)(K)

given by the universal property of the pushout, with K in (3’;)‘*’ 3 and W,V,U and X part of a
Nisnevich square. Finally, the fact that this class satisfies the required properties follows directly from
the definition of the functors 5210()]»(_) as left adjoints to MapS? and from the enriched version of the
Yoneda’s lemma 5.4.1.

For the A! localization, we localize with respect to the class of all induced maps
Oxzoj(xxan)(K) = dseojx) (K) (5.4.8)
with X in N(Sm'($))°P and K € (Sp)~.

We observe that these localizations are monoidal. This follows because for any two objects G' and
G in Fun(N(Sm?*(S))P, Sp), we have

3Here (é;;)w denotes the full subcategory of Sp spanned by the compact objects. Recall that Sp ~ Ind((g';)“’).
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MapFun(N(Smft(S))OPE;)(5G®G’ (K), F) ~ Map@(K, Map®?(G® G, F)) =~ (5.4.9)
~ Mapg; (K, Map®?(G, Hom(G', F)) ~ MapFun(N(Smﬂ(S))ap’:g;)(5@(K),Hom(G',F)) ~ (5.4.10)
~ Map g, N (smit(s))or 5p) 0 (EK) ® G',F)) (5.4.11)

where Hom denotes the internal-hom in Fun(N (Sm*(S))P, @)4. In particular, the previous chain
of equivalences implies dgga (K) ~ 6c(K) @ G'.

Finally, we denote the result of both these localizations as Funli® (N(Sm't(8))er, 3'5)‘3’. To con-
clude, we invert G,, and obtain a new stable presentable symmetric monoidal (0o, 1)-category which
by the universal properties involved, is canonically monoidal equivalent to 8H(k)®.

5.5 Stable Presentable Symmetric Monoidal (oo, 1)-Categories of Motives
over a Scheme

One important result in the subject of motives (see [119]-Theorem 1.1) tells us that the homotopy
category of modules over the motivic Eilenberg-Maclane spetrum M7 in

B(SH(S)) = h(Sp™(Mur )., (F',00))) (5.5.1)

is (monoidal) equivalent to the triangulated category of motives constructed by Voevodsky in [151]
(whenever S is field of characteristic zero).

This brings the study of motives to the realm of abstract homotopy theory: it is encoded in the
homotopy theory of module objects in Sp*¥((My1)., (P!, 00)). However, this is exactly one of those
situations where the theory of strictly commutative algebra-objects and their associated theories of
modules do not have satisfactory model structures in the sense of the Section 3.9. Therefore, this is
exactly one of those situations where the techniques of higher algebra are crucial: they provide a direct
access to the (oo, 1)-category of commutative algebra objects C Alg(SH(S)) where we can recognize the
K-theory ring spectrum K (see for instance [60] and [106]) and the motivic Eilenberg-MacLane spec-
trum MZ. Moreover, we also have direct access to the theory of modules Mot(S) := Modz(8H(S)).
In addition, since 8H(S)® is a presentable symmetric monoidal (oo, 1)-category, Mot(.S) is also pre-
sentable and inherits a natural symmetric monoidal structure Mot(S)®. Plus, since SH(S)? is stable,
the (oo, 1)-category Mot(S)® is also stable because an oo-category of modules-objects over an algebra
in a stable symmetric monoidal co-category, is stable. Therefore, the homotopy category h(Mot(S))
carries a canonical triangulated structure and by our results and the main result of [119] it is equiva-
lent to the triangulated category of motives of Voevodsky ( see also the recent results in [129]).

We can now reproduce the results of [6, 7] and [30] in this new setting. More precisely, the
assignment S — S§H®(S) can be properly understood as an co-functor with values in stable presentable
symmetric monoidal (oo, 1)-categories and we should study its descent properties and verify the siz-
operations (which have recently been well-understood and reformulated in the setting of symmetric
monoidal (oo, 1)-categories [93, 94]). This is the subject of chapters 9 and 10.

4which exists because Fun(N (Smft(S))°P, @) is a stable presentable symmetric monoidal (oo, 1)-category
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CHAPTER 6

Noncommutative Motives - Motivic Stable
Homotopy Theory of Noncommutative Spaces
over a Ring

Our goal in this section is to formulate a motivic stable homotopy theory for the noncommutative
spaces of Kontsevich [86, 89, 87]. This new construction will be canonically related to the classical
theory for schemes by means of the universal property proved in the previous chapter of this work. We
start with a small survey of the main notions and results concerning the Morita theory of dg-categories
and its relation to the notion of finite type introduced by Toén-Vaquié in [141]. In the second part we
review how a classical scheme gives birth to a dg-category Lgcon(X) with a compact generator and
compact objects given by the perfect complexes of quasi-coherent sheaves. As it is well-known, L. (X)
- the full sub-dg-category of Lgcon(X) spanned by the compact objects - is enough to recover the whole
Lyeon(X). In [87], Kontsevich proposes the dg-categories of the form L,.(X) as the natural objects
of noncommutative geometry. We recall his notions of smoothness and properness for dg-categories
and how they relate to the notion of finite type. The last has been understood as the appropriate
notion of smoothness while the notion of Kontsevich should be understood as ”formal smoothness”.
Following this, we define the (0o, 1)-category of smooth noncommutative spaces NcS as the opposite
of the (o0, 1)-category of dg-categories of finite type and explain how the formula X — L,.(X) can
be arranged as a monoidal functor from schemes to NeS. Finally, we perform the construction of a
motivic stable homotopy theory for these new noncommutative spaces. After the work in the previous
chapter, our task is reduced to finding the appropriate analogue for the Nisnevich topology in the
noncommutative setting.

6.1 Preliminaries on Dg-categories

6.1.1 The Homotopy Theory of dg-categories over a ring

For a first contact with the subject we recommend the highly pedagogical expositions in [11, 83]. In
order to make our statements precise, we will need to work with three universes U € V € W (which we
will assume big enough to fit our purposes). The reader is invited to verify that none of the definitions
and constructions depends on the choice of the universes. The U-small objects will be called small,
the V-small big and the W-small, very big. We redirect the reader to the Section 2.1 for our notations
and conventions.

Let U be our fixed base universe. We fix a small commutative ring k and following the discus-
sion in 3.10 we denote by Ch(k) the big category of (unbounded) complexes of small k-modules. By
definition, a small dg-category T is a small category strictly enriched over Ch(k). In other words, T
consists of: a small collection of objects Ob(T), for every pair of objects x,y € Ob(T) a complex of
small k-modules T'(z,y) and composition maps T'(z,y) ® T(y,z) — T(z,z) satisfying the standard
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coherences of a composition. To every small dg-category 1" we can associated a classical small category
[T] with the same objects of 7' and morphisms given by the zero-homology groups H°(T(x,y)). It is
called the homotopy category of T.

Let Catcp(ry the big category of all small dg-categories together with the C'h(k)-enriched functors
(dg-functors for short).

Remark 6.1.1. We can of course give sense to these notions within any universe. In our context
we will denote by C’atlgi( %) the very big category of big dg-categories. We will allow ourselves not to

mention the universes whenever the context applies for any universe.
Let us provide some important simple examples:

Example 6.1.2. Given a k-dg-algebra A, we denote by Aq, the dg-category with a single object and
A as endomorphisms, with composition given by the multiplicative structure of A. This assignment
provides a functor (—)qg : Algass(Ch(k)) — Catcopry. With this, we a have a commutative diagram

k — algebras —— k — additiveCats (6.1.1)

(“)ag
Algass(Ch(k)) —“—= Catonm

where the horizontal maps understand an algebra as a category with one object and the vertical maps
understand a k-module as a k-complex concentrated in degree zero.

Example 6.1.3. The category of complexes Ch(k) has a natural structure of k-dg-category with the
enrichement given by the internal-hom described in 3.10. We will write Chgy(k) to denote Ch(k)
together with this enrichement.

Construction 6.1.4. Every model category M with a compatible Ch(k)-enrichment (see Def. 4.2.6
of [69]) provides a new dg-category Int(M): the full dg-category of M spanned by the cofibrant-fibrant
objects (usually called the underlying dg-category of M). Also in this case, the homotopy category
h(Int(M)) recovers the usual homotopy category of M. This machine is crucial to the foundational
development of the theory. The dg-category Chqy(k) of the previous item is a canonical example
of this situation since its model structure is compatible with the Ch(k)-enrichment. In this case,
Int(Chgg(k)) is the full dg-subcategory of Chy,(k) spanned by the cofibrant complexes (all objects
are fibrant).

If T and T" are dg-categories, we can form a third dg-category T'® T” where the objects are the
pairs (x,y) with z an object in T and y in 7”7 and the mapping complex T ® T’ ((x,y), (¢',y")) is given
by the tensor product of complexes in Ch(k), T'(z,2") @ T'(y,y"). This formula endows Catcp ) with
a symmetric monoidal structure with unit I given by the dg-category with a single object and &
as its complex of endomorphisms. We can use the general arguments of [84] to deduce the existence
of an internal-hom functor: given 7' and T there is a new dg-category Hom(T,T’) and a natural
isomorphism

Homgat ey, (T", Hom(T, T")) =~ Homcat e, ., (T" @ T,T") (6.1.2)

In particular the objects of Hom(T,T") are the Ch(k)-enriched functors and the morphisms can
be identified with the Ch(k)-natural transformations.

Construction 6.1.5. If T is a dg-category, the dg-category of T-dg-modules is defined by the formula

Ch(k)" := Hom(T,Chay(k)) (6.1.3)
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An object E € Ch(k)T can be naturally identified with a formula that assigns to each object z € T
a complex E(z) and for each pair of objects x,y in T', a map of complexes T'(z,y) ® E(z) — E(y)
compatible with the composition in 7.

The dg-category of dg-modules carries a natural Ch(k)-model structure induced from the one
in Ch(k), with weak-equivalences and fibrations determined objectwise. More generally, for any
Ch(k)-model category M, the dg-category of T-modules with values in M is defined by the formula
MT := Hom(T,M). If M is a cofibrantly generated model category then we can equip M” with the
projective model structure and we can check that this is again compatible with the dg-enrichment.
This construction can be made functorial in T: if f : T — T’ is a dg-functor, we have a canonical
restriction functor f* : MZ" — M7 defined by sending a 7’-module F to the composition F o f. By
the adjoint functor theorem, this functor admits a left adjoint fy and the pair (fi, f*) forms a Quillen
adjunction compatible with the C'h(k)-enrichment.

Remark 6.1.6. If T is a dg-category of the form A, as in the Example 6.1.2, Ch(k)T can be
naturally identified with the category of left A-modules in Ch(k). In particular, when endowed with
the projective model structure, the dg-category Int(Ch(k)T) is a dg-enhancement of the classical
derived category of A, in the sense that the [Int(Ch(k)T)] ~ D(A). Another important case is when
T is associated to the product of two dg-algebras A ® B°P. In this case the category of T-modules is
naturally isomorphic to BiMod(A, B)(Ch(k)).

In practice we are not interested in the strict study of dg-categories but rather on what results
from the study of complexes up to quasi-isomorphisms. A Dwyer-Kan equivalence of dg-categories
is an (homotopic) fully faithful Ch(k)-enriched functor f : T — T’ (ie, such that the induced maps
T(x,y) = T'(f(z), f(y)) are weak-equivalences in C'h(k)) such that the functor induced between the
homotopy categories [T] — [T"] is essentially surjective. Of course, if T — T" is a Dwyer-Kan equiv-
alence, the induced functor [T] — [T”] is an equivalence of 1-categories. It is the main content of
[132] that Catcp(ry admits a (non left-proper) cofibrantly generated model structure to study these
weak-equivalences. Moreover, the model structure is combinatorial because Catcp gy is known to
be presentable (see [85]). The fibrations are the maps T" — T such that the induced applications
T(z,y) = T'(f(x), f(y)) are surjections (meaning fibrations in Ch(k)) and the map induced between
the associated categories has the lifting property for isomorphisms. Therefore, every object is fibrant
and the cofibrant objects, which are more difficult to describe, are necessarily enriched over cofibrant
complexes (see Prop. 2.3 in [139]). We will address to this model structure as the ”standard one”.

Remark 6.1.7. The theory of modules over dg-categories is well-behaved with respect to the Dwyer-
Kan equivalences. By the Proposition 3.2 of [139], if f : T — T is a Dwyer-Kan equivalence of
dg-categories, then the adjunction f* : MT - MT is a Quillen equivalence if one of the following sit-
uations hold: (i) T and T" are locally cofibrant (meaning: enriched over cofibrant complexes); (i7) the
product (using the Ch(k)-action) of a cofibrant object A in M with a weak-equivalence of complexes
C — D is a weak-equivalence in M. In particular the second condition holds if M = Ch(k). Moreover,
by the Proposition 3.3 of [139], if T is locally cofibrant then the evaluation functors ev, : MT — M
sending F' + F(x), preserve fibrations, cofibrations and weak-equivalences. In particular, Int(M7) is
made of objectwise cofibrant-fibrant objects in M.

The information of this homotopical study is properly encoded in a new big! (0o, 1)-category

Dy(k) := N(Catenm) Whkl (6.1.4)

where Wpk denote the collection of all Dwyer-Kan equivalences. Because the homotopy category
h(Dg(k)) recovers the ordinary localization in Cat, the objects of Dg(k) can be again identified with
the small dg-categories. Notice that in this situation we cannot apply the Proposition 2.2.1 because
Catop(x) is not a simplicial model category.

Ibecause Catcp (k) is big, its nerve is a a big simplicial set and the localization is obtained as a cofibrant-fibrant
replacement in the model category of big marked simplicial sets
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Remark 6.1.8. It is important to remark that the inclusion of very big categories Catopny C

Catbcifl(k)
(00, 1)-categories Dg(k) C Dg(k)b*9 (where the last is defined by the same formula using the theory

for V-small simplicial sets).

is compatible with the model structure of [132] and we have a fully-faithful map of very big

Remark 6.1.9. The functor (—)gg : Algass(Ch(k)) — Cateppy sends weak-equivalences of dg-
algebras to Dwyer-Kan equivalences. The localization gives us a canonical map of (0o, 1)-categories
Algass(D(k)) = Dg(k) (see 3.10). As pointed to me by B. Toén, this map is not fully-faithfull. To
see this, we observe that the new map Algass(D(k)) — Dg(k) factors as Algass(D(k)) — Dg(k). —
Dg(k) where Dg(k), denotes the (0o, 1)-category of pointed objects in Dg(k). The first map in the
factorization is fully-faithful but the second one is not. Indeed, if A and B are two dg-algebras, the
mapping space Mappg(k), (Adg, Bag) can be obtained as the homotopy quotient of Mapp gk (A, B)
by the action of the simplicial group of units in B.

Remark 6.1.10. The theory of Ay, -categories of [90] provides an equivalent approach to the homo-
topy theory of dg-categories.

We now collect some fundamental results concerning the inner structure of the (oo, 1)-category

Dy(k).

1. Emistence of Limits and Colimits: This results from the fact that the model structure in Catcpr)
is combinatorial, together with the Proposition A.3.7.6 [99] and the main result of [45].

2. Symmetric Monoidal Structure: Notice that C'atcpr) is not a symmetric monoidal model cate-
gory in the sense of the Definition 4.2.6 in [69]. For instance, the product of the two cofibrant
objects is not necessarily cofibrant (Exercise 14 of [11]). Therefore, we cannot apply directly the
abstract-machinery reviewed in the Section 3.9 to deduce the existence of a monoidal structure
in Dg(k). Luckily, we can overcome this problem and extend the monoidal structure to Dg(k)
even under these bad circumstances.

We observe first that the product of dg-categories whose hom-complexes are cofibrant in Ch(k)
(also called locally cofibrant) is again a dg-category with cofibrant hom-complexes. This follows
from the fact that Ch(k) is a symmetric monoidal model category and so the product of cofibrant
complexes is again a cofibrant complex. Second, we notice that the product of weak-equivalences
between dg-categories with cofibrant hom-complexes is again a weak-equivalence. It is enough
to check that for any triple of locally-cofibrant dg-categories T', T’ and S and for any weak-
equivalence T — T”, the product T® S — T’ ® S is again a weak-equivalence. The fact that the
map between the homotopy categories is essentially surjective is immediate. Everything comes
down to prove that if M is a cofibrant complex of k-modules and N — P is quasi-isomorphism
between cofibrant complexes then M ® N — M ® P is also a quasi-isomorphisms of complexes.
Again this follows because Ch(k) is a symmetric monoidal model category (or more precisely,
because cofibrant complexes are flat? - combine [69, 2.3.6] with the Kunneth spectral sequence.

loc—cof

The first conclusion of this discussion is that the full-subcategory C’atCh( %) of Catcp(ry spanned
by the locally-cofibrant dg-categories, is closed under tensor products and contains the unit of
Catcpky and therefore inherits a symmetric monoidal structure

We have inclusions

c loc—
Catc()}{(k) < Catcoi(kc)of C Caton(r) (6.1.5)

mapping weak-equivalences to weak-equivalences. Since in Catcyp ) we can choose a functorial
cofibrant-replacement @ that preserves sets of objects (see [132] for details) and together with
the inclusions in the previous diagram, produces equivalences of (oo, 1)-categories

2Recall that a complex M is flat if for every acylic complex N the tensor product N ® Mis also acyclic
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N(Catgp )W) = Dgo*=f (k) = Dy(k) (6.1.6)

where we set Dgloccof (k) := N(Catlc‘;z(—kC)Of)[W*1 ]

loc—cof

Finally, since the symmetric monoidal structure in N (Catgz(_kc)of ) preserves weak-equivalences,

by the discussion in 3.9, the localization Dg'°°~¢°f (k) inherits a natural symmetric monoidal
structure Dgloc=cof (k)® — N(Fin,) obtained as the monoidal localization of Catlc?;zkc)of seen
as a trivial simplicial coloured operad (followed by the Grothendieck construction). We can
now use the equivalence Dgloc=c°f (k) ~ Dg(k) to give sense to the product of two arbitrary
dg-categories T @ T" ~ Q(T) ® T" . This recovers the famous formula for the derived tensor
product.

Remark 6.1.11. The category of strict k-dg-algebras inherits a symmetric monoidal struc-
ture, obtained by tensoring the underlying complexes. It follows that the functor (—)g44 :
Algass(Ch(k)) — Catcpyy is monoidal. Moreover, since the product of cofibrant dg-algebras
remains a dg-algebra with a cofibrant underlying complex (as proved in [124]), we can use the
Remark 3.9.3 and the discussion in 3.10 to deduce that (—)aq : Algass(D(k)) — Dgloc=o/ (k) ~
Dg(k) is a monoidal functor.

Notation 6.1.12. Following the previous remark, we will sometimes abuse the notation and
identify a dg-algebra A with its associated dg-category Agy.

3. The Mapping spaces in Dg(k): The first important technical result of [139] is the characterization
of the mapping spaces Mapp gk (T, T"). The description uses the monoidal structure introduced
in the previous item: from the input of two dg-categories T and T”, we consider the Ch(k)-model
category of T ®@" (T")°P := Q(T) ® (T")°P-dg-modules. Again, this homotopy theory is properly
encoded in the (oo, 1)-category

A TN (T")°P -1
(T, 7)o = N(Ch(k) )W) (6.1.7)
inside which we can isolate the full subcategory spanned by the right quasi-representable objects.
3 which we denote here as rrep(T,T')s. By the Theorem 4.2 of [139], there is an explicit
isomorphism of homotopy types

Mapp o) (T, T") = rrep(T, T')S, (6.1.8)

where rrep(T,T")5 denotes the oco-groupoid of equivalences in rrep(T, T') -

Remark 6.1.13. The original formulation of this theorem in [139] uses another presentation of
the Kan-complex rrep(T,T')=. Let M be a model category with weak-equivalences W. In one
direction, we can consider the subcategory W of M consisting of all the objects in M together
with the weak-equivalences between them. The inclusion W C M sends weak-equivalences to
weak-equivalences and by using the nerve we have a natural homotopy commutative diagram of
(00, 1)-categories

N(W) N(M) (6.1.9)

i i

NW)[W™ —— N (M)W

3By definition, these are the T ® (T")°P- modules F such that for any = € T, there is an object f, € T” and an
isomorphism between F(z,—) and T”(—, fz) in the homotopy category of (T”)°P-modules
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The (00, 1)-category N(W)[W 1] is a Kan-complex (because every arrow is invertible)* and
therefore, the map N(W)[W~1] — N(M)[W™1] factors as N(W)[W~1] — N(M)[W~1]* C
N(M)[W 1. This map is a weak-equivalence of simplicial sets for the Quillen structure because
M is a model category. It results from the foundational works of Dwyer and Kan (see [48, Prop.
4.3] ) that the canonical map N(W) — N(W)[W 1] is also weak-equivalences of simplicial sets
for the standard model structure.

4. The monoidal structure in Dg(k) is closed: More precisely, by the Theorem 6.1 of [139], for any
three small dg-categories A, B and C, there exists a new small dg-category RHom(B,C) (in
the same universe of B and C - see Proposition 4.11 of [139]) and functorial isomorphisms of
homotopy types

Mapp gy (A@" B,C) ~ Mappyuy(A,RHom(B,C)) (6.1.10)

Furthermore, RHom(B, C) is naturally equivalent in Dg(k) to the full essentially small sub-
dg-category Int(B ®@% C°P — Mod))rep of Int(B ®@L C°P — Mod)) spanned by the right quasi-
representable modules.

An immediate implication of this result is that the derived tensor product is compatible with
colimits on each variable separately.

5. Existence of dg-localizations: The description of the mapping spaces in Dg(k) allows us to prove
the existence of a localization process inside the dg-world. By the Corollary 8.7 of [139], given
a dg-category T € Dg(k) together with a class of morphisms S in [T'] we can formally construct
a new dg-category LgT together with a map T'— LgT in Dg(k), such that for any dg-category
T’ the composition map

Mapap o) (LsT, T') = Map 4 (T, T") (6.1.11)

is a weak-equivalence. Here M ap%g(k)(T, T") denotes the full simplicial set of Mapp gk (T,T")
given by the union of all connected components corresponding to morphisms in A(Dg(k)) send-
ing S to isomorphisms in [T”]. Another way to formulate this is to say that for each pair (T, S),
the functor Dg(k) — 8 sending T" — Map%g(k)(T, T’) is co-representable.

Remark 6.1.14. This localization allows us to prove a dg-analogue of a fundamental result
of Quillen for model categories: for a Ch(k)-model category M, the dg-localization of M with
respect to its weak-equivalences is equivalent to Int(M) (see [11]).

6.1.2 Morita Theory of dg-categories

Let T be a small dg-category. The enriched version of the Yoneda’s Lemma allows us understand T’
as a full sub-dg-category of Ch(k)T"".

h:T — Ch(k)™™ (6.1.12)

This big dg-category admits a compatible model structure induced from the one in Ch(k). It is
well known that this model structure is stable so that its homotopy category inherits a canonical
triangulated structure where the exact triangles are the image of the homotopy fibration sequences
through the localization map. It is an important remark that for each x € T, the representable h,
is a cofibrant T°P-module (it follows again from the Yoneda’s lemma and the fact that fibrations are
defined as levelwise surjections). By setting T := Int(Ch(k)T™"), h factors as

4See [99, Prop. 1.2.5.1]
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T — T C Ch(k)™”" (6.1.13)

and from now will use the letter i to denote the first map in this factorization. Of course, when
T = 1}, we have (1)°? — Mod = Ch(k) and therefore 1, = Int(Ch(k)).

Remark 6.1.15. It is important to notice that if T is a small locally-cofibrant dg-category, then T
will not be locally-cofibrant in general. However, we will see in_ the Remark 6.1.23 that it is possible
to provide an alternative construction of the assignement T+ T that preserves the condition of being
locally-cofibrant.

It is also important to remark that the passage T +—> T is (pseudo) functorial. If f: T — T is a
dg-functor, we have a natural restriction map

Ch(k)T)”" = Ch(k)T”" (6.1.14)

induced by the composition with f°P. As a limit preserving map between presentable, it admits a left
adjoint and this adjunction is compatible with the model structures. Since all objects are fibrant, the
left adjoint restricts to a well-define map T — T".

We finally come to the subject of (derived) Morita theory. Classically, it can described as the study
of algebras up to their (derived) categories of modules. The version for small dg-categories implements
the same principle: it is the study of small dg-categories T" up to their derived dg-categories of modules
T'. It generalizes the classical theory for algebras for when 7" is a dg-category coming from an algebra
A the homotopy category of T  recovers the derived category of A. We will see that the following three
constructions are equivalent:

a) the localization of Catcyp,(ry with respect to the class of dg-functors 7' — 7" for which the induced

map T T isa weak-equivalence of dg-categories;
b) the full subcategory of Dg(k) spanned by the idempotent complete dg-categories;

¢) the (non-full) subcategory of Dg(k)'°c=e°fb9 spanned by the dg-categories of the form T (with T
small), together with those morphisms that preserve colimits and compact objects.

The link is made by the notion of a compact object. It is well known that the model category of
complexes is combinatorial and compactly generated so that we can apply the results of our discussion
in 2.2.2. It is immediate that the same will hold for the prOJectlve structure in model category Ch(k)T,
for any small dg-category T'. Following this, we denote by T the full sub-dg-category of T spanned by
those cofibrant modules which are homotopicaly finitely presented in the model category Ch(k )Top.
Again by the general machinery described in 2.2.2; they can be constructed as retracts of strict finite
cell-objects and correspond to the compact objects in the underlying (oo, 1)-category of Ch(k)T"" and
with this in mind we will refer to them as compact.

It follows from the definitions and from the enriched version of the Yoneda Lemma that for any
object z in T, the representable dg-module h(zx) is compact. In particular, h factors as T — (T). C T.
At the level of the homotopy categories, this produces a sequence of inclusions [T] C [(T).] € [T] and
the fact that Ch(k)”"" is stable model category implies two important things: (i) the category [f]
has a triangulated structure; (i7) because homotopy pushouts are homotopy pullbacks, a dg-module F
is compact if and only if M ap(F —) commutes with arbitrary coproducts. With this we identify the
subcategory [(T).] C [T] with [T]. C [T] - the full triangulated subcategory spanned by the compact
objects in the sense of Neeman (see 2.1.4). In particular when T = 1, the objects in T. are are
exactly the perfect complexes of k-modules.

Remark 6.1.16. Because any compact module is a strict finite I-cell (2.2.2) the dg-category (7).
is essentially small and can be considered as an object in Dg(k). For the same reason, (T'). is stable
under shifts, retracts and pushouts.
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Recall now that a small dg-category is said to be idempotent complete (or triangulated) if the
dg-functor

~

T — (T). (6.1.15)

is a weak-equivalence of dg-categories. The first reason why idempotent dg-categories are relevant to
Morita theory is because for any small dg-category T, the restriction along T' — (7).

—

(T)e) =T (6.1.16)

is a weak-equivalence of dg-categories (Lemma 7.5-(1) in [139]). In other words, at the level of
modules we cannot distinguish between 17" and (f)p It follows that a dg-functor f : T'— T" induces
a weak-equivalence 7 — T7 if and only if its restriction to compact objects (T)e — (?)C is a
weak-equivalence. We will denote by Dg(k)i¥“™ the full subcategory of Dg(k) spanned by those
dg-categories which are idempotent complete.

Proposition 6.1.17. The formula T + (T). provides a left adjoint to the inclusion Dg(k)ide™ C
Dyg(k).

Proof. In order to prove this result we construct a cocartesian fibration (oo, 1)-categories p : M — A[l]
with p~1({0}) = Dg(k) and p~1({1}) = Dg(k)?e™. We consider the full (oo, 1)-category M of the
product Dg(k) x A[l] spanned by the pairs (T,0) where T can be any small dg-category and the
pairs of the form (7,1) only accept dg-categories T" which are triangulated. By construction, there
is a canonical projection p : M — A[l] whose fiber over 0 is Dg(k) and over 1 is Dg(k)e™. We
are reduced to check that p is a cocartesian fibration. Notice a map in M over the morphism 0 — 1
in A[1] consists in the data of a morphism 7" — 7" in M where T is any dg-category and 7" is a
triangulated one. To say that p is cocartesian is equivalent to say that for any dg-category T, there is
a new triangulated dg-category T’ together with a morphism 7" — 7”7 having the following universal
property: for any triangulated dg-category D, the composition map

Map{Dg(k)(T/aD) - Mang(k)(Ta D) (6117)

is a weak-equivalence of spaces. We set T’ := (f )e and T — T’ the yoneda’s map. Since any
triangulated dg-category D is equivalent in Dg(k) to D., we are reduced to prove the composition
map

Mapap gy (T)e, De) = Mapp g (T, De) (6.1.18)
is a weak-equivalence. Using the internal-hom, we are reduced to prove that the natural map
RHom((T)., D.) — RHom(T, D) (6.1.19)

is an equivalence in Dg(k). This is the content of the Theorem 7.2-(2) in [139].
O

The existence of this left adjoint, which we will denote as (=)., makes Dg(k)*®™ a reflexive
localization of Dg(k). In particular the idempotent dg-categories can be described as local objects
with respect to the class of maps in Dg(k) whose image through the composition of the inclusion with
(Z). is an equivalence. This establishes Dg(k)*@™ as the second approach in the list.

5This restriction is well-defined because every compact dg-module in T can be constructed from representables using
finite colimits and retracts. The conclusion follows because the map 7" — 7" sends representables to representables,
representables are compact and compact objects are stable under finite colimits and retracts. (See [139] for more details

)
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Remark 6.1.18. The equivalence Dg'°*~¢f (k) ~ Dg(k) restricts to an equivalence Dg(k)?dem-loc—cof C
Dg(k)ide™. Using the Remark 6.1.15 we see that the left adjoint of the Prop. 6.1.17 restricts to a
left adjoint to the inclusion Dg(k)idemloc—cof C Dgloe—cof (k). if T is small and locally-cofibrant, we
can find an equivalent way to define the formula 7" — f, this time preserving the condition of being
locally-cofibrant so that the full subcategory (T). is locally cofibrant.

We now explain the first approach. Recall that dg-functor 7" — T" in Catcpyy is called a Morita
equivalence if the induced map T T is a weak-equivalence of big dg-categories.

Corollary 6.1.19. Let Wy, denote the collection of Morita equivalences between small dg-categories.
Then there is a canonical isomorphism in the homotopy category of (oo, 1)-categories

Dg(k) @™ ~ N(Catcnu) [ Warb,] (6.1.20)

Proof. This follows from the universal property of the localization in the setting of (0o, 1)-categories,
together with the observations that: (i) every weak-equivalence of dg-categories is in Wiy, and
(i1) a dg-functor f is in Wy, if and only if its image through the composition of localizations
N(Catcnpy) — Dg(k) — Dg(k)™™ is an equivalence. O

Both sides of this equivalence admit natural symmetric monoidal structures and the equivalence
preserves them. More precisely, for the first side we have

Proposition 6.1.20. The reflerive localization Dg(k)idemtoc=cof C Dgloe=cof (k) is compatible with
the monoidal structure in Dg'°=<°f(k)®. In other words, there is a natural symmetric monoidal
structure in Dg(k)rdemloc=cof for which the left adjoint is monoidal. Informally, it is given by the

formula T @™ T := (T @“T").. In particular, the unit is the idempotent completion of the dg-
category with a single object with k as endomorphisms.

Proof. Tt is enough to check that if f : T'— T’ is a morphism in Dg(k) such that (f)C — T7, is an
equivalence, then for any dg-category C' € Dg(k), the product f @ Idc : T @ C — T’ @ C will also
be sent to an equivalence in Dg(k)e™. This follows directly from the Lemma 7.5-(1) in [139]. O

Remark 6.1.21. The combination of the argument in the previous proof, with the Theorem 7.2-(2)
of [139] implies that for any idempotent complete dg-category Z and any dg-category T', the internal-
hom RHom(T, Z) is again idempotent. In particular, it provides an internal-hom for the monoidal
structure in Dg(k)ide™.

or) it suffices to verify
that the tensor product of Morita equivalences in Calcop k) is again a Morita equivalence. However,
and as for the Dwyer-Kan equivalences, this is not true. It happens that everything is well-behaved
if we restrict to locally cofibrant dg-categories (see the Proposition 2.22 in [35] together with the
observation that any cofibrant complex is flat). The problem is solved by considering the monoidal
localization of the trivial simplicial coloured operad associated to the well-defined monoidal structure
in Catlgz(_kc)of . The fact that the equivalence in the Corollary 6.1.19 is monoidal follows immediately
from the universal property of the monoidal localization.

To find a monoidal structure in the second localization N (Catcn) Wiy,

To compare these two approaches with the third one, it is convenient to have a description of the
mapping spaces in Dg(k)*¥*™. Being a full subcategory of Dg(k) and using again the Theorem 7.2-(2)
of [139] we find equivalences

Mapp gpyiaem (T)e, (T')e) = Mapp gy (T)e, (T7)e) = Mapp (1o, REHom((T)e, (T7).)) (6.1.21)
~ Mapsp gy (1x, RHom(T, (T7),)) (6.1.22)
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and the internal-hom RHom(T, (ﬁ)c) is given by the full sub-dg-category of Int(T ®% ((CZ/’\’)C)O?’ -
modules) spanned by the right-representable. In this particular case, the last can be described as the
full sub-dg-category of T°P @ T" spanned by those modules E which for every x € T, the module
E(x,—) : (T")°? — Ch(k) is compact. These are called pseudo-perfect (over T relatively to T7).
Following [141] we will write T°P @% T"),,. for the sub-dg-category of T°P @ T’ spanned by the
pseudo-perfect dg-modules over T relative to T”. In the next section we will review how the interplay
between the notion of pseudo-perfect and compact is essential to express the geometrical behavior of
dg-categories. Using this description we have

Mapp gy ( 1k, RHom(T, T',)) ~ Mapp gy (1, TP @ T pspe) = rrep(1p, TP QX T pepe)  (6.1.23)

where the last is our notation for the maximal co-groupoid of ﬁe\full subcategory spanned by right-
representable in the underlying (oo, 1)-category of all 1 @% (TP @L T” . )°P-modules. We can easily
check this is equivalent to the maximal co-groupoid of pspe(T, T)so C (T, T") o - the full subcategory
spanned by the pseudo-perfect modules.

We now come to the third approach. Let Dg¢(k) denote the (non full) subcategory of Dg(k)b¥
spanned by the dg-categories of the form T for some small dg-category T', together with those mor-
phisms T" — T whose map induced between the homotopy categories [T] — [T”] commutes with
arbitrary sums®. Notice that each map in Dg°(k) corresponds to a unique (up to quasi isomorphism)
(T ® 7" )-dg-module. Let RHom, (T T’) be the full sub-dg-category of RHom (T T ) spanned by
those modules which induce a sum preserving map [T} [ /]. Then, by the Theorem 7.2-(1) in [139],
for any small dg-category T” the composition with the Yoneda’s embedding h : T — T

RHom, (T, T") — RHom(T,T") (6.1.24)

is an isomorphism in the homotopy category of dg-categories. It follows from the description of the

—

internal-hom as right representable modules, that the last is equivalent to the dg-category T°P ®H‘ (7).
One corollary of this result (see [139]) is the description of the mapping spaces Mapq 4e (k) (1 (T T ) as the

maximal (0o, 1)-groupoid in (T,7T")~. Another corollary is the existence of a functor (—) Dyg(k) —
Dg(k) sending a small dg-category to its category of dg-modules. For an explicit description, we
consider the canonical projection Dg(k)%*9 x A[1] — A[1] and the full subcategory M spanned by the
vertices (¢,T) where if ¢ = 0, T is small and if ¢ = 1, T is of the form 1/’\0 for some small dg-category
Ty and the only admissible maps (1,7) — (1,7”) are the ones in Dg°(k). The fact that this fibration
is cocartesian follows again from the theorem.

To formalize the third approach, we will restrict our attention to a subcategory of Dg¢(k). As we
just saw, a map f : T — T7 in Dg°(k) corresponds to the data of a (uniquely determined) T @ (T")°-
module E;. We will say that f preserves compact objects if for every object « € T', the (T”)°P-module
E¢(x, —) is compact. According to our terminology, this is the same as saying that Ey is pseudo-perfect
over T relatively to (77)°P. With this, we denote by Dg°“(k) the (non-full) subcategory of Dg¢(k)
containing all the objects together with those maps that preserve compact objects. It follows from the
definitions that the mapping spaces M angcc(k)(T T ) are glven by the maximal oco-groupoids inside

pspe(T, T')oo. It is now easy to see that the canonical map (— ) Dg(k) — Dg(k) factors through
Dg°c(k). The following proposition establishes Dg¢(k) as a third approach to Morita theory

Proposition 6.1.22. The composition Dg(k)" ™ < Dg(k) — Dg°(k) is an equivalence of (o0, 1)-
categories. An inverse is given by the formula sending a dg-category T to the full subcategory (T').
spanned by the compact objects.

6This notion is well-defined because the map induced between the homotopy categories is unique up to isomorphism
of functors.
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Proof. By the definition of D¢ (k) the map is essentially surjective. It is fully-faithful because the
mapping spaces in Dg®(k) are by definition, the same as in Dg(k)*¥*™ corresponding both to the
oo-groupoid of pseudo-perfect modules. O

Remark 6.1.23. Notice that if T is a locally-cofibrant dg-category, then so is fc. In this case, the
equivalence (—). restricts to an equivalence Dgeeloc=cof (k) — Dg(k)idemiloc=cof By choosing an
inverse to this functor we solve the problem posed in the Remark 6.1.15 of finding a model for the
formula T — T that preserves the hypothesis of being locally-cofibrant.

To complete the comparison between the second and third approaches, we regard the existence of a
symmetric monoidal structure in Dg°>°¢=c°f (k) which makes (—).. : Dgecloc=cof (k) — Dg(k)idemloc=cof
a monoidal functor.

Proposition 6.1.24. The (oo, 1)-category Dgeetoc=cof (k) is the underlying oo-category of a symmet-
ric monoidal structure Dgee-loc=cof (£)® . Given two ob]ects T,T € Dgec(k), their monoidal product

can be informally described by the formula TeT =T ®]L T', where @ denotes the monoidal structure
in Dgloc=eolf (k).

Proof. The proof of this proposition requires two steps. The first concerns the construction of an
(00, 1)-category Dgee-loc=cof (£)® equipped with a map to N(Fin,). The second step is the prove
that this map is a cocartesian fibration. For the first, we start with Dglec=cefbi9(k)® — N(Fin,)
the symmetric monoidal structure in the (oo, 1)-category of the big locally-cofibrant dg-categories
(as constructed in the section 6.1.1). By construction, its objects can be identified with the pairs
((n), (Th,...,Ty)) with (n) € N(Fin,) and (T1,...,T;,) a finite sequence of dg-categories. By the
cocartesian property, maps ((n), (11, ..,T,)) = ((m), (Q1,...,Qm)) over f : (n) — (m) corresponds to
families of edges in Dg(k)loc—cofbig

QR T (6.1.25)

Jjef~t({ih)
with 1 < ¢ < m, where ® denotes the tensor product in Dgloc*cof b9 ()@, Given small dg-categories
T, T, @, we will stay that an object in RHom(T QLT , Q) is multi-continuous if its image through

the canomcal adjunction is in RHom,, (T, RHom (T’ Q)).

With this, we consider the (non full)subcategory Dg®loc=cof (k)® C Dgloc=cof:bi9(k)®@ spanned
by the pairs ((n), (T1,...,T,,)) where each T; is an object in Dg¢(k) together with those morphisms
((ny, (T1, .., Tn)) = ({m), (@1, ..., Qm)) corresponding to the edges

QR T (6.1.26)
jef~r({i})
which are multi-continuous. It follows that the composition Dgloc—cof (k)® C Dgloc—cof:big(|)®
N(Fin,) is a cocartesian fibration: a cocartesian lifting for a morphism f : (n) — (m) at a sequence
((n),(Th = t1,...,Ty, = tp)) is given by the edge corresponding to the family of canonical maps

wi: Q) Tp— Q=@ iyl (6.1.27)
jer~1{ip

obtained from the identity of ®E.‘E F1( {i})tj using the canonical equivalences

Rmmulti—continuous (f ® ﬁ’ A\) :=RHom (T\v RHom (fv A\)) = Rmc(f’ RM(Tv A\)) =
(6.1.28)
~ RHom(T, RHom(T, A)) ~ RHom(T ® T', A) ~ RHom, (T @ T’, A) (6.1.29)

The same equivalences imply the cocartesian property of the family (u;).
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With this, we are reduced to prove that this monoidal structure restricts to the (non-full) subcat-
egory Dgeoloc—cof (k) c Dgeloc=cof (k) spanned by the same objects and only those morphisms (?7)
that send a product of compact objects to a compact object of @);. We claim now that the restriction
Dgeeloe=cof (k) C Dgeloe=eof (k) — N(Fin,) is again a cocartesian fibration. For this purpose, it
suffices to observe that the same canonical morphisms (6.1.27) send (by definition of @;) a product of
compact objects to a compact object

O

By inspection of the proof it is obvious that the map (—). : Dge@loc=cof (k) — Dg(k)idemloc—cof
is compatible with the monoidal structures.

In summary, we have three equivalent ways to encode Morita theory.

N(CathOszC)Of)[Wﬂjllor]GKJ ~ (:Dg(k)idermloc—cof)@ ~ Dgcc,loc—cof (k)@ (6130)
Convention 6.1.25. For the future sections, and for the sake of simplicity, we will omit the fact that
these monoidal structures are defined for locally-cofibrant dg-categories and that to make sense of this
monoidal product for arbitrary dg-categories, we need to perform cofibrant-replacements to fall in the
locally-cofibrant context.

Furthermore, in [131, Thm 5.1] the author proves the existence of a combinatorial compactly gen-
erated model structure in Catcop(r) with weak-equivalences the Morita equivalences and the same
cofibrations as for the Dwyer-Kan model structure. It follows that the three (oo, 1)-categories are
presentable. In particular, they have all limits and colimits and we can compute them as homotopy
limits and homotopy colimits in Catcy,x) with respect to this Morita model structure. In particular,
we can prove that Dg(k)?™ has a zero object * (the dg-category with one object and one morphism)
and that, more generally, finite sums are equivalent to finite products (denoted by @). The last follows
because for any two small dg-categories T' and T” we have a canonical equivalence of big dg-categories
Hom(T[[T',Chaqg(k)) ~ Hom(T, Chqqe(k)) x Hom(T, Chqag(k)) compatible with the natural model

structures for dg-modules. We can now use this equivalence to find that (T'[[7"),. ~ T, x T,

6.1.3 Dg-categories with a compact generator

A dg-category T e Dge(k) is said to have a compact generator if the triangulated category [f] has
a compact generator in the sense of Neeman (see the Remark 2.1.4). We will say that a small dg-
category T has a compact generator if the triangulated category [f] admits a compact generator in
the previous sense. It follows that T has a compact generator if and only if/iis idempotent completion

T, has a compact generator (of course, this follows from the equivalence (f)c o~ f)
Let Perf be the composition

)dg

Algses(D(K)) Dy (k)idem (6.1.31)

Using the same methods as in [123], it can be proved that T" has a compact generator if and only
if it is in the essential image of Per f. For the "only if” direction we consider the dg-algebra B given
by the opposite algebra of endomorphisms of the compact generator in 7. For the ”if” direction, if
T ~ Perf(B) then B, seen as a dg-module over itself, is a compact generator.

Remark 6.1.26. Let T, 7" € Dg(k)™ be idempotent complete dg-categories having a compact
generator. Then their tensor product in Dg(k)*¥™ has a compact generator. This follows because
the functor Perf is monoidal (see 6.1.11 and 6.1.20).
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6.1.4 Dg-categories of Finite Type

In this section we discuss the notion of dg-category of finite type studied by Toén-Vaquie in [141]. In
the next section they will give body to our noncommutative spaces.

It follows from the results of [131] that the Morita model structure is combinatorial, compactly
generated (see [141, Def. 2.1 and Prop. 2.2]) and satisfies the general conditions of the Proposition 2.2
in [141]. Following the discussion in 2.2.2, we can identify the compact objects in Dg(k)* ™ with the
retracts of finite cell objects and we have a canonical equivalence Dg(k)i™ ~ Ind((Dg(k)ide™)«).
At the same time in [35]-Theorem 4.3, the authors prove that an object T' € Dg(k)*¥*™ is compact if
and only if its internal-hom functor RHom(T, —) in Dg(k)***™® commutes with filtered colimits. An
immediate corollary of this is that the product of compact objects in Dg(k)*¢™® is again compact
so that the subcategory (Dg(k)*¥™ inherits a symmetric monoidal structure, which we shall denote
as (-Dg(k)idem,w)®'

Following [141], we say that an idempotent complete dg-category T is of finite type if it is equivalent
in Dg(k)*e™ to a dg-category of the form Perf(B) for some dg-algebra B which is compact as an
object in the (0o, 1)-category Algass(D(k)) 7. In particular a dg-category of finite type has a compact
generator.

In [141, Lemma 2.11], the authors prove that a dg-category of the form Perf(B) is compact in
Dg(k)i¥™ if and only if B is compact in the (0o, 1)-category Algass(D(k)). In fact, an object in
Dg(k)ide™ is compact if and only if it is of finite type:

Proposition 6.1.27. (Toén-Vaquié) Let Dg(k)?t denote the full subcategory of Dg(k)i ™ spanned
by the dg-categories of finite type. Then, the inclusion Dg(k)’t C (Dg(k)* ™)« is an equivalence.

Proof. By the discussion in 6.1.3 it suffices to prove that any compact dg-category T € Dg(k)*®*™ has
a compact generator. Indeed, we can always write T as a filtered colimit of its subcategories generated
by compact objects. Since T is compact it is equivalent to one of these subcategories and therefore
the triangulated category [T] is compactly generated by a finite family of objects {x1,...,z,} (in the
sense of Neeman - see the Remark 2.1.4). Since T is idempotent complete, it admits finite sums and
therefore the finite direct product ®x; is a compact generator. O

With this, we have a canonical equivalence Dg (k)™ ~ Ind(Dg(k)’*). Tt follows that Dg(k)/? is
closed under finite direct sums, pushouts and contains the zero object.

Remark 6.1.28. It follows from the Yoneda’s lemma that the inclusion Dg(k)/* C Dg(k)***™ com-
mutes with arbitrary limits whenever they exist in Dg(k)/*. Moreover, by combining the Prop. 6.1.27
and the discussion in the section 3.2.8, it is monoidal.

6.2 Dg-categories vs stable (oo, 1)-categories

This section is merely expository and sketches the relation between the theory of dg-categories and the
theory of stable (0o, 1)-categories. We aim to somehow justify our choice to work with dg-categories.
These results have been known to the experts in the field (I learned them from B. Toén) and have
recently been established in [36].

For any commutative ring k, D(k)® is a stable presentable symmetric monoidal (co, 1)-category.

In this case, the universal property of Sp® ensures the existence of a (unique up to a contractible
space of choices) monoidal colimit preserving map

f:S5p® — D(k)® (6.2.1)

7 Algass(D(k)) is the underlying (oo, 1)-category of a compactly generated model structure in the category of strictly
associative dg-algebras and again by the discussion in 2.2.2 we can identify its compact objects, up to equivalence, with
retracts of strict finite cell objects with respect to the generating cofibrations of the model structure for strict dg-algebras.
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sending the sphere spectrum to the ring k seen as complex concentrated in degree zero. This is a
morphism of commutative algebras in Pr“® and therefore produces a base-change adjunction

(D(k)®sp—)
Priy, ~ Modg,e (Prt) <f*—> Modqp s (Prl) (6.2.2)

with f* the forgetful map given by the composition with f. Notice that the objects in the left side
are stable (0o, 1)-categories because the adjunction is defined over the forgetful functors to Pr’. By
definition, a k-linear stable (oo, 1)-category is an object in Modp e (PrF).

At the same time, there is a canonical way to assign an (oo, 1)-category to a dg-category. More
precisely, given a small dg-category 17" we can apply the Dold-Kan construction to the positive trun-
cations of the complexes of morphisms in T to get mapping spaces. Since the Dold-Kan functor
is right-lax monoidal (via the Alexander-Whitney map), this construction provides a new simplicial
category which happens to be enriched over Kan-complexes. By takings its simplicial nerve we obtain
an (0o, 1)-category Ngy(T'). The details of this mechanism can be found in [100, Section 1.3.1]. More-
over, the assignement T — Ng,(T') provides a right Quillen functor between the model category of
dg-categories categories with the Dwyer-Kan model equivalences and the model category of simplicial
sets with the Joyal’s model structure [100, 1.3.1.20]. Following the discussion in 2.2.1 and since these
model structures are combinatorial, this assignement provides a functor between the (oo, 1)-categories

Nag : Dg(k) = Catoo (6.2.3)
By the properties of the Dold-Kan correspondence, V44 preserves the notion of "homotopy cat-
egory”8. Moreover, using the arguments in (2.2.1), the combinatorial property implies that Nag

has a left adjoint and therefore preserves limits. In particular, for a bigger universe we also have a
well-defined map

N9 Dg(k)'9 — Catlis (6.2.4)
Following [140] we have the notion of a locally presentable dg-category. By definition, these are
big dg-categories that can be obtained as accessible reflexive localizations of big dg-categories of the
form Ty for some small dg-category Ty. Alternatively, we can describe them as the dg-categories of
cofibrant-fibrant objects of a Bousfield localization of the left proper combinatorial model category
Ch(k)™ for some small dg-category Tp. Together with the colimit preserving maps, they form a
(non-full) subcategory Dg'?(k) of Dg(k)*9. In particular, the (oo, 1)-category Dg°“(k) introduced in
the previous section has a non-full embedding in Dg'?(k). As explained in the proof of [140, Lemma
2.3] a big dg-category having all colimits is locally presentable if and only if NZQ(T) is in Prl. In
particular, as the notions of colimit are compatible, the restriction

NdLg : Dg'? (k) — Prl (6.2.5)
is well-defined. - -

For a dg-category of the form Tj, the (oo, 1)-category N, dLg(TO) can be identified with the under-
lying (oo, 1)-category of the combinatorial model category C'h(k)™® which is compactly generated. In
particular, since Ch(k)° is stable (in the sense of model categories), we find that N, dLg(ﬁ) is a stable
compactly generated (oo, 1)-category”. In fact, a dg-category T' € Dg'P(k) is in Dg°¢(k) if and only if
N, j; (ﬁ) is compactly generated. More generally, we can identify the functor N, j; with the map send-

ing a Bousfield localization of Ch(k)™ to its underlying (oo, 1)-category. In particular we find that
N dLg factors through the full subcategory of Pr’ spanned by the stable presentable (0o, 1)-categories

PrL,,. In particular, NdLg restricts to Dgc(k) — ?rﬁ,sw C Prk.

8Recall that 7, (DK (A)) ~ Hy,(A), where DK denotes the Dold-Kan map
9In the condition of having all limits and colimits, the property of being stable depends only on the fact the
suspension functor is invertible at the level of the homotopy category
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Remark 6.2.1. It follows from the fact that Ch(k)™° is a stable model category and from the prop-
erties of the Dold-Kan construction that N dLg is conservative, for it preserves the notion of homotopy
category and using stability, we see that it also reflects fully-faithfulness. More generally, the restric-
tion of Ngg to dg-categories satisfying stability is conservative.

Remark 6.2.2. By the previous remark, since NdLg and more generally Ny, (restricted to big stable
dg-categories) are conservative, and both commute with limits and the non-full inclusion Pr¥ C Catgf)g
(respectively the inclusion of big stable dg-categories inside all big dg-categories) preserves limits, we
find that Dg'?(k) also has all small limits and that the inclusion Dg'?(k) C Dg(k)®" also preserves
them.

We now come to the expected relation between the Morita theory of dg-categories and the theory
of stable presentable (0o, 1)-categories: the map NdLg : Dg'P (k) — Prk,, is expected to factor through

the forgetful functor f* : Modp e (Prk) — Prk,,

Dyt (k) — - £ Modgp e (Prey—— Prk,, (6.2.6)

and this factorization 6 is expected to be an equivalence of (0o, 1)-categories. In this case, the restric-
tion

Dgee (k) —= Modgpgye (PrE) (6.2.7)

will provide a link between the Morita theory of dg-categories (as described in the previous section)
and the theory of k-linear compactly generated (oo, 1)-categories. The following diagram is an attempt
to schematize this landscape

oo(SpectralCats/Morita)

! N .
Modg,s (Prk) - ronfull fPT{f’Stb 5 C’atiﬁ”dem(—> Caticz

] d
non ful
Prly, < Modap e (Prh) <D Mody e (PrE)
A A

\Ne ~ 10
Ny I I

non full

Dyg' (k) <———Dg(k) m Dg(k)*tem————Dg(k)

\ NT"

N(Caten))[Wigs,)

(6.2.8)
Here oo(Spectral/Morita) (resp. N(Catonk))[Warse]) denotes the (oo, 1)-category associated to
the Morita model structure on the small spectral categories (resp. small dg-categories). The map 5 is
defined by sending a spectral category € to the stable (oo, 1)-category associated to the stable model
category of C-modules in spectra (ie, functors from € to the model category of spectra, together with
the projective structure). The map ~ is the equivalence discussed in 2.1.23 obtained by taking the
full-subcategory of compact objects. The map « is the composition v o § and the fact that it is an
equivalence is due to the Theorem 4.23 of [18]. The map 6 is the expected equivalence and the maps
u,v and w are the dg-analogues of «,3 and ~y, and the fact that they are equivalences results from
the main results of [132, 139, 141] as indicated in the previous section. It is also important to remark
that 6 should respect the natural monoidal structures.
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In the recent work [36] L. Cohn constructs a map 6 satisfying these expected properties for any
ring k.10,
As the map ~ is monoidal, it induces an equivalence between the (0o, 1)-categories of modules

Modg(k)®(ﬂ)r£) —= Mod'D(k)w@(Catgg’idem) (6.2.9)

so that the construction of 6 can be approached at the level of small categories: the arguments in [36,
Theorem 5.1 and Lemma 3.11] together with the enriched Dold-Kan correspondence of [?] provide an
equivalence

0 : Dg(k)' ™ ——= Modp j)e.e (Cat§Fem) (6.2.10)

which we can easily check to make the diagram

Modap (yo (Prh) —= Modapgye.o (CatE-idem) (6.2.11)
A
~16 NTGI
|
@gcc(k-) :} Dg(k)idem

commute.

We hope this discussion clarifies the decision to work with dg-categories. For a quasi-compact and
quasi-separated scheme X over k we have 0(Lgcon(X)) ~ D(X) where Lyeon(X) is the derived dg-
category of X (see the next section) and D(X) is the stable presentable symmetric monoidal derived
(00, 1)-category of X as in [100, Def. 1.3.5.8].

6.3 Dg-Categories and Noncommutative Geometry

6.3.1 From Schemes to dg-algebras (over a ring k)- Part I

Let k be a ring. Given a quasi-compact and separated k-scheme (X,0x) we consider Qcoh(X) C
Ox —Mod the subcategory of quasi-coherent sheaves on X. Under some general conditions, the natural
tensor product in Ox — Mod is closed for quasi-coherent sheaves (see the Prop. 9.1.1 of [62]-Chap. 1).
It results from a theorem of Deligne (see [65]-Appendix, Prop 2.2) that Qcoh(X) is a Grothendieck
abelian category (generally - see [38, Lemma 2.1.7] - for any scheme X there is an infinite cardinal
such that Qcoh(X) is k-presentable) so that we can apply to C'(Qcoh(X)) the Theorem 2.2 of [70] which
tells us that the category of unbounded complexes on a Grothendieck abelian category can be equipped
with a model structure, with cofibrations given by the monomorphisms and the weak-equivalences the
quasi-isomorphisms of complexes. By the Proposition 2.12 of loc.cit, every fibrant-object is a complex
of injectives and every bounded above complex of injectives is fibrant. Since X is defined over k, Ox is
a sheaf of k-algebras and each O x-module is naturally a sheaf of k-modules. This induces a canonical
action of Ch(k) on C(Qcoh(X)) compatible with the model structure. By definition, the dg-derived
category of X is the dg-category Lgcon(x) := Int(C(Qcoh(X))). Following the Remark 6.1.14, its
associated homotopy category [Lgeon(x)] is canonically equivalent to the classical derived category of
quasi-coherent sheaves on X.

Remark 6.3.1. In general, for any quasi-compact scheme X, the correct derived dg-category to
consider is full subcategory of the derived category of Ox-modules with quasi-coherent cohomology.
When X is separated, this agrees with Lgcon(x)-

It is compactly generated (in the sense of Neeman [108]) and thanks the results of [137] we know
that its compact objects are perfect complexes of quasi-coherent sheaves. We write L,.(X) for the full
subcategory of Lgcon(x) spanned by the perfect complexes and the general theory gives us a canonical

10 The results in [36] are announced for a field k of characteristic zero but the proof works for any ring. I thank the
author for several conversations on the subject



6.3 Dg-Categories and Noncommutative Geometry 139

L —

equivalence Lye(X) =~ Lgcon(x). By construction L,.(X) is an idempotent complete dg-category and
we will understand it as the natural noncommutative incarnation of the scheme X. The philosophical
importance of the following result is evident

Theorem 6.3.2. (Bondal-Van den Bergh [23]-Thm 3.1.1) Let X be a quasi-compact and quasi-
separated scheme over a ring k. Then Ly.(X) has a compact generator.

Together with the preceeding discussion, this result implies that for any quasi-compact and quasi-
separated scheme X over k, the dg-category of perfect complexes L. (X) is of the form Perf(B) for
some dg-algebra B.

6.3.2 Smooth and Proper Dg-categories

The geometric notions of smoothness and properness can be adapted to the world of dg-categories, in
a way compatible with L,.(—). Recall that a dg-category T is said to be locally perfect it is enriched
over perfect complexes of k-modules. T is said to be proper if it is locally perfect and it has a compact

generator. We say that T is smooth if the object in T ®L TP defined the formula (x,y) — T(z,y),
is compact. Finally, we say that a dg-category is saturated if it is smooth, proper and idempotent
complete. One can check ([141]-Lemma 2.6-(2)) that a dg-category T' is proper (resp. smooth) if and
only if its idempotent completion is proper (resp. smooth). Of course, these notions are also invariant
under the operation (—)°P. This implies that a dg-category of the form Perf(B) is proper (resp.
smooth) if and only B is perfect as a complex of k-modules (meaning, the B°? @ B-module defined
by the formula (e, e) — B is compact).

Example 6.3.3. This notion of smoothness is compatible with the classical geometrical notion: a
morphism Spec(A) — Spec(k) is smooth (meaning, A is regular over k) if and only if the dg-category
Perf(A) is smooth. This is proved using a famous theorem of J.P.Serre [126, IV-37, Thm 9]: a
commutative ring is regular if and only if it is of finite global homological dimension.

In the same spirit, and thanks to [141, Lemma 3.27] we have a machine to produce smooth and
proper dg-categories: for any scheme X smooth and proper over a ring k, the dg-category L,.(X) is
smooth and proper.

In 6.1.2 we explained how the notion of pseudo-perfectness can be used to describe the mapping
spaces in Dg(k)*¥™. Notice now that an object E € T is pseudo-perfect (over T relatively to 1) if it
has values in compact complexes of k-modules. The distinction between being compact and pseudo-
perfect is the key to understand the notions of smooth and proper as the following results from [141]
suggest:

e [141]-Lemma 2.8-(1): A dg-category T is locally perfect if and only if for any dg-category T”,
we have an an inclusion of subcategories

—_—

(T & T")e C (TR T")pspe (6.3.1)

e [141]-Lemma 2.8-(2): A dg-category T is smooth if and only if for any dg-category 1", we have
an an inclusion of subcategories

o —

(T - T")pspe C (T = T). (6.3.2)

e [141]-Lemma 2.8-(3): From the two previous items, a dg-category T is smooth and proper iff it

has a compact generator and for any dg-category T”, the subcategories of T' @ T spanned by
compact, respectively pseudo-perfect modules, coincide.
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Remark 6.3.4. Recall from 6.1.2 that the mapping spaces Mappg(yyiaem (T, T") are given by the
maximal oo-groupoids in pspe(T,T")s - the full subcategory of (T,T')s spanned by the pseudo-
perfect modules. It follows that if T" is smooth and proper, we can identify pspe(T,T')s with the full
subcategory (T,T")% spanned by the compact modules.

The notions of smooth and proper are related to the notion of finite type:

e [141]-Corollary 2.13: Any smooth and proper dg-category is of finite type;

e [141]-Proposition 2.14: Any dg-category of finite type is smooth.

To conclude this section we recall another important characterization of smoothness and properness
given by the following result due to B. Toén

Proposition 6.3.5. (see [11]-Lectures on dg-categories and [140, Prop. 1.5]) An object T € Dg(k)ide™
is smooth and proper if and only if it is dualizable with respect to the symmetric monoidal structure
Dy(k)idem@ - In particular, the dual of a dg-category T, € Dg(k)™ is the opposite (T°P)..

6.3.3 From Schemes to Noncommutative Spaces (over a ring k) - Part II

Following [141], the notion of finite type should be understood as the correct notion of smoothness
for noncommutative spaces, while the smooth dg-categories should only be understood as ”formally
smooth”’ noncommutative spaces. Finally, we are ready to introduce our smooth noncommutative
geometric objects.

Definition 6.3.6. Let k be a ring. We define the (00, 1)-category of smooth noncommutative spaces
over k- NcS(k) - to be the opposite of Dg(k)t. It has a natural symmetric monoidal structure
NeS(k)® induced from the one in Dg(k)/H® | with unit object given by Ly (k).

Notation 6.3.7. We will denote our smooth noncommutative spaces using caligraphic letters X,U, V,
W, etc. For a smooth noncommutative space X € N¢S we will denote by T its associated dg-category
of finite type and by Ax a compact dg-algebra such that T ~ Per f(Ax).

We will say that a smooth noncommutative space X is smooth and proper if its associated dg-
category T is smooth and proper. We will let NeS(k)*P denote the full subcategory of NeS(k) spanned
by the smooth and proper noncommutative spaces. Since the smooth and proper dg-categories corre-
spond to the dualizable objects in Dg(k)¥*, the subcategory NeS(k)*P is closed under tensor products.

It follows immediately from the properties of Dg(k)/* that NcS(k) admits pullbacks, together
with finite direct sums and a zero object. Moreover, the tensor product commutes with limits. In
particular, if X and Y are two smooth noncommutative spaces, the mapping space Mapyes(x)(X,Y) is
given by the oo-groupoid pspe(Ay, Ax)% of pseudo-perfect Ay @ AP-dg-modules and equivalences
between them.

We now explain how the formula X — L,.(X) can be properly arranged as an co-functor. We de-
fine it for the smooth affine schemes of finite type over k, whose 1-category we denote by AffSmft(k).
Recall that the full subcategory of 0-truncated objects in C'Alg(D(k))™ is equivalent to the nerve of
the category of classical associative rings. In particular, we can identify the nerve of the category
of commutative smooth k-algebras of finite type N(SmCommAlgy) ~ N(AﬁSmft(k))‘)p with a full
subcategory of C'Alg(D(k))“™. Let L denote the composition

N(SmCommAlgy)—s CAlg(D(k))™ —= Algass(D(k))C—= Algass(D(k)) “2Ls Dg(k)idem

(6.3.3)
where C Alg(D (k)™ — Algass(D(k))°™ is the restriction of the forgetful functor to connective objects.
The following is a key result:
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Proposition 6.3.8. Let A be a classical commutative smooth k-algebra of finite type. Then, L(A) is
a dg-category of finite type. In other words, L provides a well-defined functor N(SmCommAlgy) —
Dy(k)7t.

Proof. If A is smooth as a classical commutative k-algebra it is smooth as a dg-category (Example
6.3.3) which by definition means it is compact as a A ®j, A°?-dg-module. Following the Remark 6.1.6
the category of A ®j; A°P-dg-modules can be naturally identified with the category of A-bimodules
BiMod(A, A)(Ch(k)). Using the strictification results of 3.9.2 the underlying (oo, 1)-category of
BiMod(A, A)(Ch(k)) is equivalent to s BModa(D(k)) ~ Mod’**(D(k)).

Of course, if A is compact in Mod%}**(D(k)) and since A®j, A% is also compact (it is a generator),
the kernel of the multiplication map I — A ®; A°? — A will also be compact. Following the Example
3.11.2 we can now identify I with the relative cotangent complex L4/, € Mod}**(D(k)). The Lemma
3.11.1 completes the proof. O

Using this, we define L. as the opposite of L

Lye : N(AffSm”* (k)) — NeS(k) (6.3.4)

To conclude this section we observe that L. can be promoted to a monoidal functor
® . ft ®
Ly, : N(AffSm’"(k))* — NeS(k) (6.3.5)

where N(AﬁSmft(k)) * is the cartesian structure in N(AﬁSmft(k)) which corresponds to the coprod-
uct of classical commutative smooth k-algebras which is, well-known, given by the classical tensor
product over k.

It follows from 3.2.6 and the fact that the tensor product in D(k) is compatible with the ¢t-structure,
that the composition CAlg(D(k))™ — Algass(D(k))™ C Algass(D(k)) is monoidal. Moreover, the
functor Perf is monoidal because it is the composition of monoidal functors - 6.1.11 and 6.1.20. We
are left to check that the inclusion N(SmCommAlgy) — C Alg(D(k))“™ is monoidal. In other words,
that for a commutative smooth k-algebra of finite type over k, the classical tensor product agrees with
the derived tensor product. But this is true since smooth k-algebras are flat over k.

6.4 The Motivic A'-Homotopy Theory of Kontsevich’s Noncommutative
Spaces over a ring k

We will now use our main results to fabricate a motivic A'-homotopy theory for smooth noncom-
mutative spaces over a ring k. In this section we proceed in analogy with the construction of the
motivic stable homotopy for schemes as described in the previous chapter of this work. Recall from
the Remark 5.1.1 that these constructions only depend on the category of affine smooth schemes of
finite type over k.

Remark 6.4.1. There is a natural way to extend the functor L,. to non-affine schemes. To do
this, we observe that the classical category of schemes can be identified with a full subcategory of
PUiI(N (A fsm’ “(k))), by the identification of a scheme with its ”functor of points”. The universal
property of (big) presheaves provides a colimit preserving map

N(AFSmT (k) —22— NeS(k) (6.4.1)

| |

P9 (N (AfISmT! (k))) - — = PY9 (NeS(k))
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The Lemma 3.27 in [141] implies that the image through this map of any smooth and proper
scheme X over k is representable in P'"9(NeS(k)). This should remain true without the properness
condition.

To start with, we need to introduce an appropriate analogue for the Nisnevich topology, for the
interval A! and for the projective space P!. For the last two we have natural choices - Lpe(Al) and
Lye(PY): the first is a dg-category of finite type because A! is smooth affine over k; the second,
Lye(P1), is of finite type because the canonical morphism P! — Spec(k) is smooth and proper (see
6.3.3). The analogue of the Nisnevich topology requires a more careful discussion.

6.4.1 The noncommutative version of the Nisnevich Topology

To obtain our noncommutative analogue for the Nisnevich topology we isolate the formal properties
of the commutative squares in NeS(k)

Lpe(p™H(U)) —= Lpe(V) (6.4.2)
Lpe(U) Lpe(X)

induced by the Nisnevich squares of schemes. Following the list of properties given in Section 5, we
start with the notion of an open embedding. For that we need some preparations. Recall that an
ezact sequence in Dg(k)*¥®™ is the data of a commutative square

A B
* C
where * is the zero object in Dg(k) , such that f fully-faithful and the diagram is a pushout.
Since Dg (k)™ is a reflexive localization of Dg(k), this pushout C' is canonically equivalent to the

idempotent completion of the pushout B/A computed in Dg(k). Of course, using the equivalence
(6.1.30), the previous diagram is an exact sequence if and only if the diagram

l&h

(6.4.3)

|

idem

F

P,

&)

(6.4.4)

* <— )
-
@)

Q)

_

is an exact sequence in Dg°(k) in the same sense. Thanks to the works of B.Keller in [82], we know
that this notion of exact sequence extends the notion given by Verdier [148].

Proposition 6.4.2. (B. Keller [82]) The following conditions are equivalent:
1. a diagram as above is an exact sequence;

2. the functor f induces an equivalence of [A\] with a triangulated subcategory of the triangulated

~

category [B] and § exhibits the homotopy category [C)] as the Verdier quotient [B]/[A];

3. the functor f induces an equivalence of [A] with a triangulated subcategory of the triangulated
category [B] and the canonical map from the Verdier quotient [B]/[A] — [C] is cofinal (see our
discussion in 2.1.24).
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Remark 6.4.3. Following the discussion in 6.2, we can use the functor Nd Dgec(k) — fPrw Stb
to relate exact sequences of dg-categories in the above sense to exact sequences of stable presentable
(00, 1)-categories in the sense of 2.1.24. As explained in 6.2.1 N, Lg is conservative, preserves fully-
faithfulness and preserves the notion of "homotopy category” (see the Remark [100, 1.3.1.11]). This
result, together with the Propositions 6.4.2 and 2.1.9 implies that a sequence of dg-categories A
B — Cin Dgec(k) is exact in the sense discussed in this section if and only if its image N, dLg(A) —

NdLg(E) — NdLg(é) in Prl g, is exact in the sense discussed in 2.1.24. It follows also that A has a
compact generator if and only if h(IV, fg(g)) has a compact generator.

Remark 6.4.4. It is common to find in the literature the terminology of strict exact sequence to
denote an exact sequence (6.4.3) in Dg(k)?™ which, appart from being a pushout square, is also
a pullback in Dg(k)ie™. Tt follows again from the results of [82] that in terms of the associated
homotopy triangulated categories this corresponds to the additional condition that [A\] is thick in
[B]. It follows however that when working in Dg(k)™™ this terminology is unnecessary because
every exact sequence is strict. This follows from the properties of the functor N , together with the
Corollary 2.1.12.

Let us now come back to the definition of open immersion. Thanks to the results of Thomason
in [137, Section 5] and to the work of B.Keller in [82], we know that for a quasi-compact and quasi-
separated scheme X with a quasi-compact open embedding j : U — X, the restriction map j*
Lgcon(X) = Lgeon(U) fits in a strict exact sequence in Dg®°(k)

LL]COh(X)X*U - choh(X) (645)
i —— Lgeon(U)

where Lgcon(X)x—y is by definition the kernel of the restriction j*. It is also well-known that this
kernel has a compact generator (see the proof of [140, Prop. 3.9]). Of course, using the equivalence
Dy(k)idem ~ Dgee(k), we can reformulate this in terms of an exact sequence in Dg(k)?de™

(Lgeon (X )e == Lpe(X) (6.4.6)
-
¥ —————> Lpe(U)
where (Lgcon(X)x—v). has a compact generator.

Remark 6.4.5. More generally, and as explained in [51, Prop. 2.9], if T is a dg-category of finite
type and k is an object in T', then quotient of 1" by the sub-dg-category generated by k is again a
dg-category of finite type.

This motivates the following definition:

Definition 6.4.6. Let f: U — X be a morphisms of smooth noncommutative spaces over k. We say
that f is an open immersion if there exists a dg-category with a compact generator Kx_y € Dg(k)ide™
(see 6.1.3) together with a fully-faithful map Kx_y — Tx such that the opposite of f in Dg(k)’* fits
in a exact sequence in Dg(k)ide™:

Ky — Tx (6.4.7)

|

* —= T

It follows from the Remark 6.4.4 that this diagram is also a pullback square.
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Definition 6.4.7. We will say that a commutative diagram in NcS(k)

W——7V (6.4.8)

L

U——X
is a Nisnevich square of smooth noncommutative spaces if the following conditions hold:
1. The maps U — X and W — V are open immersions;

2. The associated map Tx — Ty sends the compact generator of Ky_y C Ty to the compact
generator of Ky_w C Ty and induces an equivalence Ky_y ~ Ky_w;

8. The diagram is a pushout.

Convention 6.4.8. We will adopt the convention that if X is a smooth noncommutative space whose
underlying dg-category Tx is a zero object of Dg(k)ft, the empty set forms a Nisnevich square of X.

Using the duality between smooth noncommutative spaces and dg-categories, a Nisnevich square
corresponds to the data of a commutative diagram in Dg(k)*@e™
Kx_u —> % (649)

Ty — 1Ty

Ty —Tw

Kv_w —> Xk

where:

1) all T, Ty, Tv and Ty are of finite type;

2) Both Ky _q1 and Ky_w belong to Dg(k)*¥™  have a compact generator and the maps K _y — T
and Kvy_w — Ty are fully-faithful;

3) The associated map Ty — Ty sends the compact generator of Ky_q C T to the compact generator
of Ky_w C Ty and induces an equivalence Ky_y ~ Ky_y;

4) the upper and lower squares are pushouts and pullbacks in Dg(k)i¥™ (see 6.4.4) and the middle
square is a pullback in Dg(k)/* and therefore in Dg(k)“™ (see the Remark 6.1.28).

These conditions also imply that the middle square is a pushout in Dg(k)*¥™. Indeed, because
the exterior diagrams are pushouts we can write Ty ~ Ty [ [ *and Ty ~ Tx [[f., , *. Together
with the fact that Ky _q and Kvy_w are equivalent, we have

TVHTH:TVH(TX ]_[ %) ~ Ty ]_[ x = Ty ]_[ * o Ty (6.4.10)
Tx Tx Kx_u Kyx_u Kv_w

Corollary 6.4.9. Fvery Nisnevich square in NeS(k) is a pullback.
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Remark 6.4.10. Let U — X be an open immersion of smooth noncommutative spaces. If the
associated dg-category Ky_y € Dg(k)™¥®™ is of finite type we can then see it as the dg-category
Ty = Kyx_y dual to a smooth noncommutative space Z. Of course, since the zero map Ty — *
is a quotient of Ty by itself, its dual * — Z is an open immersion. Moreover, since the diagram
Ky_y — Tx — Ty is also a fiber sequence (see 6.4.4), the square of smooth noncommutative spaces

|

Example 6.4.11. The notions of semi-orthogonal decomposition and exceptional collection for trian-
gulated categories (see [21]) have an immediate translation to the setting of dg-categories in terms of
split short exact sequence in Dg(k)*®*™. Recall that an exact sequence in Dg(k)?de™

X (6.4.11)
l
— =2

is a pushout and therefore, Nisnevich.

o7 (6.4.12)

I
b
* — ]’

is said to split if the functor f (resp. g ) admits a right adjoint j (resp. fully-faithful right adjoint ).
Following the Remark 6.4.10 if X is a smooth noncommutative space, every semi-ortogonal decompo-
sition of the associated dg-category Tx given by dg-categories I, I’ of finite type provides the data
dual to a Nisnevich square

I — >« (6.4.13)

o

Ty —1T'

Example 6.4.12. The previous example will be particularly important to us in the case X = Ly, (P!).
Thanks to the results of [12] we know that P" admits an exceptional collection generated by the
twisting sheaves (0O, ..., O(—n)). By the previous example, the diagram in Dg(k)*™ associated to the
split exact sequence

Perf(k) —— (6.4.14)
Lye(PY) —— Per f(k)
provides the data of a Nisnevich square.

We now prove that our Nisnevich squares are compatible with the monoidal product of smooth
noncommutative spaces. For that we will need the following preliminary result

Lemma 6.4.13. Let

—_—

W v (6.4.15)
|
U——>X

be a Nisnevich square of smooth noncommutative spaces and let
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Ty — =Ty (6.4.16)

L

Ty —Tw

be its associated pullback diagram in Dg®(k). Then the image of (6.4.16) through the (non-full)
inclusion Dg(k) — Dg°(k) remains a pullback diagram.

Proof. As discussed in 6.2.2, the (oo, 1)-category Dg'?(k) has all limits and the (non-full) inclusion
Dg'P (k) C Dg(k)b" preserves them. By definition, Dg¢(k) is the full subcategory of Dg'P (k) spanned
by the locally presentable dg-categories of the form T for some small dg-category T'. Therefore, we are
reduced to showing that the (non-full) inclusion Dg¢(k) C Dg'P(k) preserves the pullback diagrams
(6.4.16) associated to Nisnevich squares. This statement is the dg-analogue of the Proposition 2.1.10.

Following the discussion in 6.2, the functor N Cﬁ] provides a commutative square

Dy(k)idem o Dg(k)ee— "I gy gy (6.4.17)
lN@ lN@
non— full
9)7"5 ,StbC :Prgtb

and as explained in 6.2.1 N, qu is conservative, preserves fully-faithfulness and preserves the notion of
”homotopy category” (see the Remark [100, 1.3.1.11]). It follows, as explained in the Remark 6.4.3
that N dLg preserves the notions of exact sequence. It follows also that A has a compact generator if

and only if h(NdLg (A\)) has a compact generator.
Consider now the pullback diagram (6.4.16) associated to a Nisnevich covering and let K ~

f(/x:L ~ m be the dg-category (with a compact generator) in Dg®(k) associated to the open
immersions. We find a diagram in fPrﬁ, Sth

NdLg(ﬁ) - NdLg(T;) (6.4.18)
Nk (K)—= NE (Ty) —= N} (Tw)

Since N, dLg commutes with limits, this diagram remains a pullback in fPrﬁ) sy, and we find ourselves
facing the conditions of the Proposition 2.1.10 so that the diagram remains a pullback after the
inclusion in fPrgtb. Finally, since NdLg is conservative, the commutativity of (6.4.17) implies that

(6.4.16) remains a pullback in Dg(k)". This concludes the proof. O

We can now state the main result:

Proposition 6.4.14. 1) Let U — X be an open immersion of smooth noncommutative spaces. Then,
for any smooth noncommutative space Y, the product map

URY = X©Y (6.4.19)

is also an open immersion;

2) Let
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(6.4.20)

be a Nisnevich square of smooth noncommutative spaces. Then, for any smooth noncommutative
space Y, the square

WeY —=VY (6.4.21)

L

URY ——XRY
remains a Nisnevich square.

Proof. To prove 1), let

Koy_y — T (6.4.22)

|

* —= T

be the data in Dg(k)“™ corresponding to the open immersion. We are reduced to prove that by
tensoring with Ty (in Dg(k)?™) the diagram

Ky y®@Ty —Tx ®@1Ty (6423)

| l

*®Tld %—Tu@Ty

remains the data of an open immersion. Observe first that since the monoidal structure in Dg(k)ide™
is compatible with colimits, *®Ty is again a zero object. To complete the proof it suffices to check that
(i) Kx_y®Ty remains a dg-category having a compact generator; (i7) the map Kyx_y®Ty — Ty ®Ty
remains fully-faithful and (4i¢) the diagram (6.4.23) is a pushout. The first assertion follows from the
Remark 6.1.26. The second is obvious by the definition of fully-faithful and the construction of tensor
products. The third follows from the Proposition 1.6.3 in [44].

Let us now prove 2). It follows from 1) that both W®Y - V®Y and U®Y — X ® Y remain open
immersions, corresponding the quotients by the subcategories Kx_y ® Ty and Kvy_w ® Ty. Since the
map Kx_qy — Kvy_w is an equivalence, the tensor product with the identity of Ty

Ky_u®Ty = Ky_w ® Ty (6.4.24)

remains an equivalence. We are now left to prove that the diagram (6.4.21) remains a pushout. This
is equivalent to prove that associated diagram of dg-categories

T @Ty —=Ty Ty (6425)

-

Tv®Ty 4>TW®T‘3

remains a pullback in Dg(k)f*. Since all the dg-categories in this diagram are of finite type we
can find dg-algebras Ty = Perf(Ax), Tv = Perf(Avy), Ty = Perf(Au), Tw = Perf(Aw) and
Ty = Perf(Ay). It follows that the previous diagram is a pullback if and only if the diagram
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Ay ® Ay — > Ay ® Ay (6.4.26)

l i

Ay @ Ay —> Ayy @ Ay

is a pullback in Dg°c(k). By the hypothesis, the diagram

Ay — = Ay (6.4.27)

L

—

Ay — Ay

is a pullback and so, thanks to [139, Theorem 7.2-1)] and to the Lemma 6.4.13, we have equivalences

Amy ~ RHom,(Ay, Ax) ~ RHom,(Ay, Ay X I Ay) ~ (6.4.28)
RHom,(Ay, Ay) X2 Hom. (13.47) RHom, (Ay, Ay) ~ Ay ® Ay X g, Au® Ay (6.4.29)
O

Remark 6.4.15. It follows from the proof that Ty does not need to be of finite type. It is enough
the existence of a compact generator.

To conclude this section we prove that our notion of Nisnevich squares of smooth noncommutative
spaces is compatible with the classical notion for schemes.

Proposition 6.4.16. If X is an affine smooth scheme of finite type over k and

pH(U) — I (6.4.30)
U—' o x

is a Nisnevich square in N(AﬁSmft(k)), then the induced diagram in NcS(k)

Lye(p™ 1 (U)) —= Lype(V) (6.4.31)

| |

Lpe(U) - Lpe(X)
is a Nisnevich square of smooth noncommutative spaces.

Proof. Indeed, it is immediate that both maps Lp.(p~ ' (U)) = Lpe(V) and Ly (U) — Lye(X) are
open immersions of smooth noncommutative spaces. This is exactly the example that motivated the
definition. They correspond to the quotient maps in Dg(k)idem

LPG(X) - L;DG (X)/L;DG (X)X—U and Lpe(v) - Lpe(v)/Lpe(v)prfl(U)
(6.4.32)
We are left to check that:
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1) The square in Dg(k)idem

LPG(X) Lpe(U) (6433)

| |

Lpe(V) —= Lye(p~' (U))

is a pullback;
2) the map Lye(X) = Lye(V) in Dg (k)™ induces an equivalence Lye(X)x—v ~ Lpe(V)v_p-1(1);

The fact that (6.4.33) is a pullback follows from the fact that perfect complexes satisfy descent
for the étale topology (which is a refinement of the Nisnevich topology). This result was originally
proven by Hirschowitz and Simpson in [128]. See also [144] for further details.

The assertion 2) follows from 1) together with the fact that both Lyc(X)x v and Lype(V)v_p-1 ()
are by definition, the kernels of the quotient maps (6.4.32). O

Remark 6.4.17. In fact, it can be proved that if a pullback diagram like (6.4.30) induces a Nisnevich
square of smooth noncommutative spaces then it is a Nisnevich square in the classical sense. This can
be deduced using the equivalence Lgcon(X)x - =~ Lgeon(V)p-1(x—v) together with the equivalences

choh(X)XfU ~ choh()?XfU) and quh(V)p—l(X_U) ~ choh(‘/};)—l(X—U)) where XX,U, respectively,
V-1 (x—u), denotes the formal completion of X (resp. V') at the closed subset X —U (resp. p~*(X—U))
(see [57, Prop. 7.1.3 and Prop. 6.8.2]). In particular this shows that the new notion of Nisnevich

square is not really a weaker form of the original notion.

Remark 6.4.18. This non-commutative incarnation of the Nisnevich topology is not an actual
Grothendieck topology. The pushout of a Nisnevich covering of a dg-category of finite type T along
a functor T'— T” is not a Nisnevich covering of T” for it does not have remain a pullback.

6.4.2 The Motivic Stable Homotopy Theory of Noncommutative Spaces

Now that we have an analogue for the Nisnevich topology in the noncommutative setting, compat-
ible with the classical notion for schemes, we can finally conclude our task. We apply the same
formula that produces the theory of Morel-Voevodsky. We start with NeS(k)® and consider its
free cocompletion P"9(NeS(k)) together with the natural unique monoidal product extending the
monoidal operation in NeS(k), compatible with colimits on each variable and making the inclu-
sion j : NeS(k) — PY9(NeS(k)) monoidal (see 3.2.7). In particular, j(Lpe(k)) is the unit ob-
ject. Next step, consider the localization ?%gS(NcS (k)) of P*9(NeS(k)) along the set of all edges
J(W I (w) 4 (V) = j(X) running over all the Nisnevich squares of smooth noncommutative space

W—sV (6.4.34)

|

U——2Xx

The theory of localization for presentable (oo, 1)-categories [99, 5.5.4.15] implies that U’%‘ZS (NeS(k))
is an accessible reflexive localization of P*9(NcS(k)). The same result, together with the fact that
the Nisnevich squares are pushouts squares, implies that every representable j(X) is in ?%‘g (NeS(k)).
Moreover, and thanks to the Proposition 6.4.14, we deduce that this localization is monoidal. Finally,
and in analogy with the commutative case, we consider the localization

155 P9 (NeS(k)) — Helk) (6.4.35)

taken with respect to the set of all maps
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§(Id) @ §(Lpe(p)) : 5(X) @ F(Lye(AL)) —> §(X) @ j(Lye(Spec(k))) (6.4.36)

with X running over NcS(k). Here, p : A! — Spec(k) is the canonical projection and the tensor product
is computed in (P%’Z?S (NeS(k)). ' Again, this is an accessible reflective localization of T%‘?S(NCS (k))
and it follows immediately from the definition of the localizing set that it is monoidal. With this we
have a sequence of monoidal localizations

NeS(k)E — Pg(NeS (k) E —= PRI (NeS(k))® —= Hpo(k)® (6.4.37)

and by construction, H,.(k) is a presentable symmetric monoidal (oo, 1)-category (see the Remark
3.6.1) and has a final object which we can identify with the image of the zero object of NeS(k) through
the yoneda’s map. Again, in analogy with the classical situation, we consider the universal pointing
map

07 : Hpe(k)® = Hpe(k)2® (6.4.38)

which is an equivalence because of our Convention 6.4.8: when we localize with respect to the Nis-
nevich topology with 6.4.8 the (oo, 1)-category H,.(k) becomes pointed.

Finally, the compatibility between the classical and the new Nisnevich squares '? and the respec-
tive A' and L,.(A')-localizations, we deduce the existence of uniquely determined monoidal colimit
preserving functors that make the diagram homotopy commutative

N(AFSm T (k) — 22 NeS(k)® (6.4.39)
Pria (N (AFSmTt (k))<= = Phis (NeS (k)@

Shi (N (AfFSm* (k) — — = Phd (NeS(k))®

e lZf@
H(S)* ——— - —— = > H,o(k)
o -7
O+ _ -
H(k)) ™

If we proceed according to the classical construction, the next step would be to stabilize the theory,
first with respect to S! (the ordinary stabilization) and then with respect to the Tate circle. It happens
that the inner properties of the noncommutative world make both these steps unnacessary.

Proposition 6.4.19. The presentable pointed symmetric monoidal (0o, 1)-category H,.(k)® is stable.
Moreover, the Tate circle ¥(G,,) is already an invertible object.

Recall that in H(k)? we have an equivalence (P!, 00) ~ S* A G,,, with G,, pointed at 1. Since
the functor ¢® is monoidal and commutes with colimits, we also have ¥ ((P!,00)) ~ S* A 9(G,,). In
particular, the Proposition 6.4.19 will follow immediately from the following lemma (using the Remark
4.2.17).

110Of course, since j is monoidal and the representable objects are Nisnevich local, this is the same as localizing with
respect to the class of all maps j(X ® Lpe(A})) — (X ® Lpe(Spec(k))) .

12Recall that the collection of classical Nisnevich squares forms a basis for the Nisnevich topology
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Lemma 6.4.20. The object ((P',00)) € Hyo(k)® is invertible and equivalent to a unit of the
monotdal structure.

Proof. By definition, we have

(P!, 00) := cofiberge( [lar (co : Spec(k) — P1)] (6.4.40)

where oo : Spec(k) — P! is the point at infinity. By diagram chasing, the fact that L,.(P') is a
dg-category of finite type, and the fact that all the relevant maps commute with colimits we find

Y((P', 00)) = 1§ (cofibers . (Nes)) [ (Lpe(00))]) (6.4.41)

We claim that the last cofiber is the unit for the monoidal structure in ?%fs(NcS (k)), which, because
the Yoneda’s functor is monoidal, corresponds to j(Perf(k)). To see this, we observe first that
map Lpe(00) : Perf(k) = Lpe(k) — Lye(P') in NeS(k) corresponds in fact to the pullback map
Lpe(PY) — Perf(k) along oo in Dg(k)e™. Recall the existence of an exceptional collection in
Lpe (P') generated by the sheaves O and O(—1). Since the pullback preserves structural sheaves, the
map Perf(k) = Lpe(P') in NeS(k) fits in the Nisnevich square of the Example 6.4.12

Perf(k) —— Ly,.(P') (6.4.42)

]

x —— Per f(k)

dual to the split exact sequence provided by the exceptional collection. Finally, since in (P%i-’s (NcS(k))
every Nisnevich square is forced to become a pushout, we have

cofiberp . nes(iy)li(Perf(k) = Lye(P'))] = Perf(k) (6.4.43)

which concludes the proof. O
It also follows that we have a canonical equivalence

Hone (k) [( (P!, 00)™H)] = He ()® (6.4.44)

and for this reason, we reset the notations to match the classical one

8Hpe(k)® := Hpe(k)® (6.4.45)

Remark 6.4.21. Let C be an (00, 1)-category with a zero object 0. Recall that a split ezact sequence
in € is the data of a pushout square

—'>B (6.4.46)

.

—

together with maps v : C — B and v: B — A in € with powu ~ idg and v oi ~ idy. We can now
see that if € is a stable (oo, 1)-category, the data of a split exact sequence provides an equivalence
B ~ A@ C. To see this, it is enough to check that i o v + uw o p ~ idg, or, equivalently, that
(idg —uop) ~iowv. To see the last, we use the fact that C is stable and therefore the previous square
is also a pullback. In this case, since po (idg —uop) ~ (p—pouop) ~ (p—Idcop) ~ 0, we can find
a factorization ¢(unique up to a contractible space)
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B (6.4.47)
p i
_i_ B

|

with (idp —uop) ~iod. But, since voi~ids, we have § ~voiod ~wvo (idg—uop)~wv.

R

Remark 6.4.22. Let X be smooth noncommutative space whose associated dg-category Ty admits an
exceptional collection generated by n+ 1 elements. By the Remarks 6.4.11 and 6.4.12, this provides to
the data of n different Nisnevich coverings. These are sent to split exact sequences in 8H,,.(k) which
we now know is stable. Using the Remark 6.4.21 we find that the image of X in SH,.(k) decomposes
as a direct sum of n+1 copies of the unit 1 = I}}¢(Per f(k)). In particular the smooth noncommutative
space Ly (P™) becomes equivalent to the direct sum 1@ ... & 1 in 8H (k)%

——

n+1
Finally, our universal property for inverting an object in a presentable symmetric monoidal (oo, 1)-

category ensures the existence of a unique monoidal colimit map £® extending the diagram (6.4.39)
to

N(AfFSm’ (k))* e NeS (k)@ (6.4.48)

| |

SI(K)® = == = = 8H0e(k)®

relating the classical stable homotopy theory of schemes with our new theory. From now we assume
k is Noetherian of finite Krull dimension.

Remark 6.4.23. Using the same arguments of 5.4 we can describe the symmetric monoidal (oo, 1)-
category 8H,.(k)® using presheaves of spectra. More precisely, we can start from the (oo, 1)-category

of smooth noncommutative spaces NcS(k) and consider the very big (oo, 1)-category Fun(NeS(k)°P, 35)

Using the equivalence Fun(NeS(k)P, S\p) ~ Stab(P?9(NcS(k)).) together with the Remark 4.2.17 we

obtain a canonical monoidal structure Fun(NeS(k)°P, 5p)® defined by the inversion Pt (NcS(k))f(@ [(SH)~1®.
We proceed, and perform the localizations with respect to the noncommutative version of the Nis-

nevich topology and Ly.(A'). More precisely, and using the same notations as in 5.4 we localize with

respect to the class of all canonical maps

Fxzeoju) (K) H Fsi20j(v) (K) = x00j(x) (K) (6.4.49)
521%1'(»\7)(}()

with K in (S’\p)‘“ and W,V U and X part of a Nisnevich square of noncommutative smooth spaces. For
the A! localization, we localize with respect to the class of all induced maps

523r°oj(DC®Lpe(A1))(K) — 623:0]'(3C) (K) (6450)

with X in NeS(k) and K € (3’5)“ By the same argument, these are monoidal reflexive localiza-
tions. We denote the result as Funyis r,.a1)(NeS(k), 35)‘3’. It is a stable presentable symmetric
monoidal (oo, 1)-category and by the Prop. 6.4.19 and the universal properties involved, it is canoni-
cally monoidal equivalent to 8H,,.(k)®.

Using this equivalence and the definition of NeS(k), we can identify an object F' € 8FH,,.(k)® with
a functor Dg(k)!* — Sp satisfying Ly.(A!)-invariance, having a descent property with respect to the
Nisnevich squares and because of the convention 6.4.8, satisfying F'(0) = x.
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Remark 6.4.24. (Strictification) It is also important to remark that an object F in Fun(Dg(k)/?, 3;9)
can always be identified up to equivalence with an actual strict functor Fs from the category of dg-
categories endowed with the Morita model structure of [131] to some combinatorial model category
whose underlying (oo, 1)-category is 3'5 (for instance, the big model category of symmetric spectra
Sp* of [72]), with F, sending Morita equivalences to weak-equivalences and commuting with filtered
homotopy colimits. Indeed, as explained in 6.1.27, Dg(k)/? generates Dg(k)*™ under filtered col-
imits. Since Sp admits all small filtered colimits, using [99, Thm 5.3.5.10] we find an equivalence
of (00, 1)-categories between Fun(Dg(k‘)ft,g’E) and Funw(Dg(k)idem,@) - the full subcategory of
Fun(Dg(k)idem, 3’5) spanned by the functors that preserve filtered colimits. Moreover, we have also
seen that Dg(k)¥™ is the underlying (oo, 1)-category of the Morita model structure for small dg-
categories (see the discussion in 6.1.2). Finally, with the appropriate universe considerations, we can
use the strictification result of [100, 1.3.4.25] and the characterization of homotopy limits and col-
imits in a model category as limits and colimits in its underlying (oo, 1)-category [100, 1.3.4.24] to
deduce the existence of a canonical equivalence between Fun,,(Dg(k)de™, 31\0) and the localization
along the levelwise equivalences of the category of strict functors from the category of dg-categories
to the strict model for spectra Sp*, which commute with filtered homotopy colimits and send Morita
weak-equivalences to weak-equivalences in Sp>.

Remark 6.4.25. To conclude this chapter we remark the existence of a family of compact generators
in 8H,.(k). In this case, as the construction ends after the Al-localization, the same arguments used
in the proof of 5.3.3 are enough to show that the collection of noncommutative motives in the image
of the canonical map NcS(k) — 8H (k) form a family of compact generators.






CHAPTER 7

K-Theory and Non-commutative Motives

The results in the previous chapter establish an homotopy commutative diagram of colimit preserving
monoidal functors extending the functor Ly,

N (AffSm (k)" Lo NeS(k)® (7.0.1)

(B 0))® (25 0jne)®

Fun(N(AffSm”" (k))?, Sp)® — — — — - = Fun(Dg(k)*, Sp)®
. e

Funyis(N(AffSm”" (k). Sp)® — — — — = Funyis(Dg(k)’*, 5p)®
lf’l z:f@l
Funyis 1 (N(AffSm” (k)P Sp)® — = = Funyis 1, a1y (Dg(k)7*, 5p)®
zgm lN
SH(K)® — — — — — — AN - 8He(k)®

thus providing a canonical mechanism to compare the theory of Morel-Voevodsky with our new ap-
proach.

Our goal in this last chapter is to explore how this bridge can be used to give a canonical in-
terpretation to the various flavours of algebraic K-theory of schemes and dg-categories. In order to
state our results, we observe first that, due to the Adjoint Functor Theorem ([99, Corollary 5.5.2.9]),
each of the dotted monoidal functors in (7.0.1) has a right adjoint. This is because at each level, the
source and target (oo, 1)-categories are presentable and each dotted map is, by construction, colimit-
preserving. Furthermore, since each dotted map is monoidal, these right adjoints are lax-monoidal
(see [100, 7.3.2.7]). In this case, together with the lax-monoidal inclusions associated to the reflexive
monoidal localizations, we have a new commutative diagram of lax-monoidal functors

155
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Fun(N (AffSm’ (k))°P, 5p)® Fun(Dg(k)Tt, Sp)® (7.0.2)
o - M? o _—
Funpis(N(AfFSm? (k))°P, Sp)® <———— Funyis(Dg(k)¥t, Sp)®

® N

Funys ar (N(AfFSm (k))°7, Sp)® <*— Funy,s 1, a1y (Dg(k)’t, Sp)©

Qoo,® ~

Gm

M®

SH(k)® 83 e (K)®
Let us present some remarks that will be useful along this chapter.

Remark 7.0.26. The first functor My commutes with small colimits. We can deduce this either from
the fact that colimits in Fun(N (AfSm’" (k))°P, Sp) and in Fun(Dg(k)’t, Sp) are computed objectwise
(see [99, 5.1.2.3]) or from the spectral enriched version of Yoneda’s lemma (5.4.1).

Remark 7.0.27. All the symmetric monoidal (oo, 1)-categories appearing in the previous diagram
are stable and presentable. Stability follows because pushouts of local objects remain local, thanks to
the fact that all colimits are computed objectwise in spectra. Therefore all these are closed monoidal.
In particular, recall that if €y C € is a monoidal reflexive localization and if € admits internal-homs
Home then €y admits internal-homs: given X and Y local, we can easily see that Home(X,Y) is
also local and works as an internal-hom in Cg.

We observe that each functor M, is compatible with the respective internal-homs, in the sense
that at each level, for every object X on the left and F' on the right, we have

M. (Hom, (L«(X), F)) ~ Hom, (X, M,(F)) (7.0.3)
where £, denotes the respective monoidal left adjoint appearing in the diagram (7.0.1)

Remark 7.0.28. Thanks to the enriched version of Yoneda’s lemma for spectral presheaves (see the
Remark 5.4.1), given an object F' € Fun(Dg(k)/t, Sp), we have for each scheme X an equivalence of
spectra

Sp oo, s ~ Sp o SR ~
Mapy . vagsmteyor 5 55 09X Ma(F)) = Mappr o se g5y (55 0ne(Lpe(X)), F) = Fffgif”

so that M; (F') can be thought of as a restriction of F to the commutative world. The same is valid
for My and M3 because the upper vertical arrows are inclusions.

This mechanism allows us to restrict noncommutative invariants to the commutative world. In this
chapter we will be interested in the restriction of the various algebraic K-theories of dg-categories.
As we shall explain below, all of them live as objects in Fun(Dg(k)ft, Sp). There are two of pri-
mary relevance to us, namely, K¢ encoding Waldhausen’s connective K-theory (Section 7.1.2) and
K% encoding the non-connective K-theory of dg-categories defined by means of Schlichting’s frame-
work in [122] (Section 7.1.3). By construction, the latest comes naturally equipped with a canonical
natural transformation K¢ — K*® which is an equivalence in the connective part. For the first one,
it follows immediately from the spectral version of Yoneda’s lemma and from the definition in [137,
Section 3] that M; (K€) recovers the connective algebraic K-theory of schemes. The second one, by
the comparison result [122, Theorem 7.1], recovers the non-connective K-theory of schemes of Bass-
Thomason-Trobaugh of [137]. The constructon of K* in [34] using the methods of [122] is somehow
ad-hoc. Our first main result explains how the non-connective version of K-theory K° can be canoni-
cally obtained from the connective version K¢ as a result of forcing our noncommutative-world version
of Nisnevich descent.
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Theorem 7.0.29. The canonical morphism K¢ — K° presents non-connective K -theory of dg-
categories as the (noncommutative) Nisnevich localization of connective K -theory.

To prove this result we will first check that K is Nisnevich local. This follows from the well-
known localization theorem for non-connective K-theory (see the Corollary 7.1.6 below). The rest of
the proof will require a careful discussion concerning the behavior of the noncommutative Nisnevich
localization. There are two main ingredients:

Step 1) Ewvery Nisnevich local F : Dg(k)’t — EE is determined by its connective part by means
of the Bass exact sequences. More precisely, we show that every Nisnevich local functor
F : Dg(k)f* — Sp satisfies the familiar Bass exact sequences for any integer n. We will see
that the proof in [137] can be easily adapted to our setting. Namely, we start by showing
that every Nisnevich local F' satisfies the Projective Bundle theorem. This result is central
and appears as a consequence of one of the most important features of the noncommutative
world, namely, the fact that Nisnevich coverings of non-geometrical origin are allowed, in
particular, those appearing from semi-orthogonal decompositions and exceptional collections.
The projective bundle theorem is a direct consequence of the existence of an exceptional
collection on Ly.(P') generated by the sheaves Opi and Opi(—1) (see [12]). Its existence
forces the image of L,e(P!) in Funyis(Dg(k)'?, @) to become equivalent to the direct sum
Lpe(k) @ Lpe(k). To complete the proof we proceed as in [137, Theorem 6.1] and explain how
this direct sum decomposition can be suitably adapted in order to extract the familiar Bass
exact sequences out of the classical Nisnevich covering of P! by two affine lines.

Step 2) The connective truncation of the localization map K¢ — U}, (K°) is an equivalence L. In other
words, the information stored in the connective part of Iy;s(K¢) remains the information of
connective K-theory. We will prove something a bit more general, namely, that this property
holds not only for K¢ but for the whole class of functors F : Dg(k)f* — Sp satisfying the
formal properties of K¢, namely, having values in connective spectra and sending Nisnevich
squares of dg-categories to pullback squares of connective spectra (for K¢ this follows from
the fibration theorem of Waldhausen [153, 1.6.4] - see Prop. 7.1.4 below.). These will be
called connectively-Nisnevich local. We prove that the connective truncation functor induces
a canonical equivalence between the theory of connective-Nisnevich functors and that of Nis-
nevich functors (see 7.2.8). For this we will show that if F' is connectively-Nisnevich local,
its noncommutative Nisnevich localization % (F) is equivalent to FP - the more familiar
B-construction of Thomason of [137, Def. 6.4].

Remark 7.0.30. Since the functor My in the diagram (7.0.2) sends Nisnevich local objects to Nis-
nevich local objects, our Theorem 7.0.29 provides a new proof that the spectral presheaf giving the
Bass-Thomason-Trobaugh K-theory of schemes satisfies Nisnevich descent.

We can now go one step further and consider the Al-localization of K. We will prove that

Theorem 7.0.31. Ms(I§(K®)) is the Nisnevich local A'~invariant spectral presheaf giving Weibel’s
homotopy invariant K-theory of schemes of [154]. In particular, M(leKS) is canonically equivalent
to the object KH in 8H(k) studied in [150] and in [29] representing homotopy invariant algebraic
K -theory of schemes.

1Recall that g‘; has a natural t-structure (3';720, S’\pg,l) with 31;’20 the full subcategory spanned by connective

spectra. As a consequence, the inclusion :S‘\pzo CSp (resp. :S’-;\)S,l C S’\p) admits a right adjoint 7>¢ (resp. left adjoint
T<_1). In particular, we have an induced adjunction

Fun(@g(k)ft,g';x))c—)T Fun(Dg(k)ft,@)
= >0

w
with 7>¢ a right adjoint to the inclusion.
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The proof of this result follows immediately from the results in [29] and from our Theorem 7.0.29
using a nice description of the Al-localization functors. This will be done in Section 7.3.

Our second main result in this section is a new representability theorem for K-theory.
Theorem 7.0.32. The further localization 13 (K*) is a unit for the monoidal structure in 8H,.(k)®

In [17], the author constructs an Al-equivalence between the split and the standard versions of
Waldhausen’s S-construction. In Section 7.4 we will explain how this A'-equivalence appears in our
context and how the theorem follows as a consequence.

We deduce the following immediate corollaries

Corollary 7.0.33. (Kontsevich) Let X and Y be two noncommutative spaces with Y smooth and
proper. Then, there is a natural equivalence of spectra

Mapgh, (X, Y) =~ (3TK5)(Tx @ Ty) (7.0.5)

where we identify X and Y with their images in 8H (k) and where Tx (resp. Ty) denotes the dg-
category of finite type associated to X (resp. the dual of the dg-category associated toY).

Proof. This follows directly from the spectral version of the Yoneda’s lemma and from our Theorems

7.0.29 and 7.0.32, together with the fact that a smooth and proper noncommutative space is dualizable.
O

Remark 7.0.34. We direct the reader to the Prop. 9.3.4 for an extension of the Theorem 7.0.32 and
the Corollary 7.0.33 to non-commutative motives over a more general base scheme.

Corollary 7.0.35. The object KH € 8H(k) representing homotopy algebraic K-theory is equivalent
to M(1,c). In particular, for each scheme X we have an equivalence of spectra

KH(X) ~ Mapghe ) (53 0 j(X), KH) 2~ Mapghe (55 © fne(Lpe(X)), Lne) (7.0.6)

(k)

At this point we should emphasize that a different representability result for connective K-theory
is already known from the thesis of G. Tabuada [133] and for non-connective K-theory from his later
works with D.C. Cisinski [34]. Our setting and proofs are independent of theirs. In the next chapter
of this thesis we describe the relation between the two approaches. The main advantage of our theory
is the existence of a canonical comparison with the original approach of Morel-Voevodsky and our
new representabilty theorem brings some immediate consequences to the nature of this comparison.
Namely, since M is lax-monoidal ([100, 7.3.2.7]), the object XH =~ M(1,.) acquires a canonical
structure of commutative algebra-object in 8H (k) induced by the trivial algebra structure on the unit
object 1,,.. In this case, the comparison functor £& : $H(k)® — 8H,.(k)® admits a canonical colimit
preserving monoidal factorization (see our discussion in 3.3.9):

SH(K)® i 8Fpe(k)® (7.0.7)

—®@1pe)~Id
i—@iKH ®L(9<H)l

MOdj{H (S}C(k))(g EE—— MOdL (:KH) (Sj{nc(k))(g W‘ MOdlnc (Sg{nc(k))(g
where the first lower map is the monoidal functor induced by £ at the level of modules and the last
map is base-change with respect to the canonical morphisms of algebra objects given by the counit of
the adjunction £(KH) ~ £ o M(1,.) — 1,. 2. We will write Lgcz for this factorization.

2Notice that the adjunction (£, M) extends to an adjunction between the (co, 1)-categories of commutative algebra-
objects, so that this counit map is a morphism of algebras. In particular, we can perform base-change with respect to
it.
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Warning 7.0.36. We will not prove here that the commutative algebra structure in XH obtained
from our arguments is the same as the one already appearing in the literature and deduced from
different methods (for instance, see [60, 106]). However, we believe that the arguments used in [106]
also work in the co-categorical setting, so that our algebra structure should match the standard one.

Our representability result has the following corollary showing that under the existence of resolu-
tions of singularities the passage to the noncommutative world produces no loss of information from
the K-theoretic viewpoint.

Corollary 7.0.37. Let k be a field admitting resolutions of singularities. Then the canonical map

Locpr : Modsyc g (SH(k)) = 8Hpe (k) (7.0.8)
is fully faithful.

Proof. Thanks to the main results of [116] the family of dualizable objects in 8H (k) is a family of w-
compact generators for the stable (oo, 1)-category 8H (k) in the sense of the Proposition 2.1.2. See the
Prop. 3.8.3. One can now easily check that the collection of all objects in the stable (oo, 1)-category
Modyxr (8H(k)) of the form X ® XH with X dualizable in SH(k) is again a family of w-compact
generators in the sense of Prop.2.1.2. Since the functor (— ® X H) is monoidal, the objects X ® KH
are dualizable in Mody g (8H(k)) and as L g is monoidal, their image in 8H,,.(k) is dualizable and
therefore compact (using the fact the monoidal structure is compatible with colimits in each variable).
By the Proposition 2.1.7 we are now reduced to showing that Ly is fully faithful when restricted
to the full subcategory spanned by all the objects of the form X ® KXH with X dualizable in 8H(k).
This follows from the canonical chain of equivalences

Mapaoda  sscoy)(X @ KH,Y @ KH) =~ Mapgger)(X,Y @ KH) (7.0.9)
~ Mapsgey(X @ Y, KH) ~ Mapsge, (1) (L(X @Y), 1) (7.0.10)

~ Mapssc,, (k) (£(X) @ L(Y), Ine) ~ Mapsse() (£(X) @ L(Y), 1ne) (7.0.11)
~ Mapsse, ) (L(X)®,L(Y)) (7.0.12)

where we use the adjunction properties, the fact that KH ~ M(1,,.) and the fact that £ is monoidal
and therefore preserves dualizable objects. This concludes the proof. O

Although this result is new in the literature, its content has been known for a while. I think
particularly of B.Toen, M. Vaquie and G. Vezzosi and also of D-C. Cisinski and G. Tabuada. Later
on in Chapter 9 we will explain our attempts to extend it to to the theories of motives over a general
base scheme not necessarily affine.

7.1 K-theory Preliminaries

7.1.1 Connective K-theory - an historical overview

K-theory was discovered by A. Grothendieck during his attempts to generalize the classical Riemman-
Roch Theorem (see [27, 53]). Given an abelian category E he was led to consider an abelian group
Ky(F) together with a map 6 : Obj(E) — Ky(F) universal with respect to the following property: for
any exact sequence a — b — ¢ in E we have 6(b) = 0(a) + 0(c).

The essential insight leading to the introduction of higher K-theory groups is the observation by
Quillen [112] that the group law on K((F) can be understood as the my-reminiscent part of a grouplike
homotopy commutative law on a certain space K(FE). Following his ideas, for any ”exact category”
E we are able to define such a K-theory space K(E) whose homotopy groups 7, (K (F)) we interpret
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as level n K-theoretic information. In particular, this methodology allows us to attach a K-theory
space to every scheme X using the canonical structure of exact category on E = Vect(X).

An important step in this historical account is a theorem by Segal [125, 3.4] (and its later formula-
tion in terms of model categories in [28]) establishing an equivalence between the homotopy theory of
grouplike homotopy commutative algebras in spaces and the homotopy theory of connective spectra.
This is the reason why connective spectra is commonly used as the natural target for K-theory and
the origin of the term ”connective”. In the modern days this equivalence can be stated by means
of an equivalence of (oo, 1)-categories, namely, between the (0o, 1)-category CAlg9P""*¢(S) and the
(00, 1)-category Sp~ (see [100, Theorem 5.2.6.10 and Remark 5.2.6.26]).

Technical reasons and possible further applications led Waldhausen [153] to extend the domain of
K-theory from exact categories to what we nowadays call ”Waldhausen categories”. Grosso modo,
these are triples (G, W,Cof(€)) where C is a classical category having a zero object and both W
and Cof (@) are classes of morphisms in C, respectively called ”weak-equivalences” and ”cofibrations”.
These triples are subject to certain conditions which we will not specify here. The core of Waldhausen’s
method to construct a K-theory space out of this data is the algorithm known as the ”.S-Construction”
which we review here very briefly:

Construction 7.1.1. (S-Construction) Let Ar[n] be the category of arrows in the linear category
[n]. In more explicit terms it can be described as the category where objects are pairs (7, j) with ¢ < j
and there is one morphism (¢,7) — (I, k) everytime i < ! and j < k. Let now (€, W,Cof(C)) be a
Waldhausen category. We let S, (C) denote the full subcategory of all functors Fun(Ar[n], ) spanned
by those functors A verifying:

1. A(i,1) is a zero object of € for all 0 < i < n;
2. for any i the maps A(7,5) — A(i, k) with j < k are cofibrations in C;

3. for any ¢ < j < k the induced diagram

A(i, j) —— A(i, k) (7.1.1)

.

0= A(j,7) —= A(j, k)
is a pushout C.

In other words, the objects in \S,,(€) can be identified with sequences of cofibrations of length n — 1
plus the datum of the sucessive quotients. In particular, So(€) is the category with a single object and
S1(@) is equivalent to C. Moreover, the collection of categories {S,,(€)}nen assembles together to form
a simplicial category S,(C) carrying at each level a canonical structure of Waldhausen category whose
weak-equivalences W,, are the levelwise weak-equivalences in €. By definition, the K-theory space of
€ is the simplicial set K¢(€) := Q colimpaer N(S,(C)"W") where S,,(€)"» denotes the subcategory of
S (€) contaning all the objects and only those morphisms which are weak-equivalences and N is the
standard nerve functor. By iterating this procedure we can produce a connective spectrum. For the
complete details see [153].

There is a natural notion of exact functor between Waldhausen categories providing a category
Waldecyassic and the K-theory assignement can be understood as a functor

KﬁVald : N(WaldClassic) - sz (712)
where Sp* is a model category for the (oo, 1)-category Sp.

Many Waldhausen categories used in practice appear as subcategories of a Quillen model cate-
gory [113] with the cofibrations and weak-equivalences therein. We will denote by WaldX2dl the

Classic
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full subcategory of Waldcyqssic spanned by those Waldhausen categories falling into this list of ex-
amples. These Waldhausen categories have a special advantage - the factorization axioms for the
model category allow us to change the Construction 7.1.1 to consider all morphisms in €, not only
the cofibrations.

This first era of connective K-theory finishes with the works of Thomason-Trobaugh in [137] where
the machinery of Waldhausen is applied to schemes and it is proven that the connective K-theory of
a scheme X introduced by Quillen can be recovered from the K-theory attached to the Waldhausen
structure on the category of perfect complexes on the scheme.

The current era begins with the observation that the K-theory of a Waldhausen datum (€, W, Cof(C))
is not an invariant of the classical 1-categorical localization C[W 1] : there are examples of pairs of
Waldhausen categories with the same homotopy categories but with different K-theory spaces (see
[121]). The crucial results of Toén-Vezzosi in [142] allow us to identify the world of (oo, 1)-categories
as the natural ultimate domain for K-theory. They prove that if the underlying (oo, 1)-categories as-
sociated to a pair of Waldhausen categories (via the co-localization) are equivalent then the associated
K-theory spaces are equivalent. Moreover, in the same paper, the authors remark that the classical
S-construction of Waldhausen can be lifted to the setting of (oo, 1)-categories. Following this insight,
in [9] the author introduces the notion of a Waldhausen (oo, 1)-category (which, grosso modo are
pairs of (0o, 1)-categories (Ag, A) with Ap a full subcategory of A containing its maximal co-groupoid,
together with extra conditions on this pair) and develops this oco-version of the S-construction. The
collection of Waldhausen (oo, 1)-categories forms itself an (0o, 1)-category Wald, and the result of
this new oo-version of the S-construction can be encoded as an co-functor Kg,.....ci. : Waldso — Sp>g.
Moreover, there is a canonical oco-functor linking the classical theory to this new approach -

N(WaldMedel ) — s Wald,, (7.1.3)

Classic

sending a classical Waldhausen datum (€, W, Cof(€)) to the oco-localization N(C)[W ~!] together with
its smallest subcategory containing the equivalences and the images of the cofibrations under the
localization functor (see [9, Example 2.12]). The author then proves that the two S-constructions,
respectively, the classical and the new oo-version agree by means of this assignement and therefore
produce the same K-theory ([9, 10.6.2]). Up to our days this framework seems to be the most
natural and general domain for connective K-theory. However, we should remark that a different
oo-categorical domain has been established in the paper [18] where the authors study K-theory spaces
associated to pointed (oo, 1)-categories having all finite colimits, whose collection forms an (oo, 1)-
category Cats(w)s. They generalize the classical S-construction to this new domain obtaining a
new oo-functor K§nop 1 Cateo(w)s — Sps( ,and prove that for any Waldhausen category € with
equivalences W (appearing as a subcategory of a model category), the K-theory space which their
method assigns to the oo-localization N (C)[W ~1] is equivalent to the classical K-theory space attached
to € through the classical methods of Waldhausen. This framework is of course related to the wider
framework of [9]: following the Example [9, 2.9], every pointed (oo, 1)-category with finite colimits
has a naturally associated Waldhausen (oo, 1)-category. Again, this assignement can be properly
understood as an oo-functor

U Catoo(w)s —= Waldso (7.1.4)

We summarize this fast historical briefing with the existence of a diagram of (oo, 1)-categories

Catoo(w)s« (7.1.5)
7
Kp.ar.
N(WaldModel Waldo

c c
Kwaia v ACI\:

szo
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whose commutativity follows from the results in [9] and in [18] and from the agreement of the two
oo-categorical versions of the S-construction via W. This agreement follows from the very definition
of the two procedures. Consult [9, Section 5] and [18, Section 7.1] for the complete details.

7.1.2 Connective K-theory of dg-categories

Our goal in this section is to explain how to define the connective K-theory of a dg-category and
how to present this assignement as an oo-functor K¢ : Dg(k)i¥™ — Sp., commuting with filtered
colimits. One possible way is to use the classical theory of Waldhausen categories. As discussed in the
Remark 6.4.24, the data of an object F' € Fun,,(Dg(k)!¥™ Sp) corresponds in a essentially unique
way to the data of an actual strict functor Fy from the category of small dg-categories Catcp )
with the Morita model structure to some combinatorial model category whose underlying (oo, 1)-
category is 3; such that 1) Fs sends Morita equivalences to weak-equivalences and 2) Fy preserves
filtered homotopy colimits. In the case of connective K-theory such a functor can be obtained by
composing the strict functor Ky, : Waldciassic — Sp> of the previous section with the functor
Catcnmy — Wald%fgilic defined by sending a small dg-category 1" to the strict category of perfect
cofibrant dg-modules (obtained by forgetting the dg-enrichement), with its natural structure of Wald-
hausen category given by the weak-equivalences of T-dg-modules and the cofibrations of the module
structure therein. This is well-defined because perfect modules are stable under homotopy pushouts
and satisfy the ”cube lemma” [69, 5.2.6]. The conditions 1) and 2) are also well-known to be satisfied
(for instance see [17, Section 2.2]). For the most part of this work it will be enough to work with the

oo-functor K¢ : Dg(k)ft — 3;720 associated to this composition via the Remark 6.4.24 or its canon-

ical w-continuous extension Dg (k)™ — Sp. However, some of our purposes (namely the Theorem
7.0.32) will require an alternative approach. More precisely, and in the same spirit of [18, Section 7.1]
for stable co-categories, we will need to have a description of the Waldhausen’s S-construction within
the setting of dg-categories.

Construction 7.1.2. Let Ar[n]; be the dg-category obtained as the k-linearization of the category
Ar[n] described in the Construction 7.1.1. More precisely, its objects are the objects in Ar[n| and its
complexes of morphisms are all given by k seen as a complex concentrated in degree zero. For each n
the dg-category Ar[n] is locally cofibrant (meaning, enriched over cofibrant complexes - see 6.1.1) so
that for any locally cofibrant dg-category T' we have Ar[n]y @ T ~ Ar[n], ® T (recall our discussion
in 6.1.1 about the derived monoidal structure in the (oo, 1)-category Dg(k)).

Recall also from [139] that the symmetric monoidal (oo, 1)-category Dg(k)® admits an internal-
hom RHom(A, B) given by the full sub-dg-category of right-quasi-representable cofibrant A @ B°P-
dg-modules. If T is a locally cofibrant dg-category and fa is its idempotent-completion (which, as
explained in the Remark 6.1.18, we can always assume to be locally cofibrant), we find a canonical

equivalence in Dg(k) between RHom(A, T, ) and A@ T pspe - the full sub-dg-category of cofibrant
pseudo-perfect A @ T°P-dg-modules (by definition, these are cofibrant dg-modules E such that for
any object a € A, the T°P- module E(A, —) is perfect). With this, we have RHom(Ar[n]x, T,) ~

_— —

Arfn]? @ T~ Ar[n]? @ T, so that the objects in this internal-hom can be identified with
Ar[n]-indexed diagrams in the underlying strict category of perfect cofibrant T°P-modules (obtained by
forgetting the dg-enrichement). We now set S49(T') to be the full sub-dg-category of RHom(Ar[n]y, T.)
spanned by those diagrams satisfying the conditions in the construction 7.1.1. These conditions make
sense for the same reasons the functor Catcopky — Waldg/[lfg‘;lic of the previous section also makes
sense (see [17, Section 2.2]). Again, the collection of dg-categories S49(T') for n > 0 forms a simplicial
object in dg-categories and by considering each level as a category (omitting its dg-enrichement) we
can recover the K-theory of T as Q colimpaor N(S29(T)"Wn) where W,, is the class of maps in S (T')
given by the levelwise weak-equivalences of dg-modules and S99 (T)"» is the full subcategory of S9(T)
spanned by all the objects and only those morphisms which are in W,,.

Let now [n]; be the dg-category obtained as the k-linearization of the ordered category [n] =
{0 <1< ... <n}. This dg-category is again locally cofibrant and for the same reasons as above
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the underlying category obtained from RHom([n] k,fc) by forgetting the dg-enrichement is the cat-
egory of sequences of perfect cofibrant T°P-dg-modules of length n + 1. As cofibers of maps are
essentially uniquely determined up to_isomorphism, we have a canonical equivalence of categories
between S%9(T) and RHom([n — 1], T.). Since the model structure on T°P-dg-modules satisfies the
”cube lemma” [69, 5.2.6] (because Ch(k) satisfies it for the projective model structure) this equiv-
alence becomes an equivalence of pairs (S%9(T), W,,) and (RHom([n — 1] o TL), W), where we con-
sider both dg-categories as categories by forgetting the dg-enrichements and where W/ denotes the
class of maps of sequences which are levelwise given by weak-equivalences of dg-modules. Thanks
to this equivalence we find a homotopy equivalence of simplicial sets between N(S9(T)"») and

N(RHom([n — 1), T:)"~). This is a dg-version of [100, 1.2.2.4]. Finally, and thanks to the main
theorem of [139] the latter is exactly the mapping space Mapp (k) ([n — 1]k, Tc) which by adjunction is

equivalent to Mapp gyidem ([0 — k)., fc) Under this chain of equivalences this family of mapping
spaces for n > 0 inherits the structure of a simplicial object in the (0o, 1)-category of spaces and the
K-theory space of T' can finally be rewritten as

—

Q colimipenor Maps g(yiaem ([0 — 1), Te) (7.1.6)

This concludes the construction.

To conclude this section we remark two important properties of K°. The first should be well known
to the reader:

Proposition 7.1.3. ([153]) The co-functor K¢ : Dg(k)de™ — 3’5 sends ezact sequences of dg-
categories to fiber sequences in Sps.

Proof. This follows from the so-called Waldhausen’s Fibration Theorem [153, 1.6.4] and [137, 1.8.2],
together with the dictionary between homotopy limits and homotopy colimits in the model category
of spectra and limits and colimits in the (0o, 1)-category Sp (see [100, 1.3.4.23 and 1.3.4.24]). O

The second is a consequence of this first and will be very important to us:

Proposition 7.1.4. K€ sends Nisnevich squares of noncommutative smooth spaces to pullback squares
of connective spectra.

Proof. Let

Ty — Ty (7.1.7)

L

Ty ——Tw

be a Nisnevich square of dg-categories. By definition, there are dg-categories Ky_q and Ky_y in
Dg(k)i¥™ having compact generators, and such that the maps T — Ty and Ty — Ty fit into strict
short exact sequences in Dg(k)*¥*™ (see 6.4.6 and the Remark 6.4.4)

Kx_u —_— Tx Kv_w —— TV (718)
0 ——1Txy 0———Tw

Again by the definition of an open immersion and because of 7.1.3 we have pullback squares of
connective spectra

Ke(Ky_y) — K°(Tx) K¢(Ky_w) — K°(T¥) (7.1.9)

| | | |

0—— K(Ty) 00— K°(Tw)
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With these properties in mind, we aim to show that the diagram

Ke(Ty) — K°(Ty) (7.1.10)

L

Ke(Ty) — K*¢(Tw)

is a pullback of connective spectra. For that purpose we consider the pullback squares

K(Ky_y) — K(Kvy_w) 0 (7.1.11)
K9(Tx) = = = > K(Tv) X ge(ryy) K(Tu) —— K(Tu)
Ke(Ty) ———— K°(Tw)
from which we extract a morphism of fiber sequences
Ke(Kx_y) —— K (Kv_w) (7.1.12)
KC(Tx) - = = > Kc(Tv) XK“(TW) KC(Tu)
K¢(Ty) =——=K“(Ty)

To conclude, since the square (7.1.7) is Nisnevich, by definition, the canonical morphism Ky_q —
Kvy_ is an equivalence in Dg(k)*¥*™ so that the top map is an equivalence K¢(Kx_q) ~ K°¢(Ky_w).
Using the associated long exact sequences we conclude that the canonical morphism

K(Tx) - — = K°(Tv) X gee(rye) K°(Tw0) (7.1.13)

is also an equivalence, thus concluding the proof.
O

7.1.3 Non-connective K-Theory

The first attempts to define negative K-theory groups date back to the works of Bass in [10] and
Karoubi in [80]. The motivation to look for these groups is very simple: the higher K-theory groups
of an exact sequence of Waldhausen categories do not fit in a long exact sequence. The full solution to
this problem appeared in the legendary paper of Thomason-Trobaugh [137] where the author provides
a mechanism to extend the connective spectrum K¢ of Waldhausen to a new non-connective spec-
trum KB whose connective part recovers the classical data. His attention focuses on the K-theory
of schemes and recovers the negative groups of Bass (by passing to the homotopy groups). More-
over, it satisfies the property people were waiting for [137, Thm 7.4]: for any reasonable scheme X
with an open subscheme U C X with complement Z, there is a pullback-pushout sequence of spectra
K(X on Z) - K(X) — K(U) where K(X on Z) is the K-theory spectrum associated to the category
of perfect complexes on X supported on Z. Moreover, he proves that his non-connected version of
K-theory satisfies descent with respect to the classical Nisnevich topology for schemes (see [137, Thm
10.8]).

More recently, Schlichting [122] introduced a mechanism that allows us to define non-connective
versions of K-theory in a wide range of situations and in [35, Section 6 and 7] the authors applied this
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algorithm to the context of dg-categories. The result is a procedure that sends Morita equivalences
of dg-categories to weak-equivalences of spectra and commutes with filtered homotopy colimits (for
instance, see [17, 2.12]) and comes canonically equipped with a natural transformation from connective
K-theory inducing an equivalence in the connective part. By applying the arguments of the Remark
6.4.24 their construction can be encoded in a unique way in the form of an w-continuous co-functor
K% : Dg(k)!™ — Sp together with a natural transformation K¢ — K* with 750K° ~ 750K°. The
motto of non-connective K-theory can now be stated as

Proposition 7.1.5. K° sends evact sequences in Dg(k)* ™ to cofiber/fiber sequences in 5;)

Proof. This follows from [122, 12.1 Thm 9] and from the adaptation of the Schlichting’s setup to
dg-categories in [35, Section 6], together with the fact that our notion of exact sequences in Dg(k)ide™
agrees with the notion of exact sequences in [35] (see 6.4.2-(3)). To conclude use again the dictionary
between homotopy limits and homotopy colimits in a model category and limits and colimits on the
underlying (oo, 1)-category. O

Using the same arguments as in Prop. 7.1.4, we find
Corollary 7.1.6. K* is Nisnevich local.

The method of Thomason (the so called B-construction) and the methods of Schlichting to create
non-connective extensions of K-thery are somehow ad hoc. In this thesis we will show how these two
constructions can both be understood as explicit models for the same process, namely, the Nisnevich
”sheafification” 2 in the noncommutative world.

7.2 Non-connective K-theory is the Nisnevich localization of connective
K-theory

In this section we give the proof of Theorem 7.0.29. As explained in the introduction, it goes in two
steps. First, in 7.2.0.1, we prove that every Nisnevich local functor F : Dg(k)f* — Sp satisfies the
familiar Bass exact sequences for any integer n. The second step requires a more careful discussion.
In 7.2.0.2 we introduce the notion of connective-Nisnevich descent for functors F : Dg(k)/* — Sp with
values in 3‘;>0. We will see (Prop.7.2.6 below) that the full subcategory Funyis.,(Dg(k)'t, 3’5>0)
spanned by t_h9§e functors satisfying this descent conditon, is an accessible reflexive localization of
Fun(Dg(k)7*, Sps)

lniszo

— T

Funyis., (Dg(k)7t, Sps.g) 22— Fun(Dg(k)’*, Sp) (7.2.1)

and that as a consequence of the definition the connective truncation of a Nisnevich local is connectively-
Nisnevich local, and we have a natural factorization 7>g

Fun(Dg(k)**, Spo) ~——— Fun(Dg(k)’*, Sp) (7.2.2)

| g
Punnis.,(Dg(k)t, Spso) <= — Funis(Dg(k)t, Sp)

where o and 8 denote the inclusions. By abstract nonsense, the composition 4, := []', 0 i 0 a provides

a left adjoint to 7>g and, because the diagram of right adjoints commutes, the diagram of left adjoints

3The noncommutative Nisnevich topology is not a Grothendieck topology.
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Fun(Dg(k)T*, Spso)——— Fun(Dg(k)’*, Sp) (7.2.3)

ll"i5>o \Ll:ﬁs

Funpis,,(Dg(k)'", @20) ~' = Funyis(Dg(k)'*, Sp)

also commutes.

The second step in our strategy amounts to checking that the adjunction (i1, 7>g) is an equivalence
of (00, 1)-categories. At this point our task is greatly simplified by the first step: the fact that Nisnevich
local objects satisfy the Bass exact sequences for any integer m implies that 7>¢ is conservative.
Therefore, we are reduced to prove that the counit of the adjunction 7>g o4y — Id is an equivalence
of functors. In other words, if F' is already connectively-Nisnevich local, its Nisnevich localization
preserves the connective part. In order to achieve this we will need a more explicit description of the
noncommutative Nisnevich localization of a connectively-Nisnevich local F'. Our main result is that
the more familiar (—)® construction of Thomason-Trobaugh (which we reformulate in our setting)
provides such an explicit model, namely, we prove that if F' is connectively-Nisnevich local, 7>¢(F B)
is naturally equivalent to F' and F'Z is Nisnevich local and naturally equivalent to 17¢, (F).

nis

7.2.0.1 Nisnevich descent forces all the Bass Exact Sequences

In this section we prove that every Nisnevich local F : Dg(k)* — g]\J satisfies the familiar Bass
exact sequences for any integer n. Our proof follows the arguments of [137, 6.1]. The first step is
to show that every Nisnevich local F' satisfies the Projective Bundle theorem. As explained in the
introduction, this follows from the existence of an exceptional collection in L,.(P') generated by the
twisting sheaves Op:1 and Opi(—1), which, following 6.4.12, provides a split short exact sequence of
dg-categories

Lye (k) “? Ly (P) (7.2.4)
|
0 Lye(k)

where the map io,, , resp. ig_, (~1), is the inclusion of the full triangulated subcategory generated by
Op1, respectively Opi(—1). In particular, since Dg(k)f* has direct sums, we extract canonical maps
of dg-categories

Lye (k) ® Lpe(k) “— Ly (P) Lye(P') —= Lye (k) @ Ly (k) (7.2.5)

We observe now that these maps become mutually inverse once we consider them in Funy;s(Dg(k)/?, @)
via Yoneda's embedding. Indeed, the split exact sequence in (7.2.4), or more precisely, its opposite in

NeS(k), induces a split exact sequence in Funyis(Dg(k)/, @)

INis © B © fne(Lpe(k)) —= I35 0 T 0 jne(Lpe (P1)) (7.2.6)
0 [is © 85 © Jne(Lpe(K))

This is because Funy;s(Dg(k)’ t,@) is stable, together with the effects of the Nisnevich local-
ization. Also because of stability we know that I}, preserves direct sums. In particular, we have
canonical maps

Nis © Eio o j(Lpe(Pl)) — I\is © 23-0 © an(Lpe(k)) ® lis © 23-0 © an(L;DE(k)) (7.2.7)
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Nis © 2f ° an(Lpe(k)) @l © Zf ° an(LPE(k)) — s © Ef o j(Lpe(Pl)) (7.2.8)

which can be identified with the image under ¥5° o j,. of the opposites of the canonical maps of
dg-categories in (7.2.5), respectively. This is because in NcS(k) finite sums are the same as finite
products (see the end of our discussion in 6.1.2), because Yoneda’s embedding commutes with finite
products and because the pointing map § — 8. and the suspension ¥*° commute with all colimits.
This time, and as explained in 6.4.21 and 6.4.22, because Funy;s(Dg(k)ft, Sp) is stable, these
canonical maps are inverses to each other. In other words, we have a direct sum decomposition

Jrifcisoziooj(Lpe(Pl)) ~ 1R300 Jne(Lpe (k) DU 055 0ne(Lpe (k) ~ Rﬁ-soEfoan(Lpe(k)@L(pe(k);
7.2.9
where the first (resp. second) component can be identified with the part of L,.(P') generated by Op:

(resp. Op1(—1)).
In particular, if we denote by Hom the internal-hom in Funy;s(Dg(k)/?, 3’5) we find

Corollary 7.2.1. Let F be a Nisnevich local functor Dg(k)/t — 5’; Then F satisfies the projective
bundle theorem. In other words, we have

Hom(I3f;, 0 X5 0 j(Lpe(P)), F) = Hom(If;, © B 0 j(Lye(k)), F) & Hom(Iy, 0 X5 0 j(Lpe(k)), F)

~FpF

Asin [137, 6.1] we can now re-adapt this direct sum decomposition to a new one, suitably choosen
to extract the Bass exact sequences out of the classical Zariski (therefore Nisnevich) covering of P!
given by

Gy Al (7.2.10)
7 a
AlC P pr

The basic ingredient is the induced pullback diagram of dg-categories

Lpe(PY) —% = L (A1) (7.2.11)

!

Lpe (Al) —— Lype (Gm)

Lype(k) © Lpe(k) . (7.2.12)

More precisely, we will focus on the diagram in Fun(Dg(k)/?, 31\7) induced by the opposite of the
above diagram, namely,
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. Lype (i) .
23-0 OJnC(Lpe(Gm)) - Z-Oi-o ojnc(Lpe(Al)) (7-2-13)

Lpe(4) Lpe(a)

. Lpe(B) .
Zf © jnc(Lpe(Al)) - 23-0 O]nc(Lpe(IPl))

25 04ne (4°7)

250 jine(Lpe (k) & Lpe (k)
Remark 7.2.2. It follows from 6.4.16, from the effects of the Nisnevich localization and from the
above discussion that the exterior commutative square in (7.2.13) becomes a pushout-pullback square
in Funyis(Dg(k)'t, Sp).

In order to extract the Bass exact sequences, we consider a different direct sum decomposition
of IR, 0 X%° 0 jnc(Lpe(P)). For that purpose, let us start by introducing a bit of notation. We let
i1, i2 denote the canonical inclusions Lye(k) — Lye(k) @ Lye(k) in Dg(k)’t, and let 71,7 denote
the projections Lyc(k) ® Lye(k) — Lpe(k). At the same time, let i7” and 75" denote the associated
projections in NeS(k) and 77” and 75” the canonical inclusions. Since Yoneda’s map X304, commutes

with direct sums, the maps X o jn.(i7") and B° o jne(i7”) can be identified with the canonical
projections

2L 0 Jne(Lpe(k)) & EE 0 finc(Lpe(k)) = B 0 jne(Lpe(k)) (7.2.14)

and X 0 jne(m7") and X° o jinc(75") with the canonical inclusions

3T 0 ne(Lpe(K)) = 35 0 jne(Lpe(K)) © X © fne(Lype (k) (7.2.15)

in Fun(Dg(k)'?, 31\7)
Let us proceed. To achieve the new decomposition, we compose the decomposition we had before
with an equivalence © in Fun(Dg(k)ft, Sp)

2% 0 fne(Lpe (k) © 2% 0 jne(Lpe(k)) —2> B2 0 jnc(Lpe(k)) ® B2 0 jue(Lpe(k)) (7.2.16)

defined to be the map

5% 0 je(Lpe (k) (7.2.17)

51 0o - .
/ TZJr 0jme(i3P)

2% 0 jine(Lpe(k) & B2 0 jne(Lpe(k)) = 2 = £ 0 fne(Lpe (k) & TF 0 jne(Lpe (k)

T e
d2

Yo an(Lpe(k))
obtained from the universal property of the direct sum, where:

e §; it is the canonical dotted arrow in the diagram
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5% 0 jne(Lpe (k) (7.2.18)

oo s id
D2 Oj'nc(ﬂ?))i \

Zf © jnc(Lpe(k)) &Y o an(Lpe(k)) - E.O:,-o o jnc(Lpe(k))
Efoﬂ'nc(’fé’p)T /
Zio o jnc(Lpe(k))

e {5 is the canonical map obtained from

5% 0 je(Lpe(K)) (7.2.19)
zfojmw?’)i \
B 0 jnc(Lpe(k)) & BF 0 fne(Lpe(k)) = = = 1L 0 jnc(Lpe(k))
Eifog‘m(w?)T —
3% 0 jne(Lpe(K))

Of course, it follows from this definition that © is an equivalence with inverse equal to itself.
Finally, we consider the composition

pe (Z)

3% 0 Jne(Lpe(Gm)) = B 0 jne(Lpe(A")) (7.2.20)

Lype(d) Lpe(a)
Lpe(B)

ST 0 jne(Lpe(A1) 5 55 0 fne(Lpe(P)

W

23_0 o jnc(Lpe(k)) SB) Z—oﬁ-o o an(Lpe(k))

which again, as in the Remark 7.2.2, provides a pushout-pullback square in Funy;s(Dg(k)’t, §1\)) The
important point of this new decomposition is the fact that both maps © o (35° 0 jinc (¢ 0 Lye()))
and © o (X° 0 jinc(¥P 0 Lpe(B))) become simpler. In fact, since a*(Op1) = a*(Op1 (1)) = B*(Op1) =
a*(Op1(—1)) = Op1, we find that

o The composition X° 0 jnc(i7") 0 © 0 (B 0 fne(1)P 0 Lye(r))) can be identified with the map
$%° 0 jne(Lpe(p)) induced by pullback along the canonical projection p : A — Spec(k). Indeed,
we have

i © Jine (7 )060( F 0 dne(¥° )

_(510( ognc(¢poL )

~ 4y 0 (Ef ij(”fp © 21 + 7r2 o Z2 )) (EOO 0 Jine(¥? 0 Lye @)))
=D Vi 0 Jne(i OpowopoLpe( ))+0

~ XF 0 jne((a” 0 1p0ir)?)

=~ Z+ ° Jne((p )Op)

=~ Eio O]nC(L:De(p

Lpe(av))
e(@))
(
)

1R

1

1

1

~ o~ o~ o~~~ —
[\)
=
oo ==

~~
~—

The same holds for the composition X3° 0 jinc(i7") 0 © 0 (X 0 fnc (7 0 Lye(B)));
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o The maps X5°0,.(i5") 000 (X 0jne (1P o Lpe(a))) and X 0,(i5") 000 (X 0jne (1P o Lpe(5)))
are zero. Indeed, we have

BP0 Jne(is”) 0O 0 (B 0 fine (VP 0 Lpe(ar))) =~ (7.2.28)

~ 03 0 (8L 0 Jne(¥ 0 Lpe(r))) =~ (7.2.29)

530 (52 0 juelm? o 1 + 77 0157)) 0 (S 0 jnelU 0 Lye(a)) = (7.2.30)

~ Id o (X 0 jne(if” 0 P 0 Lye(a))) 4+ (—1d) 0 (B 0 fne (i7" 0 % 0 Lpe(r))) ~  (7.2.31)
~ NP 0 jpe((@® 01poiy)P) = X o jpc((a 0rpoiz)??) (7.2.32)

But since a*(Op1) = a*(Op1(—1)) = Ou1, we have a* o 04y >~ a* 01 0 iy so that the last
difference is zero. The same argument holds for 5*.

From these two facts combined we conclude that © o (£ 0 j,,.(¢°? o Lye(r))) is equivalent to the
sum X 0 jne(Lpe(p)) © 0 so that the outer commutative square of the diagram (7.2.20) can now be
written as

3 L e(i)
zio O.jnc(Lpe(Gﬂ’L)) -
Lpe(j) izfojnc(Lpe(p))eao

. BT 0jne(Lpe(p)) @0 . .
Yo ]n6<Lpe(A1)) - Yo JHC(LPE(k)) ®XFo JnC(Lpe<k7))

220 fne(Lpe(AL)) (7.2.33)

We are almost done. To proceed, we rewrite the diagram 7.2.20 as

Yo an(Lpe(Gm)) —XFo an(Lpe(Al)) ®XFo jHC(Lpe(Al))

\L (Efojnc(Lpe(Q))v_Eioojnc(Lpe(B)))i

& Cdne(Lpe(p)); =2 0fne(Lpe(p)))BO

0 Do Ojnc(L;DE(]Pl))

W

Zf o jnc(Lpe(k) 69 Lpe(k))
(7.2.34)

where of course, since Yoneda’s map X5° o j,. commutes with direct sums, we have

23-0 © jnc(LPE(Al)) D 23—0 © an(LPE(Al)) = Zf o an(Lpe(Al) @ Lpe(Al)) (7.2.35)

We observe that both the inner and the outer squares become pullback-pushouts once we pass to
the Nisnevich localization. Moreover, the map © o (X° o j,.(¥°?)) becomes an equivalence.

In a different direction, we also observe that the pullback map of dg-categories p* : Lp.(k) —
Lye(A) admits a left inverse s* : L,e(A') — L,.(k) given by the pullback along the zero section s :
Spec(k) — A, 4. In terms of noncommutative spaces, this can be rephrased by saying that L,.(p) has
a right inverse Ly (s). We can use this right-inverse to construct a right inverse to the first projection
of (B 0jne(Lpe(p)), =X 0jne(Lpe(p))) @0, namely, we consider the map (33°0j,e(Lype(s)),0) induced
by the universal property of the direct sum in Fun(Dg(k)’t, 3‘1\7)

4which in terms of rings is given by the evaluation at zero evq : k[T] — k
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5 0jne(Lpe(s)) - X
L 0 jne(Lpe(AY)) (7.2.36)

. (Zooojnc(Lpe(S))vO) 00 . T 0o .
22 0 fe(Lpe(k)) — = = == = = = > 55 0 jnc(Lpe(A1)) & B 0 jne(Lpe(A))

|

Ef ° an(LPe(Al»

It is immediate to check that the composition ¥5°0jy,¢(i17)o (2 0ne(Lpe(P)); =X 0ne(Lpe(p)))®
0)o(X3°0 nc((Lpe(s)), 0) is the identity, so that Efojnc(i‘l’p)o((Efojnc(Lpe(p)), =20 ne(Lpe(p)))®0)
has a right inverse that we can picture as a dotted arrow

%3 0 Jne(Lpe(Gm)) —= 25 0 jne(Lpe(Al)) © T3 0 fne(Lpe(A'))

£

Ef o jnc(Lpe(k) D Lpe(k)) -

B3 0 e i) —

Yo an(LPe(k))

(7.2.37)

At the same time, the preceding discussion implies that the second projection

EF 0 ne(Lpe(Gm)) —=EF o jnc(Lpe(Al)) ®XF o jnc(Lpe(Al)) (7.2.38)

l (Lpe(@),~Lpe (8))
0 2% 0 Jine(Lpe (P1))
O0(BT 0jinc (4°7))
2% 0 fne(Lpe(k) © Lpe(k))

B 0jne(i57)

E?',-o © jm(Lpe(k))

is just the zero map.

We now explain how to extract the familiar Bass exact sequence from these two diagrams. Given
any object F € Fun(Dg(k)'t, Sp) and a noncommutative space X, we set the notation Fy :=
Hom (X% 0 jne(X),F). By enriched Yoneda, this is the functor given by F(X ® —). To proceed,
we consider the image of the diagram (7.2.37) under the functor Hom(—, F'), to find a diagram
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- F
Fr. ~F—=F&F ~F oL,y — FrL,.01) —> FL,. (a0, (a1) = Fr, (a1) © FL,.(a1)

| |

0 Fr,. G

(7.2.39)

where the first map if" : F — F@F can be identified with the canonical inclusion in the first coordinate
and the composition F —— Fp,__(a1) ® F, a1y — — > F is the identity.

From this we can produce a new commutative diagram by taking successive pushouts

(7.2.40)

0 Frp @)

and we notice that the vertical map F' & F — F' can be identified with the projection in the second
coordinate.

In particular, if we denote as U(F) the pullback

U(F) HFLPE(Al) HF FLpe(Al) (7241)

.

EE—— ) N (N

we find a canonical map

Fllpgr Fr,.en - == U(F) (7.2.42)

induced from the diagram (7.2.40) using the universal property of the pullback .

At the same time, if we apply Hom(—, F') to the diagram (7.2.38) we find a new commutative
diagram
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F (7.2.43)
liF
2
id F T F Fr,.cev Fr .1 @ Fr,. (a1
F FHFGBF FLpe(Pl) FLpe(Al) HF FLPS(AI)
- . R /
U(F)
0 FLpe(@m)

and discover that the map F' — F[[pgp Fr, 1) — U(F) admits a natural factorization

OFL @) 0 (7.2.44)

OF /1
e
7
e

U(F) - FLpe(Al) HF FLPS(AI)

| |

0 Fr,Gm)

F

because QFp _(g,,) is the fiber of U(F) — Fp__(a1) I~ Fp.(av)- This concludes the preliminary steps.

From now on, we suppose that F' is Nisnevich local. In this case, by the Corollary 7.2.1, the map
F&F — Fr () is an equivalence and the commutative square

Fr,.ev)y — Fp a1 @ Fr, a1) (7.2.45)

| |

01,6

is a pushout-pullback because the image of the square (7.2.10) under L,. is a Nisnevich square of
noncommutative spaces. Using these two facts we conclude that the canonical maps constructed
above, F' — F[[pgp Fr, 1) and F [[pgp F1,. 1) — U(F') are equivalences so that the diagram

F——Fp ) Up Fr,.an) (7.2.46)

| |

0 ————I7,.Gn)

is a pullback-pushout. In particular, as in the diagram (7.2.44), we find the existence of a section



174 K-Theory and Non-commutative Motives

OFL (o) 0 (7.2.47)
or 7 i l
Ve
Ve
- d
P F Fr, o) Hp Fr,.a)

| |

0O——————FL,.@Gn

We are almost done. To conclude, we consider the induced pullback-pushout square

Frea) e Fry ey —0 (7.2.48)

| |

Fr .G, —=%F

where now, the suspension ¥ (or) makes X(F) a retract of Fy _(g,,)- We are done now. Since the
evaluation maps commute with colimits and, by definition of F(_), we have for each T € Dg(k)/t a

pullback-pushout diagram in 3’5

F(Lpe(Al) ® Tx) HF(Tx) F(Lpe(Al) QTx) — 0 (7.2.49)
F(Lpe(Gy,) ® Tx) YF(Tx)

and therefore a long exact sequence of abelian groups

o = T (F(Lpe (AY) @ Ti) ]_[F(Tx) F(Lpe(AY) @ T)) = mn(F(Lpe(Grn) @ Tx)) = mn(SF(Tx)) = mn—1(F(T)) — ...

(7.2.50)
and because of the existence of £(or), the maps 7, (F(Lpe (G, ) @Tx)) = mp (EF (Tx)) = mp—1(F(Tx))
are necessarily surjective, so that the long exact sequence breaks up into short exact sequences

0 = 7 (F(Lpe(A") ® T) HF(TX) F(Lpe(A") ® Tx)) = T (F(Lpe(Grm) ® Tx)) = mn(EF(Tx)) = M1 (F(Tx)) = 0

(7.2.51)
Vn € Z.
At the same time, since the square
it
FHF@F%FLW(AU @FLPS(Al) (7252)
0 Fr e Fr,.

is also a pullback-pushout and the top map F' — F__(a1)®FL, (a1) admits a left inverse, the associated
long exact sequence

o = T (F(Lpe(AY) ® Te) [ gy F(Lpe(A') ® Tix)) = mn(F(Tx)) = mn(F(Lpe(A') @ Tx) & F(Lpe(A') @ Tx)) — ...
(7.2.53)
breaks up into short exact sequences
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0= 7 (F(Tx)) = mn(F(Lpe(A') ® Te) © F(Lpe(A') ® Tx)) = mn (F(Lpe(AY) ® Toe) [ oy F(Lpe (A) @ Tix)) — 0
(7.2.54)
Combining the two short exact sequences (7.2.51) and (7.2.54) we find the familar exact sequences

of Bass-Thomason-Trobaugh

0 — T (F(Tx)) = mn(F(Lpe(AY) @ Tx) ® F(Lpe(AY) @ Tx)) — (7.2.55)
= Tn(F(Lpe(Gpn) @ Tx)) — 11 (F(Tx)) — 0 (7.2.56)

This concludes this section.
7.2.0.2 Nisnevich vs Connective-Nisnevich descent and the Thomason-Trobaugh
(—)P-Construction

In this section we study the class of functors sharing the same formal properties of K¢, namely, the
one of sending Nisnevich squares to pullback squares of connective spectra. This will take us through
a small digression aiming to understand how the truncation functor 7>¢ interacts with the Nisnevich
localization.

Definition 7.2.3. Let F € Fun(Dg(k)'!, @20). We say that F is connectively-Nisnevich local if
for any Nisnevich square of dg-categories

Ty — Ty (7.2.57)
Ty ——Tw

the induced square

F(Tx)—— F(Ty) (7.2.58)
F(Ty) —— F(Tw)
is a pullback of connective spectra.

Remark 7.2.4. It follows that if F' belongs to Funys(Dg’t, S’\p), its connective truncation 7> (F) is
connectively-Nisnevich local. This is because 7> acts objectwise and is a right adjoint to the inclusion
of connective spectra into all spectra, thus preserving pullbacks.

It is also convenient to isolate the following small technical remark:

Remark 7.2.5. Let € be a stable (0o, 1)-category and let Gy C € be a subcategory such that the
inclusion preserves direct sums. Then, if

]

(7.2.59)

O=<=—n
-
bS]

L

is a pullback square in €y such that

e the map i admits a left inverse v;

e the map p admits a right inverse u;
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e the sum ¢ o v 4+ u o p is homotopic to the identity,

we conclude, by the same arguments given in the Remark 6.4.21, that B ~ A®C. Moreover, under the
hypothesis that the inclusion preserves direct sums, the square remains a pullback after the inclusion
Cp C € and therefore a pushout. In particular, it becomes a split exact sequence in €. This holds for
any universe.

In particular, for any pullback square of dg-categories associated to a Nisnevich square of non-
commutative spaces (7.2.57) such that Ty is zero and the sequence splits, the induced diagram of
connective spectra (7.2.58) makes F(Ty) canonically equivalent to the direct sum F(Tx) @ F(Tw) in
Sp.

We let Funyis.,(Dg(k)’t, @20) denote the full subcategory of Fun(Dg(k)/t, 5’520) spanned by
the connectively-Nisnevich local functors. For technical reasons it is convenient to observe that the
inclusion Funpyis.,(Dg(k)’*, Spso) € Fun(Dg(k)’*, Sps,) admits a left adjoint ln;s_,. More precisely

Proposition 7.2.6. Funyis., (Dg(k)T, 3;720) is an accessible reflexive localization of Fun(Dg(k)/?, @20).

Proof. We evoke the Proposition 5.5.4.15 of [99] so that we are reduced to showing the existence of a
small class of maps S in Fun(Dg(k)'?, 3’E>0) such that an object F' is connectively-Nisnevich local if
and only if it is local with respect to the maps in S.

To define S, we ask the reader to bring back to recollect our discussion and notations in 5.4 and
in 6.4.23. Using the same notations, we define S to be the collection of all maps

6Efojng(U)(K) H 525>jojm(V)(K) — 523:0;',%(36)([() (7.2.60)

95252 0 (W) (K)

given by the universal property of the pushout, this time with K in @20 N (3’;)“’ 5 and W,V, U and
X part of a Nisnevich square of noncommutative smooth spaces. As before, the fact that S satisfies
the required property follows directly from the definition of the functors 523%]'"6(_) as left adjoints to

Map®? and from the enriched version of Yoneda’s lemma.
O

It follows directly from the definition of the class S in the previous proof and from the description
of the class of maps that generate the Nisnevich localization in Fun(Dg(k)’*, Sp) (see 6.4.23) that
the inclusion

i: Fun(Dg(k)’t, 3’520) — Fun(Dg(k)’t, 35) (7.2.61)

sends connective-Nisnevich local equivalences to Nisnevich local equivalences. In particular, the uni-
versal property of the localization provides us with a canonical colimit preserving map

Fun(Dg(k)**, §p)———— Fun(Dg(k)'*, 5p) (7.2.62)

\Llnis>0 \Ll:ﬁfs

Funyiss, (Dg(k)*, Spsg) — — = Funnis(Dg(k)’*, Sp)

rendering the diagram commutative. Moreover, since the localizations are presentable, the Adjoint
Functor Theorem implies the existence of a right adjoint which makes the associated diagram of right
adjoints

5Here (é;)“’ denotes the full subcategory of Sp spanned by the compact objects. Recall that Sp ~ Ind((@)“’).
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Fun(Dg(k)!*, Sps) <———— Fun(Dg(k)!*, Sp) (7.2.63)

| d
Funyiss,(Dg(k)t, Spsg) < — — Funnis(Dg(k)’*, Sp)

commute. At the same time, the Remark 7.2.4 implies the existence of the two commutative diagrams
(7.2.2) and (7.2.3). By comparison with the new diagrams, we find that the canonical colimit pre-
serving map FunNisZo(Dg(k)ft, 5;)20) — — > Funys(Dg(k)Ft, g;)) can be identified with the com-
position 7 := [}, 0% o o and that its right adjoint can be identified with 7>, the restriction of the
truncation functor 7>¢ to the Nisnevich local functors.

Our goal is to prove that this adjunction

Funyis.,(Dg(k)*, Spso) —= Funis(Dg(k)’*, p) (7.2.64)
~__ @

is an equivalence. Our results from 7.2.0.1 already provide one step towards this:

Proposition 7.2.7. The functor 7> is conservative.

Proof. Recall from 7.2.0.1 that for any Nisnevich local F' we can construct a pullback-pushout square

Frpea) Hp Fry.ay —=0 (7.2.65)

| |

Fr,.c, ——=X%F

such that for any Ty € Dg(k)/*, the associated long exact sequence of homotopy groups breaks up
into short exact sequences for any n € N

0= Tn(F(Lpe(A) @ Tx) [] F(Lpe(A") ® T)) = 7 (F(Lpe(Gm) @ Tix)) = w1 (F(Tix)) = 0
e (7.2.66)

Therefore, given a morphism f : F' — G in Funy;s(Dg(k)/?, 3’;), we have an induced diagram

Gryean e G,y 0 (7.2.67)
/ /
Fr,.any g Fr,.an l 0
GL,e(Gm) xG
_— /
FL,. G SF

which induces natural maps of short exact sequences
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7 (F(Lpe (A) @ Tot) [ ) F(Lpe (A1) ® Tix)) —— 70 (F(Lpe (Gm) @ Tx)) —— w1 (F(Ix))

| | |

T(G(Lpe(AY) ® Tx) gy ) G(Lpe(AY) ® Tx)) — 1u(G(Lpe(Gim) ® Tx)) —> T—1(G(Tx))

(7.2.68)
In particular, if f is an equivalence in the connective part, by induction on n = 0, -1, -2, ..., we
conclude that f is an equivalence. O

With this result, in order to prove that ¢; is an equivalence we are reduced to showing that
the counit of the adjunction 7> o 49y — Id is a natural equivalence of functors. Notice that since
« and i are fully-faithful, this amounts to show that for any F connectively-Nisnevich local, the
canonical map i o 7> 0 I}, 0t 0o a(F) — i o «(F) is an equivalence. Of course, to achieve this
we will need a more explicit description of the noncommutative Nisnevich localization functor I35,
restricted to connectively-Nisnevich local objects. There is a naive candidate, namely, the familiar
(—)B construction of Thomason-Trobaugh [137, 6.4]. Our goal to the end of this section is to prove

the following proposition confirming that this guess is correct:

Proposition 7.2.8. There is an accessible localization functor (—)B : Fun(Dg(k)'*, 35) — Fun(Dg(k)'?, 3’5)
encoding the B-construction of [187, 6.4] such that for any F € Funys.,(Dg(k)’*, Sp) we have:

e o(ioa(F)B)~F.
e the object (i o a(F))B is Nisnevich local;

e there is a canonical equivalence (i o a(F))B ~ 1% ((i o a(F));

In particular, the natural transformation T>goi — Id is an equivalence. Together with the Proposition
7.2.7 we have an equivalence of (0o, 1)-categories between the theory of connectively-Nisnevich local
functors and the theory of Nisnevich local functors.

With these results available we can already uncover the proof of our first main theorem:

Proof of the Theorem 7.0.29:

Thanks to the Corollary 7.1.6 we already know that K*° is Nisnevich local. In this case, and by
the universal property of the localization, the canonical map K¢ — K*° admits a canonical uniquely
determined factorization

K¢ (7.2.69)

| O\

lr]i/ib(KC) - >KS

so that we are reduced to showing that this canonical morphism I3 (K°) — K 9 is an equivalence. But
since these are Nisnevich local objects and since we now know by the Prop. 7.2.8 that the truncation
functor 7>¢ is an equivalence when restricted to Nisnevich locals, it suffices to check that the induced
map T>0l%;, (K°¢) — 750K is an equivalence. But this follows because all the morphisms in the image
of the commutative diagram (7.2.69) become equivalences after applying 7>¢. This follows from the
construction of K and again by the results in the Proposition 7.2.8.
O
We now start our small journey towards the proof of the Proposition 7.2.8. To start with we need
to specify how the B-Construction of [137, 6.4] can be formulated in our setting:
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Construction 7.2.9. (Thomason-Trobaugh (—)Z-Construction) We begin by asking the reader to

recall the diagrams constructed in 7.2.0.1, or more precisely, that for any F € Fun(Dg(k)’t, @), we
found a commutative diagram

QFL e 0 (7.2.70)

oF /1
-
-

s «a
F “— U(F) Fr, ) g Fr,.an

| |

O FL,.@Gw

where both squares are pushout-pullbacks. Iterating this construction, we find a sequence of canonical
maps

ay(r) QU2(F)

F S U(F) U(U(F)) (7.2.71)

and we define F'Z to be the colimit for sequence (which is of course unique up to canonical equivalence).
The assignement F + FB provides an endofunctor (—)% of the (0o, 1)-category Fun(Dg(k)’t, 3’5)
To see this we can use the fact the monoidal structure in Fun(Dg(k)’*, S\p) admits internal-homs
Hom. More precisely, we consider the diagram of natural transformations induced by the image of
the diagram (7.2.37) under the first entry of Hom(—,—). With this, and keeping the notations we
have been using, we define f to be the functor cofiber of Id = (=)r,.x) = (—)r,.(a1) D (=)L, .(a1)-
The universal property of the cofiber gives us a canonical natural transformation f1 — (~)r,.(c,,) and
define a new functor U as the fiber of this map (recall that colimits and limits in the category of functors
are determined objectwise). Finally, we consider (—)Z as the colimit of the natural transformations

Id——=U=IdoU —=U?=1doU? — .... (7.2.72)

(-

We prove that for any I the object F'P satisfies the exact sequences of Bass-Thomason-Trobaugh
for any n € Z. The proof requires some technical steps:

Lemma 7.2.10. The functor U commutes with small colimits.

Proof. Let {F;}icr be a diagram in C. Then, by definition we have a pullback diagram

U(colimy F;) — (colimy F;)r,. a1y Hcotim, ry)(colimr Fy)p,, ar) (7.2.73)
0 (COlim[ Fi)L,,ﬁ(Gm)

but since (—)z,.(c,,) and (=), a1y commute with all colimits (thanks to Yoneda’s lemma and the
fact the evaluation map commutes with small colimits), this diagram is equivalent to

U(colim; Fi) —_— colim1 ((Fi)Lpe(Al) HFi (Fi)Lpe(Al)) (7274)
0 colim ((Fi)L,.(G,.))

and since in the stable context colimits commute with pullbacks we find a canonical equivalence
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U(colim; F;) ~ colimy U(F}) (7.2.75)
O

Lemma 7.2.11. The two maps U = IdoU — U? and U = U o Id — U? induced by the natural
transformation Id — U, are homotopic.

Proof. We are reduced to showing that for any F' the natural maps U(ar), ayp) : U(F) — U?(F)

are homotopic. Recall that by definition oy () is determined by the universal property of pullbacks,
as being the essentially unique map that makes the diagram

U(F) (7.2.76)

0 U(F) L, (Gm)

commute. In this case, as U commutes with colimits by the Lemma 7.2.10 and as Fun(Dg(k)/?, 5/'2)) is
stable, U also preserves pullbacks. In this case, and as we have equivalences U(Fg,,) ~ U(F)g,, and
U(Fr,.a1)) ~U(F)L,.(a1), the diagram in (7.2.76) is in fact equivalent to the image of the diagram

F (7.2.77)

N aF
AN
N

U(F) —=Fp,.an [r Fr,.a1)

| |

O - FLpe (Gm)

under U, where the inner commutative square is a pullback so that U(ar) is necessarily homotopic
to aU(F). O

These lemmas have the following consequences:
Proposition 7.2.12. The natural transformation (—)8 o Id — (=)P o U is an equivalence.

Proof. This amounts to check that for any F the natural map F? — U(F)? is an equivalence. By
construction, this is the map induced at the colimit level by the morphism of diagrams

(7.2.78)
aUz(F) O‘UB(F)
v2(m) 2 ()
QU (F) Xu2(F)
u(r) L g
ar ay(r)

afp

F——U(F)
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By iterating the Lemma 7.2.11 we find that for any k& > 0 the maps U*(ar) and Qyk(F) are

homotopic so that, by cofinality, the map FZ — U(F)? induced between the colimit of each column
is an equivalence. O

Proposition 7.2.13. The natural map (—)? o U — U o (=) is an equivalence.

Proof. Tt is enough to show that for any F the natural map U(F)? — U(FP) is an equivalence. As
FP can be obtained as a colimit for the sequence (7.2.71) and as U commutes with colimits, U(F?)
is the colimit of

U(aU2(F))

Utar) U3(F) (7.2.79)

Ulau(ry)

U(F) U2(F)

and again, by using the Lemma 7.2.11 together with cofinality, we deduce that this colimit is equivalent
to U(F)5.
O

We can now put these results together and show that

Corollary 7.2.14. For any object F € Fun(Dg(k)'?, @) the object FB satisfies the Bass-Thomason-
Trobaugh exact sequences for any n € Z.

Proof. By combining the Propositions 7.2.12 and 7.2.13 we deduce that the canonical map FZ —
U(FP) is an equivalence. Therefore, we have a pullback-pushout square

(FB)p,.an Hps (FP)L,. a1 *)I (7.2.80)
(FB)L,.@m) YFB

and using exactly the same arguments as in 7.2.0.1 we find that for any T € Dg(k)f, the associated
long exact sequence breaks up into short exact sequences

0— 7Tn(FB(L;DE(Al)@)TDC) H FB(Lpe(Al)(@TX)) - 71'n(FB(Lpe(Gm)®7—56)) - Wn—l(FB(TDC)) =0

FB(Ty)
(7.2.81)
and again by the same arguments we are able to extract the familiar exact sequences of Bass-
Thomason-Trobaugh, for all n € Z. O

Remark 7.2.15. As the canonical map F'? — U(FP) is an equivalence it follows from the Construc-
tion 7.2.9 that when we construct the diagram (7.2.70) with FZ

QAFE 6.) 0 (7.2.82)

O-FB/1 \L ‘/
e
e
e

FB - U(FB) (FB)L:D&(AI) HFB (FB)LPE(AI)

| |

0 (FB)Lpe(Gwn)

the section orr makes FP a retract of Q(FLi (G )). In particular, by iteratively applying the con-

struction Q(—) , we find (because X 0 ji. is monoidal) that for any n > 1, the composition

Lpe(Gm

FP = QFF (g,) = - = QFL g, yen) = = QUFL ) = FP (7.2.83)
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is the identity map so that, for any n > 1, F'P is a rectract of Q"(ng (Gm)®”)' Equivalently, for any
n > 1, the suspension X" FP is a retract of (FB)LPG(GM)@,L.

We will now show that the construction (—)Z defines a localization:

Proposition 7.2.16. The functor (=) : Fun(Dg(k)’*, EE) — Fun(Dg(k)’t, EE) of the Construction
7.2.9 is an accessible localization functor.

This result follows from the Lemmas 7.2.10 and 7.2.11 together with the following general result:

Lemma 7.2.17. Let C be a presentable (0o, 1)-category and let U : C — € be an colimit preserving
endofunctor of C, together with a natural transformation f : Ide — U such that the two obvious maps
Uolde — U? and Ide oU — U? are equivalent. Let

Id— LU =IdeoU — > U? = [de 0 U? — > .. (7.2.84)
. 11
io
T

be a colimit cone for the horizontal sequence (indexed by N), necessarily in Fun®(C,C). Then, the
functor T : € — € provides a reflexive localization of C. Moreover, since T commutes with small
colimits the localization is accessible.

Proof. The proof requires some preliminaries. To start with we observe that the arguments in the
proof of the Propositions 7.2.12 and 7.2.13 apply mutatis-mutandis to this general situation so that
we have natural equivalences T o Ide ~T oU and ToU ~ U oT. These two facts combined force the
canonical maps

T——=UoT——=U?0T —— ... (7.2.85)

to be equivalences.

Let us now explain the main proof. For this purpose we will use the description of a reflexive
localization functor given in [99, 5.2.7.4-(3)]. Namely, for a functor T': € — € from an (oo, 1)-category
C to itself to provide a reflexive localization of € (which we recall, means that T factors as € — Cy C C
with Gy a full subcategory of €, €y C € the inclusion and C¢ — €y a left adjoint to the inclusion
Co C ©) it is enough to have T equipped with a natural transformation « : Ide — T such that for
every object X € C, the morphisms ap(x) and T'(ax) are equivalences .

In our case, we let a be the canonical natural transformation ig : Ide — T appearing in the colimit
cone (7.2.84). We show that for any X € C, the maps (ig)r(x) and T((ig)x) are equivalences. The
first follows immediately from our preliminaries: since all the maps in the sequence

T(X) = U(T(X)) = U*(T(X)) — ... (7.2.86)

are equivalences and (io)p(x) is by definition the first structural map in the colimit cone of this
sequence, it is also an equivalence.

Let us now discuss T'((i0) x ). By construction of the functor T', this is the map colim,eny U™ ((i0) x) :
T(X) — T(T(X)) induced by the universal property of colimits by means of the morphism of sequences

X—>U(X)—>U2(X)*>... (7.2.87)
| |
(i0)x 1 U((G0)x) 1 U ((d0) x)
\ \
T(X)—U(T(X)) —> UQ(T(X)) S

We will prove that

(i) For any X there is a canonical homotopy between the maps U((40)x) and (io)y(x). By induction
we get canonical homotopies between U™ ((io)x) and (io)yn(x);



7.2 Non-connective K -theory is the Nisnevich localization of connective K-theory 183

(ii) For any diagram I — C in € (denoted as { X} }rer), there is a canonical homotopy between the
maps colimper ((0)x,) and (40)cotimpe; (X5)-

so that by combining these two results we get

T((i0)x) ~ colimpnen U™ ((i0)x) = colimnen ((io)un(x)) = (i0)cotimnen (Un(x)) = (i0)r(x)  (7.2.88)
and since we already know that (ig)p(x) is an equivalence, we deduce the same for T'((ig)x ).

To prove (i) we observe the existence of a canonical commutative triangle

T(U(X)) - - = U(T(X)) e
(io)U(X)T %:)
U(X)

provided by the universal property of the colimit defining T. As explained in the preliminaries this
dotted map is an equivalence so that the commutativity of this diagram holds the desired homotopy.

Let us now prove (ii). Let I” — C be a colimit diagram in € (which, by abusing the notation we
denote as { Xy, ¢r, : X — colimyper Xi trer). Since i is a natural transformation we find for any k €I
a commutative diagram

Xy —— 5 colimper X (7.2.90)

(io)(xk)i
T(Xk) &2 (colimkej Xk)

i(iO)(COHMkEI Xp)

and the universal property of colimits allows us to factor the lower horizontal arrows as

T(Xg) —— colimyer T(Xy) — ¢ T(colimyer Xk) (7.2.91)

where the dotted map 6 is essentially unique. More importantly, since by construction 7" commutes
with colimits, @ is an equivalence.

At the same time, the map colimye; (io)(xk) is by definition the essentially unique map colimygec; Xy —
colimge T(Xk), induced by the universal property colimits, that makes the diagrams

X —— colimper Xa (7.2.92)
(ig)(xk)l : colimyer (i) (x,,)
T(Xg) —— colimkeva(Xk)
commute. Finally, since 6 is an equivalence, the commutativity of (7.2.90) implies the commutativity
of
X ——25 colimper X (7.2.93)
(iO)(Xk)J/ J{GIO(io)(wzmkE,xw

T(Xk) —— colimkel T(Xk)

so that by the uniqueness property that defines colimyey(ip)(Xg), the diagram
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colz’mkel (Xk) (7294)

) ) 80) (colimpe Xp)
colimyer (i0)(x,,)

colimper T(Xk) *0> T(COHmkGI Xk)

must commute. This provides the desired homotopy and concludes (i¢) and the proof.
O

Remark 7.2.18. It follows from the Proposition 7.2.16 and from the Construction 7.2.9 that an
object F' € Fun(Dg(k)’t, Sp) is local with respect to the localization (—)? if and only if the diagram

F——Fp,.(a1) Lp Fr,.a1) (7.2.95)

| |

0 ———>F,.Gn)

is a pullback-pushout square. In particular, the discussion in 7.2.0.1 implies that any Nisnevich local
object F is (—)Z-local.

We now come to a series of technical steps in order prove each of the items in 7.2.8. First thing,
we give a precise sense to what it means for a functor F' with connective values to satisfy all the Bass
exact sequences for n > 1.

Definition 7.2.19. Let F € Fun(@g(k)ft,gﬁzo) and consider its associated diagram (7.2.70) (con-

structed in Fun(Dg(k)'t, 3’5), where we identify F with its inclusion). We say that F satisfies all
Bass exact sequences for n > 1 if the canonical induced map of connective functors F' — 1>oU(F) is
an equivalence, or, in other words, since T>o commutes with limits and because of the definition of

U(F), if the diagram (7.2.95) is a pullback in Fun(@g(k)ft,gizo).

Remark 7.2.20. Let F' € Fun(Dg(k)/?, @20) and consider the pullback-pushout diagram in Fun(Dg(k)’t, g;))

QFr,.an Ur Fr,.a1) —= QFL,.G,0) (7.2.96)
0 U(F)

Since, 7>¢ preserves pullbacks, we obtain a pullback diagram in Fun(Dg(k)/t, 3520)

720U FL,, (a1) L p Fr,can) —= 7202(FL, () (7.2.97)
0 TZ()U(F)

If F satisfies the condition in the previous definition, then the zero truncation of the composition

F-">Q(F;, c,)) — U(F) (7.2.98)

makes F a retract of 750Q(Fp,.(c,.)). With this, and as before, once evaluated at Ty € Dg(k)/*, the
long exact sequence associated to the pullback (7.2.97) splits up into short exact sequences

0= T (F(Lpe(A) @ Tx) J] F(Lpe(A") @ Tx)) = 7o (F(Lpe(Gm) ® Tx)) = 71 (F(Tx)) — 0
F(Tx)
(7.2.99)
Vn > 1, and again by the same arguments, we can extract the exact sequences of Bass-Thomason.
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Lemma 7.2.21. If F € Fun(Dg(k)ft,@) has connective values and satisties all the Bass exact
sequences for n > 1 (in the sense of the Definition 7.2.19), then the canonical map F ~ 17>0F —
>0F P is an equivalence.

Proof. Assuming that F' satisfies the condition in the Definition 7.2.19, meaning the canonical map
F — 750U (F) is an equivalence, we will show that for any k > 2, the canonical map F — 75oU*(F) is
an equivalence. Once we have this, the conclusion of the lemma will follow from the fact 7>¢ commutes
with filtered colimits (because the ¢-structure in gﬁ is determined by the stable homotopy groups and
these commute with filtered colimits), so that

TZO(FB) ~ Tzo(colimieNUi(F)) ~ colimieNTZO(Ui(F)) ~ colim;enF ~ F (7.2.100)

So, let us prove the assertion for k& = 2. By definition, we have a pullback-pushout square in
Fun(Dg(k)’*, Sp)

U2(F) —= U(F)1, .0 Loy U (F) 1, 00) (7.2.101)
O U(F)LPG(GWL)

and since T>( preserves pullbacks, we find

TZOU2(F) ~ TZO(U(F)LPE(Al) H U(F)Lpe(Al)) XTZU(U(F)L;m(Gm,)) 0 (72102)
U(F)

We observe that

(1) >0(U(F)L,.@m)) = FL,.(Gm)-

(i) 7>0(U(F)L,.a1) Uy UF)L,.a1) = Fr, o) Hp Fr,. o

To deduce the first equivalence, we use the equivalence 750U (F') >~ F' together with the fact that
(=)z,.(G,,) commutes with 7>9. The second equivalence requires a more sophisticated discussion.

Recall from the section 7.2.0.1 that for any G € Fun(Dg(k)/?, 3’]\9) we are able to construct a pushout
square in Fun(Dg(k)ft, Sp)

G
G%G@GHGLW(]PH) HGLpe(Al) EBGLPe(Al) (7.2.103)
0 GLPe(Al) HG GLpe(Al)

such that the top horizontal composition admits a left inverse. Applying this construction to G = F'
and to G = U(F'), we construct a map between the associated pullback-pushout squares
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U(F) U(F)r,.at) ® UF)L,. ) (7.2.104)
/ /
F L Fr,.a1) ® Fr, a1
0 U(F) L. Hury UE) Lo a)
/ _—
0 Frpowny Hp Fr.an

(obtained using the natural transformation Hom(—, F') - Hom(—,U(F')) induced by canonical mor-
phism F' — U(F)).

Both the front and back faces are pullback-pushouts and both the top horizontal maps admite
left-inverses.

Finally, since 75U (F) ~ F and because the top horizontal maps admit left-inverses, the long
exact sequences associated to each square breaks up into short exact sequences, and for each n > 0
and each Ty € Dg(k)f* we find natural maps of short exact sequences

T (U(F)(Tix)) —= T (U(F) 1, (a1) © UF) 1, a1))(Tx)) — 7 (U (F) 1, a1) Ho ) UF) 1,0 a1)) (Tix))

o (F(Tx)) Tn((Fr,.a1) @ Fr,.(a1))(Tx)) Tn(Fr,.at) Hp Fr,.a1)(Tx))
(7.2.105)

implying the equivalence in (4i).

Finally, we deal with the case k > 2. Applying the same strategy for G = F and G = U*(F), we
consider the analogue of the diagram (7.2.104) induced by the canonical morphism F — U*(F). By
induction, we deduce that 75oU**1(F) ~ F. This concludes the proof.

O

Proposition 7.2.22. Let F' be a connectively-Nisnevich local object. Then, it satisfies the Projective
Bundle Theorem and all the Bass exact sequences for n > 1. In particular, by the Lemma 7.2.21 we
have F' ~ 150 F ~ TZ()FB.

Proof. To start with, we prove that if is F' connectively-Nisnevich local then it satisfies the Projective
bundle theorem. Indeed, we can use the arguments used in 7.2.0.1 together with the definition of
being connectively-Nisnevich local to construct a pullback diagram in Fun(Dg(k)/?, Sp>o)

F~ FLpe(k) E—— FLpe(]pl) (7.2.106)
0 F ~ FLpe(k)

with splittings, which, as explained in the Remark 7.2.5, provide a canonical equivalence Fp,__ (p1) ~

F @ F in Fun(Dg(k)’t, 3‘]\9) Secondly, and again by the definition of connectively-Nisnevich local, we
can easily deduce that the canonical diagram
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Fr,.evy—Fpr, a1 ® FL, (1) (7.2.107)
0 FLpe(Gm)

associated to the covering of P! by two affine lines (7.2.10) is a pullback in Fun(Dg(k)'*, 3’5>0).
With these two ingredients we prove that if is F' connectively-Nisnevich local then it satisfies all
the Bass exact sequences for n > 1 in the sense of the Definition 7.2.19, namely, we show that the
canonical map F ~ 7>0F — 7>oU(F) is an equivalence, or, in other words, that the diagram (7.2.95)
is a pullback within connective functors. -
Consider the pushout squares in Fun(Dg(k)/?, Sp) described in (7.2.40). More precisely, since F
satisfies the Projective bundle theorem, we are interested in the pullback-pushout square

FoF ~ FLPE(EM) —_— FLpE(Al) (5] FLpE(Al) (7.2.108)

| l

F o~ Fllpgr Fr,.er) — Fr,.a1) L r Fr,.a)

which, in particular, is a pullback square in Fun(Dg(k)’*t, 3’;20) once truncated at level zero. Com-
bining with the pullback square (7.2.107) we find a series of pullback squares in Fun(Dg(k)’*, 3;)20).

QF 0 (7.2.109)

Q(FLPE(N) HF FLpe(Al)) - Q(FLpe(Gm)) —>0

|

@) —> Fp,.a1) © FL,. (a1

|

0 F Fr, ) g Fr,.an

Fr,

pe

Now comes the important ingredient: since the diagram (7.2.107) is a pullback, we can still deduce
(as before) the existence of a canonical map o such that the composition

F — 7g>FQFLpe(GTn) e FLpe(Pl) —_— F (72.110)

is the identity. We now explain how the existence of this section allows us to prove that the diagram
(7.2.95) is a pullback. More precisely, by using or at each copy of F in (7.2.95) and applying the
construction Q(—)r . (g,,) we find the square (7.2.95) as a retract of the square

QFL, ) — (L)) Lpeat) Loy, o) (VFLye (©0)) Ly (a1) (7.2.111)
0 QFL,.(Gm)) Lye (Gm)

but since both © and Hom(X° o jne(Lpe(Gim)), —) commute with colimits, we can easily inden-
tify this last square with the image of the top left pullback square in (7.2.109) under Hom(X5° o
Jne(Lpe(Gp)), —) and conclude that this is also a pullback square. We conclude the proof using the

fact that the rectract of a pullback square is a pullback.
O
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We now address the second item of the Proposition 7.2.8, namely,

Proposition 7.2.23. Let F' € Funyis., (@g(k)ft,gizo). Then, the object (i o a(F))P is Nisnevich
local.

The proof of this proposition is based on a very helpful criterium to decide if a given F' is Nisnevich
local by studying its truncations 7>0X"™F', namely:

Lemma 7.2.24. Let F be any object in Fun(Dg(k)/?, 3’5) Then, if for any n > 0 the truncations
T>oX"F' are connectively-Nisnevich local, the object F' itself is Nisnevich local.

This lemma follows from a somewhat more general situation, which we isolate in the following
remark:

Remark 7.2.25. Let € be a stable (0o, 1)-category with a right-complete t-structure (C>¢, C<o) and
let 7>, and 7<,, denote the associated truncation functors (see [100, Section 1.2.1] for the complete
details or our discussion in section 2.1.25 for a fast review of the subject). We observe that a commu-
tative square

A——-DB (7.2.112)
C——=D
in € is a pullback (therefore pushout) if and only if for any n < 0 the truncated squares
Tond > T5n B (7.2.113)

R

T5>nC —— 1>, D

are pullbacks in €>,,. Indeed, if we let H denote the pullback of the square in €, we want to show that
the canonical map A — H in € induced by the universal property of the pullback, is an equivalence.
But, since the truncation functors 7>, are right adjoints to the inclusions €>,, C €, 7>, H is a pullback
for the square in C>,, and therefore the induced maps 7>, A4 — 7>, H are equivalences for all n < 0.
To conclude, we are reduce to show that if a map f : X — Y in C induces equivalences 7>, X ~ 7>,Y
for all n < 0 then the map f itself is an equivalence. To see this, and because C is stable if suffices to
check that the fiber fib(f) is equivalent to zero. This fiber fits in pullback-pushout square

fib(f) —= X (7.2.114)
0 Y

and since 7>, commutes with pullbacks and the maps 7>, X — 7>,Y are equivalences, we find that
for any n < 0 we have 7>, fib(f) ~ 0. Finally, we use the canonical pullback-pushout squares in €

7o fib(f) —— fib(f) (7.2.115)

| |

0 —————=7<n-1fib(f)

to deduce that for all n < —1 the map fib(f) — 7<,fib(f) is an equivalence. In particular fib(f)
belongs to the intersection N,,C<;, so that, since the ¢-structure is assumed to be right-complete, we
have fib(f) ~ 0.
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In particular, since the truncations 7>, can be obtained as the compositions 2" o 759 o X" and
since 2 commutes with limits, the previous discussion implies that for the square (7.2.112) to be a
pullback in € it suffices to have for each n > 0, the induced square

505" A —> 750X"B (7.2.116)

L

TZQEnC e Tzoan
a pullback in €>q.

Proof of the Lemma 7.2.24: Just apply the Remark 7.2.25 to the commutative squares of spectra

F(Tx) — F(Ty) (7.2.117)

L

F(Ty) —— F(Tw)

induced by the Nisnevich squares of noncommutative spaces. The discussion therein works because
the t-structure in Sp is known to be right-complete (see [100, 1.4.3.6]).
O
Proof of the Proposition 7.2.23: As explained in the Remark 7.2.15, for any n > 1, the suspension
" F8 is aretract of (FP), (g,.)en- In particular, 705" F is a retract of 7 ((F?) 1 _(g,,)on) which
is a mere notation for 7>0Hom(X% © juc(Lpe(Gpm)®™), FPB) so that

TZO((FB>Lpe(Gm)®") = M@]f oan<Lp6(Gm)®n)7 TZOFB) = M(Ef ojm(Lpe(Gm)@n)»(F'?-HS)

where the first equivalence follows because the t-structure in Fun(Dg(k)’*, gf)) is determined object-
wise by the t-structure in Sp and the second follows from the Proposition 7.2.22. In particular, since
F is connectively-Nisnevich local, Hom(X%° o Jne(Lpe(Gim)®™), F) is also connectively-Nisnevich local
so that 750X FB is the retract of a connectively-Nisnevich local and therefore, it is itself local 5. We
conclude using the Lemma 7.2.24, observing that for n = 0 the condition follows by the hypothesis
that F'is connectively-Nisnevich local.

O

Finally,

Corollary 7.2.26. Let F be any object in Fun(Dg(k)f?, 3’5) Then, there is a canonical equivalence
(ioa(F)P ~1%..((ioa(F)) (7.2.119)

Proof. This follows from the Proposition 7.2.16, the Remark 7.2.18 and the Proposition 7.2.23, using
the universal properties of the two localizations. O

Proof of the Proposition 7.2.8: The three items correspond, respectively to the Propositions 7.2.22,
7.2.23 and to the Corollary 7.2.26. The conclusion now follows from the universal property of the two
localizations.

O

6In general, the retract of a local object in a reflexive localization is local. This is, ultimately, because the retract
of an equivalence is an equivalence.
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7.3 Comparing the commutative and the noncommutative
Al-localizations

In this section we prove the Theorem 7.0.31. We start by asking the reader to recall the dia-
grams (7.0.1) and (7.0.2) and to recall that after the Theorem 7.0.29, together with Yoneda’s lemma,
Mz (1%, (K©)) is the Bass-Thomason-Trobaugh K-theory of schemes. Recall also that, by definition”,
Weibel’s homotopy invariant K-theory of [154] is the ”commutative” localization 41 (Ma (IR (K°)).
With these ingredientes the conclusion of 7.0.31 will follow if we prove that the commutative and
noncommutative versions of the A!-localizations make the diagram

Funyis(N(AFSm? (k). Sp) <=2 Funyis(Dg(k)*, Sp) (7.3.1)

\LlAl \lef

Funpnis a (N(Aﬁsm'ft(k))°p7 @) BN Funyis 1, a1 (Dg(k)'t, @)

commute. In fact, we will be able to prove something slightly more general. We begin by recalling a
well-known explicit formula, for the A'-localization of presheaves of spectra. Let Ay be the cosimplicial
affine scheme given by

AR = Spec(klto, ..., tn]/(to + ... + 15, — 1)) (7.3.2)

Notice that at each level we have (non-canonical) isomorphisms A}, ~ (A})™. After [29], the
endofunctor of € = Fun(N(AffSm’"(k))°?, Sp) defined by the formula

F — colimpepor Hom (A}, F) (7.3.3)

with Hom the internal-hom for presheaves of spectra, is an explicit model for the A'-localization in
the commutative world. To see that this indeed gives something A'-local we use the A'-homotopy
m : A' x A’ — A! between the identity of A! and the constant map at zero. The map m is given
by the usual multiplication. It follows from this explicit description that the A'-localization preserves
Nisnevich local objects (this is because in a stable context, sifted colimits commute with pullbacks
and the Nisnevich local condition is determined by certain squares being pullbacks).

The important point now is that this mechanism applies mutadis-mutandis in the noncommutative
world. Indeed, by taking the composition

ATS A — 2 N(AFSmT (k) NeS (k) (7.3.4)

we obtain a cosimplicial noncommutative space and as Ly, is monoidal we get (A}7") o~ Ly (AY)®n.
Moreover, we can use exactly the same arguments to prove that the endofunctor of € = Fun(NcS(k)P, 3;3)
defined by the formula

F — colimpepor Hom (A", F) (7.3.5)

is an explicit model for the noncommutative Al-localization functor on spectral presheaves and also
by the same arguments, we conclude that Nisnevich local objects are preserved under this localization.

With this we can now reduce the proof that the diagram 7.3.1 commutes to the proof that the
following diagram commutes

"Either we take it as a definition or as a consequence of the explicit formula given in this section.
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My

Fun(N(AfSm” (k))or, Sp) Fun(Dg(k)'t, Sp) (7.3.6)

ilAl J{l;}f

Fung (N(AffSm? (k))7, Sp) 2— Funy,_ a1 (Dg(k)*, Sp)

where the lower part corresponds to the reflexive Al-localizations and M’ is the right adjoint of this
context obtained by the same formal arguments as My and Ms. The commutativity of this diagram
is measured by the existence of a canonical natural transformation of functors ;1 o My — M’ o s
induced by the fact that M’ sends Ly, (A1)-local objects to Al-local objects, together with the universal
property of I41. The diagram commutes if and only if this natural transformation is an equivalence
of functors. In particular, since the diagram of right adjoints commutes

Fun(N(AfSm’ (k))°P, §p) <<% Fun(Dg(k)’*, Sp) (7.3.7)

d ]

Fung: (N(AffSm (k))°?, Sp) 2 Funy, a1 (Dg(k)’*, Sp)

and the vertical maps are fully-faithful, it will be enough to show that the induced natural transfor-
mation avolyr o My — o M/ 0I}¢ is an equivalence. But now, using our explicit descriptions for the

Al-localization functors we know that for each F € Fun(Dg(k)'t, @) we have

a0l (M (F)) = colimpenor Hom(X o j(AN)®" (F)) o~ (7.3.8)
~ colimpepor My (Hom(X5 0 jne(Lpe(A )) "F) ~ (7.3.9)

~ M, (colimpenor Hom(5% 0 jne(Lpe(AY)®", F) ~ (7.3.10)

My (BolS(F)) ~aoM ol}f(F) (7.3.11)

where the first and penultimate equivalences follow from the explicit formulas for the A'-localizations,
the middle equivalences follow, respectively, from the Remarks 7.0.27 and 7.0.26 and the last equiva-
lence follows from the commutativity of the diagram (7.3.7).

In particular, when applied to F' = I;s(K€) we conclude the proof of the Theorem 7.0.31.

7.4 The A'-localization of non-connective K-theory is the unit
non-commutative motive

In this section we prove Theorem 7.0.32. We start by gathering some necessary preliminary remarks.
To start with, and as explained in the Remark 6.4.23 we have two different equivalent ways to construct
8Hne(k): one by using presheaves of spaces, forcing Nisnevich descent and Al-invariance and a second
one by using presheaves of spectra and forcing again the Nisnevich and A'-localizations. These two
approaches are related by means of a commutative diagram of monoidal functors
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NeS(k) (7.4.1)
Fun(Dg(k)t,8) = Fun(Dg(k)’*, Sp)

ne nc
llU,Nis J/lNis

—~ E""MS —
Funyis(Dg(k)/t,8) = Funyis(Dg(k)f, Sp)

nc
J/IU,Al J/le

oo
E+.Nis,A1

Sj{nc(k) = FunNis,Lpe(Al)('Dg(k)ftvg) ~ FunNis,ch(Al)(Dg(k)ft7 EE)

induced by the universal properties involved and the last induced Ef Nis.Al 1S an equivalence because

of the results in the Proposition 6.4.19. To be completely precise we have to check that the class of
maps with respect to which we localize the theory of presheaves of spaces is sent to the class of maps
with respect to which we localize spectral presheaves. Following the description of the last given in the
Remark 6.4.23 it is enough to see that for any representable object j(X) we have 35°5(X) ~ 0;(x)(5)
where the S is the sphere spectrum. This is because Map®P(—) is an internal-hom in g; and the
sphere spectrum is a unit for the monoidal structure.

In this section we will be considering the associated commutative diagram of right adjoints

Fun(Dg(k)Tt,8) — Fun(Dg(k)Tt, Sp) (7.4.2)
Funy;,(Dg(k)”".§) — Funy;,(Dg(k)!*, 5p)
FunNis,Lpe(Al)(Dg(k)ftvg) Qo: FunNis,LpE(Al)(Dg(k)fta 35)
Nis,Al

where again the last map is an equivalence. We will now explain how to use this diagram to reduce the
proof that lgf(KS) is unit for the monoidal structure in FunNiS’LPE(Al)(Dg(k)ft, Sp) to the proof that

041 (Q%°(K°)) is a unit for the monoidal structure in FunNis’Lpe(Al)(Dg(k;)ft,g). This will require
some preliminaries. First we recall that thanks to the Prop. 7.2.8 we have an equivalence

Funyis>o(Dg(k)'", 5pso) == Funnis(Dg(k)!, Sp) (7.4.3)
> >0) =

This equivalence provides a compatibility for the A'-localizations, in the sense that the diagram

FunNisZO(:Dg(k)fta 3?920) ; FunNis(Dg(k)fta 35) (7.4.4)

\ng%’Al ll:{f

Funyis>o,1,.a1)(Dg(k)Tt, 311\020) f;T Funyis,r,.a1)(Dg(k)Tt, Sp)

commutes. Here 12¢ ,, is the (noncommutative) A'-localization functor for connectively-Nisnevich
local presheaves.



7.4 The A'-localization of non-connective K-theory is the unit non-commutative motive 193

The second preliminary result is a consequence of the equivalence between 3;920 and the (oc0,1)-
category of grouplike commutative algebra objects CAlgL‘"p”ke(g) (see [100, 5.1.3.17]) and the equiva~
lence of this last one with Fun®99=97plike( N (Fin,), §) - the full subcategory of the (0o, 1)-category

Fun(N(F m*),g) spanned by those functors satisfying the standard Segal condition and which are
grouplike (see [100, 2.4.2.5]). See the final discussion in this section where this notion is discussed.

We can easily check that this equivalence induces equivalences

Fun®e9l=9melike (N (Fin,), Funyis(Dg(k)’",8)) ~ Funyis>o(Dg (k)" Sp=o) (7.4.5)

and

FunSe9al=9rplike (N (Fip,), FunNis’Lpe(Al)(Dg(k)ft,g)) ~ FU”NisZO,Lpe(Al)(Dg(k)fta @20) (7.4.6)

2% a1 can be identified along this equivalence with the

and we claim that the Al-localization functor
functor induced by the levelwise application of the A'-localization functor for spaces 1§51+ To confirm
that this is indeed the case we observe first that the composition with Ijj$, produces a left-adjoint to

the inclusion

Fun(N(Fin.), Funys 1, a1)(Dg(k)?t,8)) C Fun(N(Fin.), Funyis(Dg(k)*,8)) (7.4.7)

so that it suffices to check that this left-adjoint preserves Segal-grouplike objects. To prove this we
will need an explicit descriptin of the Al-localization functor of Nisnevich local objects Dg(k)/* — 8.
Unfortunately, the explicit formula (7.3.3) will not work directly in the unstable case because when
we apply the formula to a Nisnevich object the result might not be Nisnevich local. In any case
the formula defines a reflexive localization of Fun(Dg(k)?t,8) so that that we have the following
situation: a presentable (0o, 1)-category € := Fun(Dg(k)ft,g) together with two reflexive accessible
localizations:

L L
61C—> C 62(—> ¢

with (L1,41) corresponding to the localization produced by the formula (7.3.3) and (Ls,is) corre-
sponding to the Nisnevich localization. Let f; := i1 o L1 and f5 := i3 0 Ly. Our goal is to describe
€1 N Cy as an accessible reflexive localization of Cy and to understand how the left adjoint L has to
be modified in order to produce a left adjoint to the inclusion €; N Cy C Cy. The idea is that the
intersection localization functor can be obtained by an infinite iteration of the composition fs o fi.
We observe that:

a) f1 commutes with colimits (his is because Ly (A) is completely compact as an object in € and
because sifted colimits commute with colimits);

b) fo commutes with filtered colimits (this is because Nisnevich coverings are defined via a pullback
condition and filtered colimits preserve pullbacks);

c¢) Let us denote by S12 the class of maps F' — E in Cs such for any object X € €;NCs the composition
Map(E,X) — Map(F, X) is an equivalence. As the generating A'-equivalences, by definition, live
in the Nisnevich local category, Si2 corresponds to the strongly saturated closured of this class
(see [99, 55.4.15]). In particular, Lo sends fi-equivalences to maps in Sio

We will now follow [105, Lemma 1-3.20, Lemma 2.2.6] and produce a new localization of C that
will give the right answer. We start by considering the endofunctor € defined by the formula
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F— V(F) := colimpen((fao f1) o...o(fa o f1)(F)) (7.4.8)

n

and we consider its restriction to Cy given by the composition

Lo

C Ca

We have the following lemma:

Lemma 7.4.1. The endofunctor V : Cy — Co is a localization functor of Co with local objects
corresponding to the intersection C; N Ca.

Proof. This lemma was proved in [105, Lemma 1-3.20, Lemma 2.2.6] in the case where

€ = Fun(N(AffSm’ (k))°",8)

with f1(F) := colimpenor Hom(A},, F)® and f5 is the endofunctor corresponding to the Nisnevich
localization. As we shall now explain the same proof works also in our context.

The key ingredients to prove the lemma are the properties a)-c) above, together with the explicit
description of f;. We will only sketch the main steps. We leave it to the reader to check that
the formula (7.4.8) indeed defines a localization functor. This follows essentially by using cofinality
arguments. We now need to prove that this localization indeed provides a left adjoint to the inclusion
€1 NCy C Cy. For this purpose we observe that the canonical map F' — f/(F) is in S5 and that V(F)
is A'-Nisnevich-local. The first follows by the definition of A'-equivalence in Cy: take X an object in
€1 N €y and it is immedite from the definitions to see that the composition map Maps(V(F), X) —
Map,(F, X) is an equivalence in Cy. The second requires us to use the explicit description of fi:
Lyc(Al) is an interval-object and each of the inclusions ig, i1 : Lpe(k) = Lpe(Al) admits a left inverse
given by the projection p : L,ec(A') = Ly (k). In particular, for every non-commutative space X we
have Mapyis(X, V(F)) as a retract of Mapyis(X @ Lye(A'), V(F)). Tt suffices then to show that the

composition

Mapnis(X @ Lpe(AY), V(F)) = Mapnis(X, V(F)) = Mapnis(X @ Ly (AY), V(F))

is homotopic to the identity. As both X and L. (A') are compact, this composition can be obtained
as

colimy, ( Mape(X@Lye(A), (f20f1)"(i2F)) = Mape(X, (f20.f1)" (i2F)) = Mape(X@Lye(A'), (f20f1)" (i2F)))
To conclude we use the fact that the composition i o p is strongly A'-homotopic to the identity so

that f1(i op) ~ fi(idxgr,.ar) and in particular, fa o fi(iop) =~ fa o fi(idxgr,.(a1)- Using this we
see that the composition

Mape(X®Lye(A'), (f20/1)" (12F)) = Mape(X, (f20/1)" (i2F)) = Mape(X@Lpe(A'), (f20f1)" (i2F)) —

— Mape(X ® Lpe(A'), (f2 0 f1)" " (i2F))

becomes the identity map when we take the colimit.
O

81n the original formulation of this result the authors use a different description of f1(F') that follows from the fact
that the geometric realization of a simplicial space is homotopy equivalent to the diagonal of the underlying bisimplicial
set.
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This description can now be used to prove that the composition with lgj%l preserves the Segal-
grouplike condition. Indeed, this follows immediately from 1)this explicit description together with
2) the fact that products in Funy;s(Dg(k)ft,8) are computed objectwise in spaces; 3) the fact that
in spaces both sifted and filtered colimits commute with finite products (see [99, 5.5.8.11,5.5.8.12] for
the sifted case) and finally 4),the fact that the Nisnevich localization commutes with finite products
- this is a consequence of [99, 5.5.4.15] together with the fact that in Dg(k)i¥™ finite products are
the same as finite coproducts so that the product of a Nisnevich square of dg-categories of finite type
with a dg-category of finite type remains of finite type.

Finally, the grouplike condition follows also from this, together with the functoriality of lgj&l. As
a summary of this discussion, we concluded the existence of a commutative diagram

FunSe99l=9plike (N (Fin, ), Funyis(Dg(k)/*,8)) <———"— Funpis>0(Dg(k)’", Spsq)

l(l;}lo—) il’;%,w

Funsegal_grp”ke(N(Fin*), FunNis,Lpe (AY) (Dg(k’)ft’ g)) e FunNisZ&Lpe(Al)(Dg(k)ftv @20)

(7.4.9)
Finally, combining the commutativity of this diagram with the diagram (7.4.4) we obtain the
commutativity of the diagram

Funyis(Dg(k)t,8) — Funyis(Dg(k)Tt, 5p) (7.4.10)
Nis
llé‘,}l ll;ﬁf
FunNis,Lpe(Al)(Dg(k)ftvg) <+1 FunNis,Lpe(Al) (Dg(k)ft, 3;7)
Nis,A

This follows because Q%9;, can now be identified with the evaluation at (1) € N(Fin,) by means
of the commutativity and form of the diagrams (7.4.2), (7.4.4) and (7.4.9).
The following lemma is the last step in our preliminaries:

Lemma 7.4.2. Let F be a connectively-Nisnevich local object in Fun(Dg(k)7t, 3’;) Then, Q>(F) is
Nisnevich local and the canonical map Q°(F') > Ig%; (2 (F)) = Qs (I35, (F)) is an equivalence in
Funpyis(Dg(k)',8).

Proof. The proof depends on two observations. The first is that if /' is connectively-Nisnevich local,
the looping Q2°°(F) is Nisnevich local as a functor Dg(k)f* — 8. This is because the composition

3;120(—> E; 2703 preserves limits (one possible way to see this is to use the equivalence between

connective spectra and grouplike commutative algebras in 8 for the cartesian product [100, Theorem
5.2.6.10 and Remark 5.2.6.26] and the fact that this equivalence identifies the looping functor Q>
with the forgetful functor which we know as a left adjoint and therefore commutates with limits. The
conclusion now follows from the definition of connectively-Nisnevich local. The second observation
is that the looping functor Q> only captures the connective part of a spectrum. This follows from
the very definition of the canonical t-structure in Sp (see [100, 1.4.3.4]) In particular, since F is
connectively-Nisnevich local, our Proposition 7.2.8 implies that the canonical morphism F — I} (F)
is an equivalence in the connective part so that its image under 2°° is an equivalence. Putting together
these two observations we have equivalences fitting in a commutative diagram

QO (F) (7.4.11)
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so that the canonical map § induced by the universal property of the localization is also an equivalence.
O

Finally, we uncover the formulas

Nisr (GE(K®)) 2 1550 (O3 (K%)) 2 1o 42 (2% (K°)) (7.4.12)

where the first equivalence follows from the preceeding discussion and the last one follows from the
previous lemma.

The first task is done. Now we explain the equivalence between I 51 (2°°(K°)) and the unit for
the monoidal structure in FunN,-spre(Al)(@g(k)ft,g).

Our starting point is the formula (7.1.6) describing the K-theory space of an idempotent complete
dg-category T by means of a colimit of mapping spaces. Since colimits and limits of functors are
determined objetwise, the functor Q2°° K¢ can itself be written as €2 colim,jcaor Seq where Seq is

the object in the (oo, 1)-category Fun(A°P, Fun(Dg(k)idem,g)) resulting from the last stage of the
Construction 7.1.2.

Remark 7.4.3. More precisely, at the end the Construction 7.1.2 we obtained a functor

-~

N(Catenmy) — Fun(N(A%), N(Ayig)) = Fun(N(AP),8) (7.4.13)

where the second map is induced by the localization functor N (ﬁbig) — 8 with ﬁbig the very big
category big of simplicial sets equipped with the standard model structure. By the description of
each space at level n as a mapping space we conclude that this composition sends Morita equiv-
alences of dg-categories to equivalences and therefore by the universal property the localization
extends to a unique functor Dg(k)e™ — Fun(N(A)°P,8) which, using the equivalence between
Fun(Dg(k)iem, Fun(N(A°P),8) and Fun(N(A°P), Fun(Dg(k)em, 8) gives what we call Seq.

The value of Seq at zero is the constant functor with value  and its value at n > 1is Mapp g (gyiaem ([0 — 1]1),, —)-
The boundary and degeneracy maps are obtained from the S-construction as explained in the Con-

struction 7.1.2. We observe now that the dg-categories ([n — 1]x),., for any n > 0, are of finite type
so that each level of the simplicial object Seq is in the full subcategory of w-continuous functors.

Moreover, we can think of the dg-categories @C as non-commutative spaces I,, so that by means
of the Yoneda’s map jn. : NeS(k) < Fun(Dg(k)t,8) we can identify Seq, with the representable
Mapnesk) (=, In—1). In particular, since the Yoneda’s map is fully-faithfull, the simplicial object
Seq is the image through j,. of a uniquely determined simplicial object Seq,. € Fun(A° NeS(k))
whose value at level n is the noncommutative space I,_;. Finally, with these notations we can
write QK¢ as Q colim)caor jne © S€qne 80 that our main goal is to understand the localization
15 (2 colimip)enor Jne © Seqne). As the zero level of the simplicial object jn. o Seqy. is contractible,
the realization colim,jeaor Jne © Segne is 1-connective ?.
We have the following lemma;:

Lemma 7.4.4. The canonical map

615%1 (Q COlim[n]EAOP jnc o Seqnc) —Q lg’CA] (Colim["}eAOP jnc o Seqnc) (7414)

is an equivalence.

Proof. The key observation is that the presheaf of spaces colim,jcaor jne © S€gnc is the zero level of
a presheaf of connective spectra (for instance, as constructed by Waldhausen in [153]). The impor-
tant point is that this spectral presheaf satisfies Nisnevich descent as a result of the Waldhausen’s
localization theorem [153, 1.6.4]. In particular, it is Nisnevich local. The result now follows from the
commutativity of the diagram (7.4.10). O

9Recall that a space is said to be n-connective if it is non-empty and all its homotopy groups for i < n are zero.
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Our main goal now is to understand the simplicial object Seq. Following Waldhausen [153] we
recall the existence of a weaker version of the S-construction that considers only those sequence of
cofibrations that split. More precisely, and using the same terminology as in the Construction 7.1.2
we denote by RHom*P" (Ar[n]y, T..) the full sub dg-category of RHom(Ar[n]x,T.) spanned by those
Ar[n]-indexed diagrams satisfying the conditions given in the Construction 7.1.1 and where the top
sequence is given by the canonical inclusions £y - F1 @ Fy > F1 P Es P E3 — ... > 1 ® ... ® FE,
for some list of perfect modules (E1, ..., E,,). These are called split cofibrations. As in the standard S-
construction, the categories subjacent to RHom P! (Ar[n]g, fc) carries a notion of weak-equivalences
WPl and assemble to form a simplical space [n] — N(RHom """ (Ar[n], T)W=".

As in the Construction 7.1.2 we can now describe these spaces in a somewhat more simple form.
As the dg-categories 1y are cofibrant (see [132]) they are also locally-cofibrant and for any n > 0
the coproduct [[_, 1% is an homotopy coproduct. Moreover, for any locally-cofibrant dg-category

o~

T we have equivalences RHom([[;_; 11, Te) =~ [[[2, (1 @ T), . = [T (1 @T),0, = [[i= Te
In this case, for every n > 0 and for every dg-category T' there is an equivalence between the cate-
gory subjacent to RHom """ (Ar[n]), T.) and the category subjacent to RHom([ [}, 14, T¢), defined
by sending a sequence F1 — FE1 ® Fy — E1 ® Es ® Es — ... - FE1 @ ... ® E, to the sucessive
quotients (E4, ..., Ey,). This correspondence is functorial and defines an equivalence because of the
universal property of direct sums. Moreover, and again thanks to the cube lemma, this equiva-
lence preserves the natural notions of weak-equivalences. Finally, and again due to the main theo-

—

rem of [139] we found the spaces N(R@Sp“t(zﬁlr[n]k,i)Wfpm) and Mappg(jyidem (@?:1(1k)c,ﬁ)
to be equivalent so that by the same arguments as in the Remark 7.4.3 we obtain a sirgplicial
object Split € Fun(N(A)"p,Fun(@g(k)idem,g), which, because the dg-categories @7, (1), are
of finite type, lives in the full subcategory of w-continuous functors, therefore being an object in

Fun(N(A°P), P(NeS(k))). Moreover, for each n > 0 Split, is representable by the noncommutative

—

space associated to the dg-category @j_,(1x),. so that by Yoneda the whole simplicial object Split is

of the form j,. o © for a simplicial object © € Fun(NA°P), NeS(k)) with level n given by &7, (1x)..

Finally, the inclusion of split cofibrations into all sequences of morphisms provides a strict map
of simplicial objects in the model category A between [n] — N(RHom """ (Ar[n]x, T,)"") and [n] —
N(S29(T)W~) and we define A

A ¢ Jne(©) =~ Split — Seq (7.4.15)

to be the image of this map under the composition in (7.4.13). This is where the result of [17] becomes
crucial:

Proposition 7.4.5. [17, Prop. 4.6] The map X\ is a levelwise noncommutative A'-equivalence in
Fun(Dg(k)f,8).

Proof. In [17, Prop. 4.6] the author uses an inductive argument to prove that for any n > 0 the map
A is an Al-equivalence.

For n = 1, \; is an equivalence. For n = 2 we need some further adaptation to our case. Namely, we
are required to construct a noncommutative A'-homotopy between the identity of the noncommutative
space I_; and the zero map. Such an homotopy corresponds to a co-homotopy in Dg(k)*¢™ namely,

amap H : ([1]x), — @C @Y Lye(Al) in Dg(k)e™ fitting in a commutative diagram

. W), (7.4.16)
([Ue). — = (i), & Lpe(A)
- __
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Recall that L,.(A') is canonically equivalent to k[X], - the idempotent completion of the dg-
category with one object and k[X] concentrated in degree zero as endomorphisms. In this case

the term in the middle is equivalent to (([1]m[X]) We define H to be the map induced by
the universal property of the idempotent completion (—), : Dg(k) — Dg(k)*™ by means of the
composition

c*

-

([x) = ([Hx) @ k[X] < (([1x) @ k[X]), (7.4.17)

where the first map is obtained from the strict dg-functor defined by the identity on the objects, by
the inclusion k¥ C k[X] on the endomorphisms of 0 and by the composition k¥ C k[X] — k[X] on
the complex of maps between 0 and 1 and on the endomorphisms of 1, where the last map is the
multiplication by the variable X. This makes the diagram above commute and provides the required
homotopy. We conclude as in [17, Prop. 4.6] to find that Xy is an Al-equivalence given by a strong
A'-homotopy.

We now conclude with the induction step: it follows from the observation that the canonical map
Seqn — Seqn—1 Xseq, Seqe is an equivalence of presheaves. The conclusion now follows because the
fiber product of strong Al-homotopy equivalences remains a strong Al-homotopy equivalence (it is
easy to write down the homotopies for the fiber product) O

Finally, the fact that any colimit of A'-equivalences is an A'-equivalence gives us the following
corollary:

Corollary 7.4.6. The map induced by A between the colimits colimaor jne0© — colimpaor jne© Seqne
is an Al-equivalence. Moreover, and since 1§%: commutes with colimits and representable objects are
Nisnevich local, we have equivalences

colimpaor 1105000 = 151 (colimaor jinc0©) =I5 (colimaer JneoSeqne) ~ colimpor loh19JncoSeqne
(7.4.18)
in 8Hpe(k).

Our next move requires a small preliminary digression. To start with, recall that any (oco,1)-
category endowed with finite sums and an initial object or finite products and a final object, can be
considered as a symmetric monoidal (oo, 1)-category with respect to these two operations, respectively
denoted as €l and €% (see [100, Sections 2.4.1 and 2.4.3]). Monoidal structures appearing from this
mechanism are called, respectively, cartesian and cocartesian. In particular, if € has direct sums and a
zero object, these monoidal structures coincide €% (this follows from the Proposition [100, 2.4.3.19]).
In this particular situation the theory of algebras over a given co-operad O® gets simplified: the (oo, 1)-
category of O-algebras on €% is equivalent to a full subcategory of Fun(O®,C), spanned by a class
of functors satisfying the standard Segal conditions (see [100, 2.4.2.1, 2.4.2.5]). In the particular case
of associative algebras, and since the category A°P is a "model” for the associative operad (see [100,
4.1.2.6, 4.1.2.10, 4.1.2.14] for the precise statement) an associative algebra in €% is just a simplicial
object in C satisfying the Segal condition.

Algass(C) ~ Fun®9 (N(AP), @) (7.4.19)
We shall now come back to our situation and observe that

Lemma 7.4.7. The simplicial object © satisfies the Segal conditions.

Proof. As the Yoneda’s embedding preserves limits and is fully-faithfull it suffices to check that Split
satisfies the Segal conditions. But this is obvious from the definition of the simplicial structure given
by the S-construction. At each level the map appearing in the Segal condition is the map sending a
sequence of dg-modules Fyg — Eg @ Ey — ....Eq @ ... ® E,_1 to the quotients (Fq, ..., Fp_1). O
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We now characterize the simplicial object © in a somewhat more canonical fashion. An important
aspect of a cocartesian symmetric monoidal structure €Ll is that any object X in € admits a unique
algebra structure, determined by the codiagonal map X [[ X — X. More precisely (see [100, 2.4.3.16]
for the general result), the forgetful map Algass(€) — € is an equivalence of (oo, 1)-categories 1°.
By choosing an inverse to this equivalence and composing with the equivalence (7.4.19) we obtain an
oo-functor

€ — Algass(C) ~ Fun®9*(N(A)°P, @) (7.4.20)

providing for any object in € a uniquely determined simplicial object, encoding the algebra structure
induced by the codigonal''. Because of the Segal condition this simplicial object is a zero object
of € in degree zero, X in degree one and more generally is X®» in degree n. We now apply this
discussion to € = NeS(k) (it has direct sums and a zero object because Dg(k)*¥*™ has and the inclu-
sion Dg(k)/* C Dg(k)ie™ preserves them) and to X = (1;),. Since the simplicial object © satisfies
the Segal condition and its first level is equivalent to X, the equivalence (7.4.20) tells us that it is
necessarily the simplicial object codifying the unique associative algebra structure on X given by the
codiagonal.

With the Corollary 7.4.6 we are now reduced to study the colimit of the simplicial object I}{{0j,.00
in 8H (k). As the last is a stable (0o, 1)-category it has direct sums and therefore can be understood
as the underlying (oo, 1)-category of a symmetric monoidal structure 8XH,,.(k)® which is simultane-
ously cartesian and cocartesian. As the canonical composition NeS(k) — 8H,.(k) preserves direct
sums (this follows from 1) the fact the Yoneda functor preserves limits; 2) the fact representables are
Nisnevich local; 3) the fact the Al-localization preserves finite products (as explained when confirming
that it preserves the Segal conditions) and finally 4) the fact that 83, .(k) is stable.) it can be lifted
in a essentially unique way to a monoidal functor NeS(k)® — 8H,..(k)® ([100, Cor. 2.4.1.8]). This
monoidal map allows us to transport algebras and provides a commutative diagram

Fun®°9* (N (A)°P, NeS(k)) ——= Fun®9* (N (A)%, 8y (k) (7.4.21)
Algass(NeS(k)) Algass(8Hne(k))
E’U[l] lw l'\/ 6’0[1]
NCS(/C) Sj{nc(k)

where the upper map is the composition with NcS(k) — 8H,,.(k). It follows from the description of
© above and from the commutativity of this diagram that the simplicial object [}{ 0 j,,.0© in 8, (k)
corresponds to the unique commutative algebra structure on 1,. := I}¢ 0 jne(Lpe(k)) created by the
codiagonal.

Our next task is to study the theory of associative algebras on a stable (oo, 1)-category equipped
with its natural simultaneously cartesian and cocartesian monoidal structure induced by the exis-
tence of direct sums. We recall some terminology. If €® is a cartesian symmetric monoidal struc-
ture, an associative algebra on € is said to be grouplike if the simplicial object which codifies it
A € Fun®¢9¢(N(A°P), €) is a groupoid object in € in the sense of the definition [99, 6.1.2.7]. We let

Alg%spslike(e) denote the full subcategory of Algass(C) spanned by the grouplike associative algebras.

Let now A% be the standard augmentation of the category A°?. Following [99, 6.1.2.11], an object
Uy € Fun(A%, @) is said to be a Cech nerve of the morphism Uy — U_y if the restriction U |y (aor)
is a groupoid object and the commutative diagram

10Recall that the associative operad is unital.
11 The fact that the multiplication can be identified with the codiagonal map follows from the simplicial identities
and from the universal property defining the codiagonal.
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U1 E—— UO (7.4.22)

L

Up——=U_

is a pullback diagram in €. Again by [99, 6.1.2.11], a Cech nerve U, is determined by the map Uy —
U-1 in a essentially unique way as the right-Kan extension along the inclusion N(A%_;) C N(AZ).

We have the following lemma:

Lemma 7.4.8. Let C® be a cartesian symmetric monoidal (0o, 1)-category whose underlying (oo, 1)-
category is stable. Then

1. The inclusion Alg9™P""*¢(C) C Alg(@) is an equivalence;

2. For any object X in C the simplicial object associated to X by means of the composition (7.4.20)
is a Cech nerve of the canonical morphism 0 — XX

Proof. The first assertion is true because in any stable (0o, 1)-category every morphism f: X — Y
has an inverse —f with respect to the additive structure'?. In particular, for any object X € € there
is map —Idx providing an inverse for the algebra structure given by the codiagonal map X ® X — X.
More precisely, let X be an object in € and let Ux be the simplicial object associated to X by means
of the mechanism (7.4.20). By construction this simplicial object satisfies the Segal condition and
in particular we have (Ux)g ~ 0 and (Ux); ~ X. We aim to prove that this simplicial object is
a groupoid object. For that we observe that for a simplicial object A to be a groupoid object it is
equivalent to ask for A to satisfy the Segal conditions and to ask for the induced map

_AOPAD (1)) x A1) (7.4.23)

A([2])
to be an equivalence. Indeed, if A is a groupoid object, by the description in [99, 6.1.2.6 - (47)] it
satisfies these two requirements automatically. The converse follows by applying the same arguments
as in the proof of [99, 6.1.2.6 - 4)” implies 3)], together with the observation that for the induction
step to work we don’t need the full condition in 4’) but only the Segal condition. The induction
basis is equivalent to the Segal conditions for n = 2 together with the condition that (7.4.23) is an
equivalence.

In our case (7.4.23) is the map Vxidyx : X®X — X®X where V is the codigonal map XX — X.
Of course, since the identity of X admits an inverse (—Idx) the map (Vo (Idx x (—Idx))) x Idx is
an explicit inverse for V X idx.

Let us now prove 2). Again by construction, we know that the colimit of the truncation (Ux ), (Aci)oP

is canonically equivalent to the suspension ¥X. Therefore Ux admits a canonical augmentation
(Ux)* : N(A?) — € with (Ux)*, ~ XX. It follows from 1) that U is a groupoid object and since €
is stable, the diagram

(Ux)i =X ——> (Ux)o ~0 (7.4.24)
(Ux)o~0—— (Ux)_1 2 XX

is a pullback so that (Ux)™ is the Cech nerve of the canonical map 0 — XX. O

12More precisely o Map(X,Y) has a canonical structure of abelian group.



7.4 The A'-localization of non-connective K-theory is the unit non-commutative motive 201

In particular, we find that the simplicial object /{51 © jnc 0 © is a Cech nerve of the canonical map
0 — 31,,.. Finally, recall that a morphism A — B is said to be an effective epimorphism if the colimit
of its Cech nerve is B. The following lemma holds the final step

Lemma 7.4.9. Let C be a stable (00, 1)-category. Then, for any object X in C, the canonical morphism
0 — X is an effective epimorphism.

Proof. Let U : N(A°) — € be a simplicial object in €. Then the colimit of U can be computed as
the sequential colimit of the sucessive colimits of its truncations U|N(A2p . Using the descriptions of
Cech nerves as right-Kan extensions (see above) we know that if U is the Cech nerve of the map
0 — X, its level n is given by the n-fold fiber product of 0 over X. As C is stable this n-dimensional
limit cube will also be a colimit n-cube so that the colimit of the truncation at level n will necessarily
be X (See the Proposition [100, 1.2.4.13]). Since this holds for every n > 0 the colimit of the Cech
nerve is necessarily canonically equivalent to X. O

We are done. Since 8H,.(k) is stable we have colimaor 181 9Jnc 0O = Xy, so that, by the lemma
7.4.4 we have 154, (Q2°°(K¢)) is equivalent to Q¥1,. ~ 1,..






CHAPTER 8

Localizing Noncommutative Motives and the

comparison with the approach of
Cisinski-Tabuada

In this chapter we explain the relation between our approach to noncommutative motives and the
approach already studied by G. Tabuada in [133, 135] and Cisinski-Tabuada in [35, 34]. Both theories
have the (0o, 1)-category Fun,,(Dg(k)em, 3’5) as a common ground. To start with we observe that
our version 8H,.(k) can be identified with the full subcategory spanned by those functors F' sending
Nisnevich squares of dg-categories to pullback-pushout squares in spectra and satisfying Al-invariance.
Indeed, our original definition of 83,.(k) as a localization of Fun(Dg(k)’.Sp) can be transported
along the equivalence

Fun,(Dg(k)"*™, Sp) ~ Fun(Dg(k)'", Sp) (8.0.1)

Remark 8.0.10. We give a more precise description of this localization. Given a noncommutative
smooth space X associated with a dg-category of finite type Ty, the image of X in Fun(Dg(k)/?, Sp)
under the spectral Yoneda’s embedding is just the corepresentable ¥5° Mapp kst (T, —). Moreover,
since Dg(k)¥* is the full subcategory of compact objects in Dg(k)*¥*™ (6.1.27) the image of this corep-
resentable under the equivalence (8.0.1) is the corepresentable YEMapp g(kyidem (T, —). We consider
Fung, nis(Dg(k)i4e™, Sp) the reflexive accessible localization of Fung,(Dg(k)i%™, Sp) obtained by in-
verting the small set of all maps of the form

5ZfMapng(k)ide7n (TV7_)(K) H 6ZfMaprg(k)ide7n (Tlla_)(K) — (8’0'2)

500 ) (K)

+ Ivjaprbg(k)idem (Tw,
5Ef1\1aprpy(k)ide7n (TX7_)(K) (8'0'3)

for K a compact spectrum and induced by the Nisnevich squares

L

TV 4>TW

of dg-categories as described in the discussion following the definition in 6.4.7. See the notations at sec-
tion 5.4. By the theorem [99, 5.5.4.15] this is an accessible reflexive localization of Fun,,(Dg(k)™, Sp)
and now by construction the local objects are those functors F' : Dg(k)de™ — é\p commuting with
filtered colimits and sending the classical Nisnevich squares of dg-categories of finite type to pullback-
pushout squares. To conclude this discussion we remark that the existing left adjoint to the inclusion
Funy, nis(Dg(k)ie™ Sp) C Fun,(Dg(k)*e™ Sp) fits in a commutative diagram

203
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Fung,(Dg(k)idem, Sp) —= > Fun(Dg(k)*t, Sp) (8.0.5)

| -

Fung, nis(Dg (k)%™ Sp) ~— Funy,s(Dg(k)’*, Sp)

We can now proceed in analogous terms and localize with respect to A! to obtain our new descrip-
tion of 8H (k).

Tabuada’s approach focuses on the full subcategory Fung, roc(Dg(k)i®e™, g;) spanned by those
functors sending exact sequences of dg-categories to fiber/cofiber sequences in spectra. His main
theorem is the existence of a stable presentable (oo, 1)-category which we denote here as Mfﬁf, together
with a functor Dg (k)™ — ML preserving filtered colimits, sending exact sequences to fiber/cofiber
sequences and universal in this sense. We can also easily see that MZ% is a stable presentable
symmetric monoidal (0o, 1)-category with the monoidal structure extending the monoidal structure
in Dg(k)e™. This result was originally formulated using the language of derivators (see [101] for
an introduction) but we can easily extend it to the setting of (oo, 1)-categories by applying the same
construction and the general machinery developed by J. Lurie in [100, 99]. In particular we have an

equivalence of (00, 1)-categories

Funw7LOC(Dg(k)idem, 3’;;) ~ FunL(Mggg, 3’;) (8.0.6)

As we can see this is a theorem about a specific class of objects inside Funw('Dg(k:)idem,g'E),
namely, those that satisfy localization. The comparison with our approach starts with the observation
that any object F' satisfying localization satisfies also our condition of Nisnevich descent so that
we have an inclusion of full subcategories Funy, r,0c(Dg(k) ™, Sp) C Fung, nis(Dg(k)ie™, Sp). In
particular, we can identify

SHEL (k) := Fung, p.oc,n1 (Dg(k)™*™, Sp) (8.0.7)
with a full subcategory of 8H,,.(S). We summarize this in the following diagram

Fun,(Dg(k)'*™, Sp)

/\

Fung nis(Dg(k)i4em Sp) > Fune, poc(Dg (k)%™ Sp)
Fung, nis a1 (Dg(k)" ™, Sp) =: 83 (k) O8FHLoe (k)
(8.0.8)

The second observation is that the construction M%% of Tabuada and the formula (8.0.6) admits
analogues adapted to each of the full subcategories in this diagram. More precisely one can easily

show the existence of new stable presentable symmetric monoidal (oo, 1)-categories MA2%, M%‘:g At

M{gé’ a1 all equipped with w-continuous monoidal functors from Dg(k)ide™ universal with respect to

each of the obvious respective properties. In particular we find an equivalence

Fun® (M2 ., Sp) =~ 83, (k) (8.0.9)

exhibiting the duality between our approach and the corresponding Nisnevich-A'-version of Tabuada’s
construction (recall that the very big (oo, 1)-category of big stable presentable (co, 1)-categories has
a natural symmetric monoidal structure [100, 4.8.2.10, 4.8.2.18 and 4.8.1.17] where the big (oo, 1)-

category of spectra 51\0 is a unit and Fun®(—, —) is the internal-hom).
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To conclude this discussion, one can show that all the vertical inclusions in the diagram admit
monoidal left adjoints and that, in particular, 8HZ2¢(k) is endowed with an obvious universal property
concerning Localizing descent. In fact it it enough to describe a monoidal left adjoint to the inclusion
8HLoc(k) C Fun,(Dg(k)i4e™ Sp) because, as Localizing descent forces Nisnevich descent (see the
arguments in the proof of the Prop. 7.1.4), the universal properties involved will then provide a
monoidal left adjoint to the inclusion 8H%2¢(k) C 8H . (k), relating our theory to the dual of localizing
theory of Tabuada

ILoc : 8FHne(k) — 8FEoC(k) (8.0.10)
Construction 8.0.11. The existence of a monoidal left adjoint to the inclusion
832 (k) C Fun(Dg(k)’", Sp)
follows essentially by the arguments of Chapter 6. We first consider the canonical functor
X7 (Dg(k)idemyor — Pbi9I(NeS(k)) (8.0.11)
defined by the formula

X! = Mapyp g(yidem (T, —) (8.0.12)

such that when T is of finite type this is just the Yoneda’s inclusion NeS (k) — P(NeS(k)). We denote
again by the same symbol x(~) the composition with the stabilization

PYi9(NeS(k)) — Stab(PP(NeS(k))) ~ Fun(Dg(k)¥*, Sp) ~ Fung,(Dg(k)™™, Sp) (8.0.13)

and consider the localization of the last with respect to the following class of maps: if

A
*
is an exact sequence of dg-categories in sense discussed in section 6.4.1, and K is a compact object in
Sp, we consider the canonical map

(8.0.14)

R

5yc(K) = fiber(8ys (K) — 6,4 (K)) (8.0.15)

One can check that the collection of maps of this form is of small generation (see [133, Sec-
tion 10]) and we consider the localization of Fun,(Dg(k)e™, 3]\0) with respect to it. The result is
obvisouly equivalent to Fumn, ro.(Dg(k)em, 3”5) Then, by definition, 83£2¢(k) is obtain by forc-
ing Al-invariance via the standard procedure. The whole procedure is monoidal (this follows from
the same arguments as in the proof of the Prop. 6.4.14-2)) so that $HL¢(k) acquires a symmetric
monoidal structure SHL® (k) and the monoidal functor NeS(k) — SHLC(k) is seen to have the
obvious monoidal universal property with respect to exact sequences of dg-categories.

Remark 8.0.12. The previous construction can also be made using presheaves of spaces.

Remark 8.0.13. Notice also that 8HL2¢(k) is stable by the same reasons 8H,.(k) is: combine the
arguments in the Prop 6.4.19 with the fact the universal map I7o. : 83, (k) — 83L2¢(k) is monoidal
and commutes with colimits. Moreover, as in the Prop. 5.3.3 and in the Remark 6.4.25 we can check
that collection of noncommutative motives of dg-categories of finite type forms a family of compact
generators in 8HLo¢(k). Indeed, to see this it is enough to check that the inclusion of 8§3L9¢(k)

inside Fun,, (Dg(k)ide™, 3;)) commutes with filtered colimits: if {F;};c; is a filtered family of functors
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Dy(k)idem — 3’5, each one sending an exact sequence of dg-categories to a pullback square in spectra
and satisfying A'-invariance, then the colimit functor colim;F; will again satisfy Al-invariance and
send exact sequences of dg-categories to pullbacks in spectra. This is because colimits of functors are
computed objectwise and also because filtered colimits in spectra commute with pullbacks.

Remark 8.0.14. It follows from the universal property of 8HL%¢(k) and from the discussion in
Section 6.4.1 that if X is a quasi-compact and quasi-separated scheme over k and i : Z — X is a
closed subscheme (over k) with open complementary j : U — X, the image of the exact sequence of
dg-categories in the diagram (6.4.6) becomes a cofiber/fiber sequence in 8HL2¢(k). In particular, the
image of yre.Z2(X) becomes the homotopy cofiber of the image of the inclusion yZve(V) — yLre(X),

Remark 8.0.15. Let F' € Fun(Dg(k)/?, @) Suppose that the truncation 7> F satisfies Localization
(meaning, sends exact sequences of dg-categories to homotopy fiber sequences in 3’5>0). Then, using
exactly the same arguments used to prove the Proposition 7.2.23, we find that the B-construction of
Thomason is an explicit model for the localization in the Construction 8.0.11.

By the theorem 7.0.32, the unit in 8X,.(k) is equivalent to the homotopy invariant K-theory
functor. In particular, it satisfies localization and therefore lives in the subcategory 8HLo¢(k) (where
it is also a unit because Iz, is monoidal). Combining this fact with the Corollary 7.0.33 and the
fact that 1. is left adjoint to the inclusion, we find that l;,. is an equivalence when restrict to the
subcategory of noncommutative motives generated by smooth and proper dg-categories. Moreover,
following the same arguments as in the proof of the Corollary 7.0.37 we have

Corollary 8.0.16. Let k be a field admitting resolutions of singularities. Then the composition

Ioe © Locr = Modsc g (SH(K)) — 8Fpe(k) — STE(k) (8.0.16)
is fully faithful.

As emphazised before, the main advantage (in fact, la raison-d’étre) of our approach to noncom-
mutative motives is the easy comparison with the motivic stable homotopy theory of schemes. The
duality presented in this chapter explains why the original approach of Cisinski-Tabuada is not directly
comparable. The second main advantage is the canonical way in which we extract non-connective K-
theory out of connective K-theory.
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CHAPTER 9

Preliminaries lll - Functoriality and Base
Change

In this section we explore some technical results that will be necessary to the discussion in the next
chapter. In sections 9.1 and 9.2 we analyze the relative behavior of the theory of motives and noncom-
mutative motives as the base ring varies. These results are then applied in section 9.3 to extend the
theories of motives and noncommutative motives to general base schemes: for any base scheme S we
introduce stable presentable symmetric monoidal (oo, 1)-categories SH®(S) and SHE,(S) encoding,
respectively, the theories of commutative and noncommutative motives over S, together with a bridge
LE 1 8H®(S) — SHZ,(S) relating the two. Moreover, we study the behavior under a change of S.
In paralell we will also introduce symmetric monoidal (oo, 1)-categories $HL2¢®(S) and promote the
monoidal localization functor of the previous chapter to a natural transformation SH®, — SHLoe®.

As a last preliminary step, in section 9.4, we combine the results of J. Ayoub in [6, 7] with the
recents results in [93, 94] to describe the existence of a formalism of six operations for the system of
symmetric monoidal (oo, 1)-categories SH®.

9.1 Functorial Behavior of k — 8H(k)® and k — 8F,.(k)®

We choose universes U € V € W and W will be assumed to be an element of an even bigger universe
which we allow ourselves to omit from the notations. We will write Cato, (resp. 8§5™), Cat®¥d (resp.
§) and Cat??% (resp. §°*"9) to denote, respectively, the big (0o, 1)-category of small (oo, 1)-categories
(resp. small spaces), the very big (oo, 1)-category of big (oo, 1)-categories (resp. big spaces) and the
(very very big) (oo, 1)-category of very big (oo, 1)-categories (resp. very big spaces). We will write
Prl to denote the non-full subcategory of Cat?’9 spanned by those very big (0o, 1)-categories which
are V-presentable.

Let N(Aff) be the nerve of the category of (small) affine schemes and N(BAff) be its full subcate-
gory spanned by those affine schemes that are Noetherian and of finite Krull dimension. In section 9.1
we show that both the assignments k — 8H(k)® and k — 8H,,.(k)® can be encoded as co-functors
oo-functors SH®,8HE, : N(BAff)? — CAlg(Prk,,) and that the collection of monoidal functors
L2 8H(S)® — 8Hye(k)® provides a natural transformation SH® — SHE,. This is the same as say-
ing that the L% are compatible under base change. In section 9.2 we prove that both the co-functors
SH® and 8H®, are stacks of symmetric monoidal co-categories with respect to the Zariski topology
in N(BAff). Finally in 9.3 we use these descent properties to explain how the extend our definitions
to any Noetherian scheme of finite Krull dimension.

We organize this section in two steps:

Step 1) The construction of the co-functors SH®, 8HE, : N(Aff)” — C Alg(Prk,,), encoding respec-

nc

tively the assignments k — 8H(k)® and k — 83,.(k)®. This of course uses the fact that

209
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for any morphism of rings u : k — k' the base-change along u is compatible with both the
commutative and noncommutative definitions of Nisnevich topology and affine line.

Step 2) We check that the collection of monoidal functors £F : SH(S)® — 8H,.(k)® provides a
natural transformation SH® — SHE,

Step 1)

We start by dealing with the assignment k — 8H(k)®. Again let N(Aff) be the nerve of the
category of small affine schemes. It is a big (0o, 1)-category. Let

Fun(A[1], N(Af)) — N(Af) (9.1.1)

be the evaluation at 1. We let Sm denote the full subcategory of Fun(A[l], N(Aff)?’) spanned
by those morphisms Spec(A) — Spec(k) in N(Aff) such that k is Noetherian and of finite Krull
dimension and A is smooth of finite type over k. For each Spec(k) € N(BAff)°", its fiber over the
composition Sm C Fun(A[l], N(Aff)??) — N(Aff)? is equivalent to the nerve of the category of
smooth affine schemes of finite type over k, N (AffSm’"(k)). One can easily check that this composition
is a cocartesian fibration because smooth algebras are stable under base change. Therefore, using the
oo-categorical version of the Grothendieck construction (see [99, Chapter 3]) this can be arranged as
an oo-functor

Sm : N(BAff)?? — Cat’9 (9.1.2)

sending Spec(k) to the nerve N(AffSm’"(k)). As for any ring k the later category has finite prod-
ucts and as for any morphism of affine schemes Spec(k’) — Spec(k), the induced pullback functor
N(AffSm’ (k) — N(AfSm’ (k")) preserves finite products, using the equivalence between (0o, 1)-
categories with finite products and cartesian symmetric monoidal structures together with monoidal
functors (see [100, Corollary 2.4.1.9], we find that our functor admits a lifting to an oo-functor

Sm* : N(BAff)? — CAlg(Cat?) (9.1.3)

this time sending k to the nerve of the category N (AﬁSmf "(k)) endowed with the tensor structure
given by the cartesian product.

We now consider the composition

N(BAf)™ —— CAlg(Cat’9) 25 A1g( Cat?tis (%))

where X is the collection of all small simplicial sets and Cat?’"¥(X) is the non-full subcategory of
Cat®® spanned by the (0o, 1)-categories having all (big) colimits together with colimit preserving
functors. By [100, 4.8.1.3, 4.8.1.4 and 4.8.1.9] this has a natural symmetric monoidal structure
and the functor S — P(S) is monoidal with respect to this tensor product. As the full inclusion
Prl C Cat®?"(X) is monoidal (see [100, 4.8.1.14]) and the (oo, 1)-categories ?(N(Ajj‘Smft(k))) are
presentable, the previous composition factors as

PSm* : N(BAfF)" — CAlg(Prh)

We now explain how to pass from the (oo, 1)-categories P(N (AffSm’*(k))) to the Nisnevich-Al-
localizations H(k) in such a way that the functoriality with respect to the base is respected. For
this purpose we will need to perform a small digression. Following the construction [100, 4.1.3.1], it
is possible to construct an (oo, 1)-category WCat??"9 whose objects are pairs (€, W) with C a very
big (oo, 1)-category and W a class of arrows in € that is stable under homotopies, composition and
contains all equivalences. By construction this (oo, 1)-category comes equipped with a forgetful func-
tor WCat??9 — Cat®® defined by forgetting the class of arrows. Moreover, it is endowed with
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a cartesian symmetric monoidal structure given by the product of pairs and the forgeful functor is
monoidal. Furthermore, the forgetful map admits a canonical fully-faithful left adjoint sending an
(00, 1)-category C to the pair (C, W) with W the collection of equivalences in €. By [100, 4.1.3.2],
this section admits a left adjoint. In other words, there is an co-functor Loc : WCat¥%9 — Cat?b9
sending a pair (€, W) to an (0o, 1)-category C[W —1] with the universal property of the localization.

We set WPrl as a notation for the (non-full) subcategory of WC’atggig spanned by those pairs
(€, W) with € a very big presentable (0o, 1)-category and W a strongly saturated class of arrows in
C which is of small generation (see [99, 5.5.4.5, 5.5.4.7]). As a result of [99, 5.5.4.15 and 5.5.4.20], the
composition of Loc with the inclusion WPrl C WCatgobig admits a factorization

WPrLC— W (Cat*" (9.1.4)

\

‘ i

V .
PriC— Cat?l

Let us denote this new factorization as LocP”. Our main observation is that LocP™ can be given
the structure of monoidal functor. As already discussed in this section Pr” is closed under the tensor
structure in Catggig (X) and the same arguments that allow the monoidal structure in Pr” can now
be used to give a monoidal structure to WPrl: let WCatX — N(Fin.) be the cocartesian fibration
encoding the cartesian symmetric monoidal structures on pairs and let WCat“*"¥(%)® denote the
non-full subcategory of WCatX spanned by those sequences ((€1, W1), ..., (Cn, W,)) such that for
every ¢, C; has all colimits, together with those morphisms of pairs u : ((C1, W1), ..., (Cp, Wy,)) —
((D1,51), s (D, Sm)) such that the corresponding maps

Hjef—l({i})(ej, Wj) — ('D“SZ) with 7 € {1, ,m} (915)

are given by functors that preserve colimits in each variable separately. In this notation, f : (n) — (m)
is the projection of w in N(Fin.).

Proposition 9.1.1. The composition p : \/\76‘@75221'5’('JC)® C WCaty, — N(Fin,) is a cocartesian
fibration. Moreover, the non full inclusion WCat’2"9(K)® — WCat’?9* is lax monoidal.

Proof. Recall that the tensor product in Catgobig (X) is defined by means of a universal property: if C
and € both have all colimits, we can fabricate a new (oo, 1)-category € ® €’ having all colimits and
equipped with a functor € x €’ — € ® €’ universal with respect to the property of preserving colimits
separately in each variable (see [99, 5.3.6.2]). It follows that as soon as we construct an analogous
universal property in the context of pairs, the proof of this proposition will follow using arguments
similar to those in [100, 4.8.1.3]. Let us address the universal property. Let (C1,W7) and (Cq, Wa)
be two pairs with C; and Cy having all colimits. We define their tensor product as follows: the
underlying (co, 1)-category of the pair is the tensor product €; ® Cy in Cat’?¥(X). For the collection
of morphisms we consider the image of the product collection W7 x Wy in €1 x Cs along the universal
map C; X Gy — C; ® C3. We denote this collection as W7 ® W5 so that the product pair can be
written as (C; ® Co, W7 ® Wa). Of course, by definition the universal map provides a morphism of
pairs (C1, W7) x (C2, W3) — (C1 ® Co, W1 ® Wh). We are left to check that for any pair (D, S) with
D having all colimits, the composition along this morphism

Mapwcat‘o’é’ig((el ® 627 Wl & W2)7 (D7 S)) — Mapwcatggig((ela Wl) X (623 W2)7 (97 S)) (916)

induces an homotopy equivalence between the subspace of maps of pairs that preserve colimits (on the
left side) and the subspace of maps that of pairs that preserve colimits separately in each variable (on
the right side). But of course, this follows from the full universal property of the construction € ® ¢
because the mapping spaces of pairs are summands of the mapping spaces in Cat”ogig obtained by
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forgeting the collections of arrows, together with the fact that the definition of W7 ® W5 is compatible
with this universal property.
O

Using the same arguments of [100, 4.8.1.14] we can also prove that the full subcategory WPrL:®
of WCatggig(SC)‘@ spanned by those sequences ((C1, W1), ..., (C,, W,,)) where each C; is presentable, is
closed under this monoidal structure. Moreover, as we can identify Pr” with the full subcategory of
WPrL spanned by those pairs (€, W) where W consists of the collection of all equivalences in € and as
LocP™ provides a left adjoint to this inclusion, we can use the arguments in the proof of [100, 4.8.1.14]
to check that the formula Loc?" ((C,W)) ® Loc((D, S)) ~ LocP™ ((€, W) ® (D, S)) holds. This implies
the necessary conditions to apply [100, Prop. 2.2.1.9] and deduce that LocP™ is a monoidal reflexive
localization and that the induced monoidal structure on Prl is the same we had before.

Following this discussion, LocP” extends to algebra-objects so that C’Alg(fPrL) becomes a reflexive
localization of C Alg(WPrl). At the same time, as the forgetful functor‘WCatggzg — Cat®™™ commutes
with products, it extends to a monoidal functor WCatgé"g X Catgé”g "* 50 that the composition

WPrH€ CWCatee (K)""99 — WCats' "™ — Cati'"™ (9.1.7)

is lax monoidal. As explained above, this composition factors through Pr™® so the forgetful functor
restricts to a lax monoidal functor WPr&® — Prl:® In particular this makes it possible to extend
the forgetful functor to algebra-objects for : CAlg(WPrl) — C Alg(Prt).

Let us now apply this discussion to our situation. Consider PSm>* the functor obtained at the
end of the last step. Now, as the forgeful functor is lax monoidal it induces a map C Alg(WPrk) —
CAlg(Prl), so that we can identify a coherent choice! of a class of arrows on each (oo, 1)-category
P(N(AffSm”" (k))) with the data of a lifting

C Alg(WPrk) (9.1.8)
7
_ ~ - J{fo"'
N(BAF)™ 25 0 Alg(PrE)

As it can easily be checked, the definition of a Nisnevich square of schemes is well-behaved under
base-change. In this case, the data provided by the generating Nisnevich-equivalences 2satisfies the
necessary coherences so that it defines a lifting

C Alg(WPrt) (9.1.9)

Psml,. -7
ﬁ”y lfor

-

N(BAF)™ 52 0 Alg(PrE)
and we define a new co-functor Hy;,, as the composition

fPSmX. pr
N(BAfF)? — = 222 » CAlg(WPrl)y — 225 C Alg(PrE) (9.1.10)

It follows from the universal property of the localization that for every ring k, the underlying
(00, 1)-category of Hy, (k) recovers (up to equivalence) the full subcategory of P(N (AffSm’ (k)))
spanned by those presheaves that satisfy Nisnevich descent. We now repeat this procedure to obtain

Imeaning, stable under base change

2for a fixed ring k, this is the collection of all maps 5(U) I;w) (V) = §(X) for any Nisnevich square of smooth
schemes over k, with j the Yoneda’s embedding
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the Al-localized version of the theory. Again, as the definition of affine line is compatible with base-
change, the data of the generating A'-equivalences 3 satisfies the necessary coherences and therefore
can be identified with a lifting

C Alg(WPrk) (9.1.11)

X 7
:HNis,Al/ -
_ for

-

j-C1>\<I'is
N(BAff)? —> C Alg(Prh)

so that again by composition with LocP™ we obtain a new oo-functor H* sending a ring k to the
cartesian presentable symmetric monoidal (0o, 1)-category H(k)*.

Following the discussion in 5.2.1, we consider the composition with the pointing map

3 N(BA)™ 2 o Alg(Prt) % CAlg(PrE, ) CAlg(PrE)

We come now to the last step of the construction, namely, the inversion of an object with respect
to the monoidal structure. We recall our discussion in the section 4.1 where this procedure was
developed. For any presentable symmetric monoidal (0o, 1)-category C® together with the choice of
an object X € C, we consructed a new presentable symmetric monoidal (oo, 1)-category C®[X 1]
together with a monoidal map € — €®[X ~!] sending X to a ®-invertible object and universal in this
sense within presentable symmetric monoidal (oo, 1)-categories. Using the same notations as there,
the data of a pair (€®, X € €) can be identified with a lifting

CAlG(PrE)p(prece (afo)ye .
®.x) -7 l

—
—~

A[0] CAlg(Prt)

where A[0] — C Alg(Prt) is the 0-simplex corresponding to €%, P(free®(A[0])® is the free cocomplete
symmetric monoidal (oo, 1)-category generated by one object, and the map C Alg(Pr’)p(freee (Ao /- —
CAlg(Prt) is the evaluation at the target. Under this identification, C®[X ~!] is, by definition, the
target of the O-cell in CAlg(TTL)(P(fTGG®(A[O])®/_ given by the coproduct of (¥, X) with the functor

71 P(free®(A[0])® — T(L%reﬁ@[ol)’*)(free®(A[O]))® (9.1.12)

providing the universal monoidal colimit-preserving ®-inversion of the solo generating object in
P(free®(A[0])® (see our discussion in Section 4.1 for the details).

We are now interested in a relative formulation of this situation. More precisely, given a simplicial
set K together with a diagram ® : K — CAlg(Pr%) and the data of a family of objects {X, €
®(a) } ek, which is compatible with ® (in the sense that for any arrow in ¢ : @ — o’ in K we have
equivalences X, ~ ®(t)(X,)), we want to define a new K-indexed diagram @[{Xa};éKo] K —
C Alg(Prt) together with a natural transformation u : ® — @[{Xa};éKo] such that for each a € Ky,
the monoidal functor u, exhibits ®[{X,}.. x,)(a) as the universal ®-inversion of the object X, in
®(a) and for any arrow ¢ : & — o in K the induced functor @[{Xa};éKO](t) is the one induced by
the universal property of the universal ®-inversion.

Of course, the preceeding discussion for a single object generalizes to this case: First we observe
that the choice of compatible collection of objects {X, }ack, is defined by the choice of a lifting

3For a fixed ring k this the collection of all projection maps j(X x A}) — j(X), with X a smooth k-scheme.
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CALG(Pri)p(preeo (apo)® .
((bv{Xa}aEK)D)/?' \L

—
—
—

K= CAlg(Prt)

At the same time, we have a constant functor K — C’Alg(fPrL)ga(free@g(A[O])@;/, sending every
vertice of K to the universal ®-inversion [*~!] considered above. We will now use the same notation
to denote this constant K-indexed diagram. Finally, we define a K-indexed diagram ®[{X,}, ¢ Ko @S
the target of the coproduct

O Xatuer,) = (2, {Xataero) [T+ 7] (9.1.13)

in Fun(K, CAlg(iPrL)T(free@p(A[O])®/.). By definition, it comes equipped with a natural transformation
u:d— @[{Xa};éKO] that fits in a pushout diagram

[+

P(free®(A0])® ———— ?(L?fm@wm*)(free®(A[0]))® (9.1.14)
i{th}aeKo l
® : O[{Xotoer,)

in Fun(K,CAlg(Prt)) (with both the top entries understood as constant K-indexed diagrams). To
conclude, as pushouts of diagrams are computed objectwise [99, 5.1.2.3], we get the expected universal
property for wu.

Let us now apply this discussion to our main goal. We consider the diagram H’ together with the
collection of objects { (PP}, 00) } spec(k)en (Aff)- This collection of objects is compatible in the sense spec-
ified above because the definition of projective line is stable under base change. Using the preceding
discussion we set

8H? := F{S A G (k)Y gpectye niag) (9.1.15)

The universal properties of our relative construction imply that for any ring k the presentable
symmetric monoidal (0o, 1)-category SH®(Spec(k)) is canonicaly equivalent to SH(k)®. In particu-
lar, SH® factors through C Alg(Prk,,).

kkk

We now deal with the case k — 8H,.(k)®. As in the previous case, the first step is to organize
the assignment k — NcS(k)® as an oo-functor

NeS® : N(Aff)? — CAlg(Cat’) (9.1.16)

To achieve this we can proceed as follows. For any ring k we consider Catcy,x) the (big) category
of small categories enriched in chain complexes of k-modules. If k& — &’ is a morphism of rings we
have an induced base change functor Ch(k) — Ch(k’) which extends to Catcyp k) — Catopry. This,
we can check, makes the assignment k — Catcop(x) a pseudo-functor. Using the usual strictification
procedure (back and forth using the Grothendieck construction) it can be strictified and encoded as
a functor

Aff°P — Cat® (9.1.17)
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Moreover, for any ring k, Catcpyy carries a natural symmetric monoidal structure induced by
the tensor product of complexes and for any morphism k& — k&’ the induced base-change is monoidal.
Therefore, the previous functor can actually be seen as

AffoP — CAlg(Cat®9) (9.1.18)

where CAlg(Cat®®9) denotes the category of classical symmetric monoidal categories. As a third
important ingredient we consider the model structure on Catcy k) with weak-equivalences given by
the Dwyer-Kan equivalences of dg-categories. As we know this model structure is not compatible with
tensor products. In this case, we consider Catlc(i}i( 5 the full subcategory of C'atcy, () spanned by those
dg-categories having cofibrant enriching complexes. As cofibrant complexes are levelwise projective
(therefore flat) and stable under tensor products ( Ch(k) is a monoidal model category), Catlg;(_kc)of
is closed under the monoidal structure in Catcpry and the tensor product of weak-equivalences is
again a weak-equivalence. Moreover, as for any morphism of rings & — k’ the induced base change
Ch(k) — Ch(k') is a left Quillen functor, it preserves cofibrant objects and weak-equivallences between
them ([69, 1.1.12]) so that the assignment k C’atlé’fl(_kc)of provides a functor

AffoP — CAlg(WCat®9) (9.1.19)

where CAlg(WCat®¥) is our notation for the category of classical symmetric monoidal categories
equipped with a collection of morphisms stable under tensor products, together with monoidal func-
tors compatible with the data of those collections.

By applying the nerve functor we get an co-functor

N(Af)? — N(CAlg(WCat®9)) (9.1.20)

where the last (oo, 1)-category is equivalent to the C'Alg(N (WCat"¥)) (see [100, 2.1.3.3]). Of course,
there is a fully-faithful inclusion N(WCat"¥) C WCat®9 which preserves cartesian products and
therefore extends to an inclusion C Alg(N(WCat9)) C C Alg(WCat’9). We set Dg®" as the compo-
sition

N(Aff)?? — N(CAlg(WCat®9)) ~ CAlg(N(WCat"¥)) C CAlg(W Cat®?) — CAlg(Cat®)
(9.1.21)
where the last arrow is the localization functor Loc.

We now consider the Morita model structure on Catcop(x) [131]. Tt is a Bousfield localization of the
standard model structure considered in the discussion above. In particular, it has the same cofibrant
objects. Again, the tensor product of dg-categories it not compatible with this model structure but
everything works if we restrict to locally-cofibrant dg-categories. By applying the same arguments as
above we end up with a functor

AffoP — CAlg(WCat®9) (9.1.22)

loc—cof

(up to equivalence of categories) sending a ring k to the pair (CatCh(k) s Witorita) With Catlg;(—,g’f
endowed with the tensor product of dg-categories and Wisritq the collection of Morita equivalences.
We let Dg’@*™@ denote the result of applying the formula in (9.1.21) to this functor.

As Dwyer-Kan equivalences of dg-categories are Morita equivalences, we have a canonical natural
transformation from (9.1.19) to (9.1.22) which, as the nerve functor preserves internal-homs, induces

by transport along (9.1.21) a natural transformation of co-functors Dg® — Dgidem:®,

Remark 9.1.2. For any ring k this natural transformation is nothing but the process of idempotent
completion (*)pe' More precisely we have commutative diagrams
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—®Kk’

N(Catenwy)[Wpk] N(Catcnw)Wpk] (9.1.23)

Lid Lid
N(CatCh(k) ) [W&i,.im] N(CatC’h(k’) ) [W]Qi)’rita]

with LId a left derived functor of the identity functor. By the definition of a Bousfield localization,
this is given by a fibrant replacement in the Morita theory which we know corresponds to the process
of idempotent completion

— @Kk’

Dy(k) = N(Catenm)Wpi (9.1.24)
l(/_\)pe LId
Dgidem () —— 5 N(C’atCh(k))[Wz\}loma}

so that the commutativity of these diagrams means that base-change commutes with idempotent com-
pletion. For more details we address reader to our survey in Section 6.1.2.

We can now apply the oo-categorical version of the Grothendieck construction [99, Chapter 3]
together with [100, 2.4.2.5] to encode Dgi¥™® as a cocartesian fibration (which we will denote using
the same notation)

Dgidem.® (9.1.25)

|

N(Fin,) x N(Aff)*

Finally, we let Dg/*® denote the full subcategory of Dg?¥™® spanned by those vertices (11, ..., Ty, (n))
for which each T; is a dg-category of finite type (see [141] and our digression in Section 6.1.4). We
prove now that the composition Dg/*® C Dgidem:@ — N(Fin,)x N(Aff) is a cocartesian fibration.
First we observe that the composition map Dg/t® C Dgidem™© — N(Fin,) x N(Aff)" — N(Af)?
is a cartesian fibration. This follows of course from the Grothendieck construction since for any mor-
phism of rings f : k — k' the base change Dg(k)e™ — Dg(k')**™ has a right adjoint F}dem which
we can understand as a forgetful functor

(5K

Dgidem(k) Dgidem(k/) (9.1.26)

B ——
idem
Fy

Remark 9.1.3. There exists also a forgetful functor Fy : Dg(k') — Dg(k) right adjoint to the base-
change. Its existence can be deduced either from the adjoint functor theorem or from the fact that
the standard forgetful functor for the strict theory of dg-categories is a right Quillen functor. As the
base-change commutes with idempotent completion, we have a commutative diagram of right adjoints

Dy(K')

Dy (k) (9.1.27)

) F'idenz )
Dgzdem(k/) f Dgzdem(k.)
where the vertical maps are the inclusion functors right adjoints to the idempotent completion. As
both Dgidem (k) and Dgi¥™ (k') are the underlying (oo, 1)-categories of the Morita model structure
on dg-categories, F}dem admits an explicit description as the composition of a fibrant replacement
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functor in k’-dg-categories P (with respect to the Morita model structure), the standard forgetful
functor Fy, and finally, a cofibrant replacement functor @ k-dg-categories (again with respect to

Morita). The fibrant replacement can be described by means of the assignement T+ T) s - mean-
ing, the idempotent completion inside k’-dg-categories. For more details see the proof of [100, 1.3.4.21].

With this we can check that all the conditions in [100, 4.5.3.4] hold and conclude by observing
that:

e for a fixed ring k dg-categories of finite type are stable under tensor product in Dg(k)¥ ™ ® (see
for instance [35, Theorem 4.3]).

e for a morphism of rings f : k — k’ the induced base change functor Dg(k)ide™ — Dg(k’ yidem
preserves dg-categories of finite type. This follows because the forgetful functor F}dem preserves
filtered colimits. This will be proved in the Lemma 9.2.7 below.

To finish this discussion we apply again the Grothendieck construction and [100, 2.4.2.5] to present
this cocartesian fibration as an oco-functor
Dg/t® . N(Aff)” — CAlg(Cat®?) (9.1.28)

and use the fact that the opposite (0o, 1)-category provides an oo-functor (—)°P : Cat?¥ — _Catgig
that commutes with cartesian products and therefore induces a functor (—)° : C'Alg(Cat?¥) —
C Alg(Cat’9). With this we set

NeS® := (=) o Dglt® (9.1.29)
thus concluding our initial task.

To conclude this section we apply to NeS® exactly the same procedure described for the commu-
tative case and with this obtain an oo-functor

SHE, : N(Aff)? — CAlg(PrE,,) (9.1.30)

satisfying the expected requirements. This time the key ingredients are that 1) both the definitions of
noncommutative Nisnevich squares and noncommutative affine line, are stable under base-change (see
our results in 6.4.14 and 6.4.15) and 2) by construction, we only invert the collection of unit objects
{1x}ren(ag) which, as base-change is given by monoidal functors, satisfies the necessary compatibility
condition. To conclude we consider the restriction of SH®, to N(BAff).

Kokok
Step 2)

In this section we want to present the collection of colimit preserving monoidal functors L? :
SH(Kk)® — 8H,o(k)® as part of a natural transformation £% : SH® — 8HE . The first step is to

encode the family of monoidal functors Lf?& e N (A fSm?! (k)) — NeS(k) as a natural transformation
L, : Sm* — NeS®.

First, we consider the nerve N(SmCommAlg:)® of the category of smooth k-algebra equipped
with the tensor product of algebras. Of course, base change allows us to encode the assignemt
k + N(SmCommAlgy)® as oo-functor

N(SmCommAlg_))® : N(Aff)” — CAlg(Cat®9) (9.1.31)

so that by composing it with (—)°? we obtain Sm*.
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Now we construct a natural transformation

L : N(SmCommAlg_))® — Dg’"® (9.1.32)

whose opposite will be our ij)e. Following our steps in 6.3.3 we construct L as a composition of three
natural transformations

N(SmCommAlg_))® C Algass(D(—))® — Dg®L — Dgidem.® (9.1.33)

The last map is the one constructed above in the preliminaries to the construction of NeS®. Let
us explan the middle map. The reader can consult our discussion in Section 6.1.1 for a detailed
background. As for a ring k the (0o, 1)-category Algass(D(k)) of associative algebra objects in the
derived (o0, 1)-category of k is equivalent to the underlying (oo, 1)-category of the model structure
on k-dg-algebras - see [100, 4.1.4.4] - our strategy is to construct a natural transformation between
the strict theories of dg-algebras and dg-categories and then apply the localization functor. For a
ring k let Alg(Ch(k)) be (non-oo) category Alg(Ch(k)) of strict dg-algebras over k together with its
monoidal structure induced by the tensor product of complexes. As cofibrant algebras have underlying
cofibrant complexes (see [124]) and the tensor product of cofibrant complexes is cofibrant, the full
subcategory Alg(Ch(k))"¢=°f of dg-algebras having an underlying cofibrant complex, is closed under
tensor products. Moreover, as cofibrant complexes are flat, the product of weak-equivalences is again
a weak-equivalence. In this case, and using the fact that for any morphism of rings f : k — k'
there is an induced monoidal base change Alg(Ch(k)) — Alg(Ch(k’)) along which the notion of
locally-cofibrant is preserved (because the base change of complexes is left Quillen), the assignment
ks Alg(Ch(k))c=°/ can be presented as a functor

Affor — CAlg(WCat®9) (9.1.34)

which, after applying the nerve functor and composed with Loc (as in (9.1.21)) provides what we
denoted as Algass(D(—))®.

At the same time, for any ring & we have a natural functor Alg(Ch(k)) — Catcpry sending a
k-dg-algebra A to the dg-category one object and A as algebra of endomorphisms. We can easily
check that this construction:

e is monoidal and compatible with base change;
e sends weak-equivalences of dg-algebras to Dwyer-Kan equivalences of dg-categories;

e by definition, sends locally-cofibrant dg-algebras to locally-cofibrant dg-categories

so that it defines a natural transformation (9.1.34)— (9.1.19). By definition the middle map is the
transport of this arrow along Loc.

We now discuss the first map. This is the simplest one: for any ring k, the full subcategory of ob-
jects in Algass(D(k)) concentrated in degre zero is equivalent to the nerve of the classical category of
associative k-algebras. In particular, we have a natural inclusion N (SmCommAlgy) C Algass(D(k))
which is monoidal because we are restricting to smooth k-algebras and because these are flat, so that
the classical tensor product and the derived tensor product are the same. We can again obtain the
natural transformation using strictification arguments similar to the ones above and applying Loc.
This concludes the construction of L.

Finally, we define L{, as the image of L along the composition with (—)°, restricted to N (BAf).
As a next step, we consider the image of Lf?e along the composition with the functor P(—)®

Fun(N(BAff)°?, C Alg(Cat?9)) — Fun(N(BAff)°?, C Alg(Prl)) (9.1.35)

to obtain a natural transformation PLY, : PSm* — PNeS®. Again, we use the fact that the choices
of the generating equivalences respectively, for the commutative and noncommutative versions of the
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Nisnevich topology, provide liftings PSmy,, and CPNCSJ%S, respectively, of the objects PSm* and
PNcS® along the composition with the forgeful functor

Fun(N (BAff)?,C Alg(WPrl)) (9.1.36)

|

Fun(N(BAJF)™, CAlg(Prt))

The new ingredient is that the compatibility between the commutative and noncommutative ver-
sions of the Nisnevich topology along Ly, ( see 6.4.16) defines an arrow TL?Q’NiS s PSmy, — fPNcS}%S
lifting TLE’E. Finally, we consider the image of this arrow along the composition with the localization
functor LocP™ to obtain a natural transformation Hy,;, — J—C%’Q Nis-

As again the notions of commutative and noncommutative affine line are, by definition, compatible
with L., we can apply the same procedure to the last arrow to and obtain a natural transformation
H* — HE, between the Nisnevich + Al-versions of the theory. We can then consider the image of
this arrow along the composition with the pointing functor (—), and obtain a natural transformation
HL — HZ, .. To conclude our task, and thanks to our result in 6.4.20, this last natural transformation
lifts to a morphism of pairs (H2, {(P,lc, OO)}Spec(k)eN(Aﬁ)"P) — (%;?07*, {lk}Spec(k)EN(Aﬁ)Op) so that by
the universal property of the coproduct we find the desired natural transformation £% : SH® — SHE,

This concludes our work in this section.
9.2 Descent Properties of SH® and 8HE.: Smooth base change and
Zariski descent

Our main goal in this section is to prove the following result:

Proposition 9.2.1. The oo-functors SH® and 8HE, satisfy descent with respect to the Zariski topol-
ogy in N(BAff)

This is well known to be equivalent to say that for any Zariski covering of the form

W = Spec(A ®y R) EA. V = Spec(R) (9.2.1)

U= Spec(A)% X = Spec(k)

the induced diagrams

SHO(k) — > SHD(A) SHE (k) — = SHE.(A) (9.2.2)
SHE(V) — = SHE(A @y, R) SHE (R) —= SHE.(A @), R)

are pullbacks in CAlg(Prk,,).

Remark 9.2.2. Notice that as limits in the category of algebras are computed as limits in the
underlying category ([100, 3.2.2.1, 3.2.2.5]), this is the same as saying that the underlying squares in
Prk,, are pullbacks.

By the remark, we have to show that the induced maps
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and

8Hne(k) = 8Hne(A) Xs3¢,. (A0, R) SHne(R) (9.2.4)

are equivalences of (00, 1)-categories. For this purpose we will first show that the underlying functors
of the monoidal maps in (9.2.2) have left adjoints so that the induced maps (9.2.3) and (9.2.4) will
also admit left adjoints which we then prove to be equivalences. The construction of the left adjoints
will occupy most of the remaining part of this section.

The first observation is that both the maps j and p are smooth maps of finite type (j and p are open
immersions). Suppose f : Spec(k’) — Spec(k) is a smooth map of finite type. In the commutative
case, as the composition of smooth (finite type) morphisms of schemes is smooth (of finite type), the
composition with f establishes a functor

(fo—): Affsm(k') — Affsm(k) (9.2.5)

sending a smooth affine scheme of finite type over k', Spec(A) — Spec(k’) to the composition
Spec(A) — Spec(k’) — Spec(k). We can easily check from the universal property of pullbacks that
this functor is a left adjoint to the pullback f*. This functor verifies an important property, namely,
for any X € Affsm(k’) and Y € Affsm(k), the universal property of pullbacks gives us a canonical
isomorphism

(f o <)X Xspeetrry [ (V) = (f 0 =)(X) Xspeci) Y (9.2.6)

Another way to understand this formula is to say that (f o —) is a map of Affsm(k)*-module
objects in categories, with Affsm(k’) endowed with the action of Affsm(k)* induced by the pullback
functor f*.

In the noncommutative case, for any map f : Spec(k’) — Spec(k) we have an adjunction (9.1.26).
Our next goal is to prove that when f is smooth then the forgetful functor F}dem in this adjunction
will also preserve dg-categories of finite type. To prove this we will need to understand a bit better
the properties of F}dem.

To start with let us contemplate some aspects of the strict theory of dg-categories. Let f : k — k'
is a morphism of commutative rings. As we know, the base change functor Catcy )y — Catoney is a
left adjoint to the standard forgetful functor obtained by composition with f. Let us denote it simply
by f. What is also true is that f admits a right adjoint: for any k-dg-category T', the internal-hom in
k-dg-categories Hom, (15, T) admits a natural structure of k’-dg-category and T' — ¢(T') provides a
right adjoint to f. An important example is the following: let Chgg 1 (k") (resp. Chag i (k")) denote
the category of k-complexes (resp. k') seen as a dg-category over k (resp. k') via its internal hom.
Then, we have a canonical equivalence

¢(Chdg7k(k)) >~ Chdg’k/(k/) (927)

We now collect (without proof) some standard relations involving the adjunctions f, (— ®j k')
and ¢ holding at the strict level. The first is the projection formula: for any 7' € Catcypx) and any
S € Catgprry we have natural isomorphisms in Catop k)

f(Terk)®S)~f(S)eT (9.2.8)

This comes from the same formula for the tensor product of complexes. From this relation and using
the adjunctions ((— ®g k'), f) and (f, ¢) we can easily deduce the existence of natural isomorphisms

fHomy, (S, ¢(T)) ~ Hom,,(f(5),T) (9.2.9)

and
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fHom,, (T @ k', S) ~ Hom, (T, f(5)) (9.2.10)

with Hom,, and Hom,, the internal homs, respectively, in Catcopxry and Catcp -

We now use these adjunctions to provide a series of useful remarks concerning the behavior of the
forgetful functor Fj:

Remark 9.2.3. Let f: k — k' be a morphism of commutative rings. Then, the (big version of the)
oo-functor F preserves the construction of dg-modules. More precisely, if 7' is a small dg-category
(assume locally-cofibrant) in Dg(k’), then we have a canonical equivalence of big k-dg-categories

—

——k
Fi((T) )~ Ff(T) where on the left we have k’-dg-modules and on the right we mean k-dg-modules.

Indeed, by definition of dg-modules (/T\) is the full sub k’-dg-category of Homy, (T°7, Chgg i (k')
spanned by those dg-functors that are cofibrant with respect to the projective model structure induced
from the model structure on k’-complexes. By applying the standard forgetful functor together with
the adjunction (f,¢) and the formulas (9.2.7) and (9.2.9) we have

Y

J(T) ) € fHomy (T, Chag o (K)) = Homy ((T), Chag (k) (9.2.11)

We now observe that the two possible induced projective model structures in these isomorphic
categories have to be the same. This is because both have the same weak-equivalences and fibrations
(the standard forgetful functor preserves and reflects them, by definition). Therefore, the subcategories

—

/\k
of cofibrant objects are the same so that we have an isomorphism f((T') )~ f(T) . As Fy is obtained
by composing f with a cofibrant replacement functor (see the Remark (9.1.3)) the left side side is

’

—k
equivalent to Fy((IT)) ). To conclude, we use [139, Prop.3.2] deduce that right side is equivalent to
—k

Fy(T)

Remark 9.2.4. It follows from the previous remark that F'y preserves and reflects Morita equivalences
in Dg(k)*e™. In particular, F}dem is conservative. Moreover, as Fy preserves the notion of homotopy
category and quasi-fully faithfulnes, the previous remark implies that the forgetful functors F 'y and
F ]’;dem of the Remark 9.1.3 are compatible with idempotent completions. More precisely, there is a
natural tranformation rendering the diagrams

Dg(k') —— Dy(k) (9.2.12)
l(’;\)pe,kl i(’_\)pe,k
idem ( 1./ F}dcm idem
Dg'em (k') —— Dg**e™ (k)

commutative. This follows because perfect complexes are the compact objects in the homotopy cate-
gories of dg modules.

Remark 9.2.5. Both Fy and F}dem satisfy projection formulas as in (9.2.8). Let T (resp. S) be
a locally cofibrant k-dg-category (resp. over k’). Then, as Fy can be identified with the standard
forgetful functor followed by a cofibrant replacement Q we deduce DK-weak equivalences

F(S @w (T @r k') =~ QUf(S @ (T @k K))) = Q(f(S) @k T) = f(S) @ T = Qf(S)®T  (9.2.13)

where the middle map is the isomorphism in (9.2.8) and the last two maps are quasi-equivalences
because T is assume locally cofibrant. The result for F}dem follows from the result for Fy together
with the Remarks 9.1.3 and 9.2.4. Notice also that these formulas are natural in 7" and S.

Finally, we put these remarks together to prove that
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Lemma 9.2.6. For any morphism of commutative rings f : k — k', the co-functor Fy has a right
adjoint ¢. In particular, it preserves small colimits.

Proof. Following what happens in the strict theory, there is a natural candidate for gz~5, namely, the
internal-hom RHom, (15, —). Let T be an object in Dg(k) (assume locally cofibrant). Using the

description of internal-homs given by [139, Thm 6.1], we set ¢(T) as the full sub-dg-category of
K
(T ®x k')  spanned by the quasi-representable objects. For any dg-category A € Dg(k’) (again,

assume A locally cofibrant) and thanks to [139, Thm 4.2] the mapping space Mappgy(A, ¢(T))

k
can be described as follows: we regard the k’-dg-category (A ® (T ®; k')) as a classical 1-category
by forgetting its dg-enrichment and we consider the nerve of its subcategory spanned by all the
objects together with those morphisms that are weak equivalences. Denoting this simplicial set as

-

k
NW((Aor @ (T @3, k')) ) the mapping space is obtained by considering its full simplicial set spanned
by those vertices that correspond to right-quasi-representable dg-modules. it is clear that this con-
struction does not depend on the dg-enrichement so that

’ ’

NY (A & (T @y k) ) = N (F(A" & (T @ k) ) (9.2.14)

so that, using the Remarks 9.2.3 and 9.2.5 and the Prop. [139, Prop.3.2] together with the fact T is
assumed to be locally cofibrant, the last is equivalent to

w op b
NY(Fy(A)r e T) ) (9.2.15)

Moreover, as the notion of right-quasi-representable is stable under this chain of equivalences, we
can again use the description of mapping spaces [139, Thm 4.2] to conclude that the last simplicial
set is a model for the mapping space Mapp g (Fr(A),T).

To finish the prove one can use the Grothendieck construction of [99, Chapter 3] to exhibit F as
a cocartesian fibration over A[l] and use the equivalence of the mapping spaces above to show that
this fibration is also cartesian. To conclude we use again the methods of [99, Chapter 3] to extract a

map of simplicial sets qg right adjoint to Ff.

As a corollary

Lemma 9.2.7. For any morphism of commutative rings [ : k — k', the co-functor F}dem preserves
small colimits.

Proof. The result follows immediately from the previous lemma together with the commutativity
of both diagrams (9.1.27) and (9.2.12) and the definition of colimits in the Morita theory (being a
reflexive localization).

O

Remark 9.2.8. Another interesting way to prove the previous proposition is to use the equivalence
between Dg(k)ie™ and the (oo, 1)-category of modules in PrZ over the derived oo-category of k. This
was recently established in [36]. See also our survey in section 6.2. The result follows because colimits
of modules are computed by means of the forgetful functor. See [100, 3.4.4.6, 4.8.7.9 and 4.8.7.11].

Remark 9.2.9. An interesting consequence of the previous lemma, together with the fact F}dem
is conservative (as explained above), is that using the oo-version of the Barr-Beck Theorem [100,
4.7.4.5], for any morphism of commutative rings k — &’ the forgetful functor F*4*™ makes Dg'de™ (k')
monadic over over Dg'¥™ (k). In particular, for any commutative ring k, Dg@™ (k) is monadic over
-Dgidem (Z)

We can finally accomplish our goal:
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Proposition 9.2.10. Let f : Spec(k’) — Spec(k) be a smooth map of finite type. Then the forgetful
functor F}dem : Dgidem (k') — Dgdem (k) preserves dg-categories of finite type.

Proof. In order to prove this result we will use the description of dg-categories of finite type over the
ring k’ as compact objects in the (oo, 1)-category Dg?¥e™ (k’). The last is the underlying (oo, 1)- cate-
gory of the Morita model structure on strict k’-dg-categories and as this model structure is compactly
generated (see [131, Thm 5.1] and [141, Def. 2.1 and Prop. 2.2]), we conclude that dg-categories
of finite type over k' are the same (up to equivalence ) as retracts of finite strict I-cell objects in
Catopry with respect to the Morita model structure. As retacts are functorial, we are reduced to
prove the proposition for dg-categories obtained as finite I-cells. Let then T be a k’-dg-category of
finite type obtained as a cell object

0=Ty—-T, —...=»T,=T (9.2.16)

where for each 0 < i < n, the dg-functor T; — T;41 is obtained from a pushout diagram

T, — T4y (9.2.17)

]

A——B

where A — B is an element in the set of generating cofibrations of the Morita Model structure over
k'. According to [131, Thm 5.1] and [132], these can only be of two types:

e the unique functor ) — 1 where 1, is the k’-dg-category with one object and k" in degree zero
as its complex of endomorphisms;

e Let C(k',n) be the dg-category with two objects a and b, with & in degree zero for their respective
endomorphisms, C(k’,n)(b,a) = 0 and C(k’',n)(a,b) given by k' as a complex concentrated in
degree n— 1. At the same time, let P(k’,n) be the dg-category with two objects a and b, with k
in degree zero for their respective endomorphisms, P(k’,n)(b,a) = 0 and P(k’,n)(a,b) given by
the complex having a copy of k in degree n and another copy in degree n — 1, with differential
given by the identity map. The second kind of generating cofibrations is given by the family of
dg-functors S(k',n) : C(k',n) — P(k’,n), n € Z, corresponding to the inclusion of k in degree
n—1.

In particular, it follows from this description that the dg-category Ty in our initial sequence has
to be 1 which of course by definition is cofibrant. Moreover, we can also check that all the domains
C(k',n) and P(k',n) are cofibrant objects so that all the pushouts (9.2.19) are in fact homotopy
pushouts.

Let us now proceed. We want to show that F }dem (T') remains a dg-category of finite type, now
over k. By the Lemma.9.2.7, the sequence

F}'dem(lk/) s F}dem(Tl) SN F}dem(Tn) = F}dem(T) (9218)

can still be obtained as a sequence of homotopy pushouts

F}dem (Tz) R F}'dem(nJrl) (9.2.19)
F}dem (A) F}dem (B)

for each 1 < ¢ < n. We now observe that as homotopy pullbacks commute with filtered colimits in the
(00, 1)-category of spaces, the homotopy pushout of dg-categories of finite type remains of finite type,
so that using induction, to conclude that F}dem (T) is of finite type over k it will be enough to check
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that F}dem(lk/) is of finite type over k and that for any generating cofibration C(k’,n) — P(k’,n)
over k', the dg-categories F}dem(C(k’, n)) and F}dem (P(K',n)) are of finite type over k.

Following the Remarks 9.1.3 and 9.2.4 and as k' is by hypothesis flat over k, we have

FRem (L) = Fr((1r) pe ) (%) per (9.2.20)
where see 1/ as a k-dg-category via the standard forgetful functor.
The same arguments, together with the strong equivalences C'(k',n) ~ C(k,n)®, k" and P(k',n) ~
P(k,n) ® k', the projection formula formula from the Remark 9.2.5 | the fact that k' is flat over k
and finally, the compatibility of the derived tensor product with idempotent completions, give

— —

Fiem (C (k' n)) = (C(k,1)) pe s @k (1), 4 (9.2.21)
and
Fitem (P(k' ) = (P(k,1)) o) @k (1), 00 (9.2.22)

—

Our course now both (m))pe y and (P(k,n)),, , are of finite type as k-dg-categories. As the
derived tensor product of dg-categories of finite type is of finite type [35, 4.3] the conclusion will follow

—

if (1;6)1)6 . is of finite type over k. But this is exactly what happens when we put smoothness into

action: as proved in 6.3.8, k' being smooth over k as an commutative algebra implies that (1;6/)1)e L 1s
of finite type as a k-dg-category.
This concludes the proof.
O

Using this result we find a new adjunction

(Fidemyop

NeS(k') NeS (k) (9.2.23)

f*,nc

with (F]’;dem)ol’ now a left adjoint. We now observe that the projection formulas of the Remark 9.2.5
are in fact part of a higher set of data corresponding to all the coherences defining a map of modules, or
in other words, that F}dem defines a 1-simplex in Modycs (ks (Cato) where Dg'®e™ (k) is a module
over itself via the action given by the tensor product and Dg'¥*™ (k') is a module over Dgide™(k)®
via the action induced by the monoidal functor (— ®j k). As we shall only need this in the case &’ is
smooth over k our task to deduce this higher structure on F}dem is simplified. Firstly, we know that
the standard forgetful functor f is a map of modules between the strict theories of dg-categories. This
is provided by formula (9.2.8) together with the usual coherence theorems whose necessary conditions
one can verify by hand. We now want to say that this module structure induces a module structure
on F¢. The problem is that as a derived functor, F'y does not preserve locally cofibrant dg-categories
so that that in order to bring the image of F; to the locally-cofibrant context with need to perform
a cofibrant replacement which destroys the strict module structure. Luckily for us there exists a
class of dg-categories which remain stable under tensor products and base change, compatible with
the Dwyer-Kan equivalences and, more importantly, that under our smoothness hypothesis, remains
stable under the forgetful functor: namely, the class of dg-categories enriched in complexes of flat
modules. The verification of this claim is immediate by the definition of flat and the fact that if M
is flat over k' and k’ is flat over k then M is flat over k. Therefore, as the localization functor is
monoidal and as f is compatible with weak-equivalences, it can be considered as a map of modules in
pairs and its image along the localization

Mod g gysiee o (WCat*™9) C Mod (WCat2) — Modpgrye (Cats)  (9.2.24)

Flat
Ch(k) (N(Cat]] () WDK)

h
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provides a structure of map of modules on Fy. We now use this to deduce the result for F idem Tt
follows the Remark 9.2.4 that Fy preserves Morita equivalences, in the sense that if a map 7" — 7" in
Dg(k') becomes an equivalence in Dg*@®™ (k') after idempotent completion, then its image through Fy
satisfies the same property. Therefore, Fy can be understood as a map in Mod(Dg(k)’WMOT)(WfPrL)
so that its image by the localization functor LocP” provides a map of Dg*@*™ (k)-modules

Dg"™ (k') = Dg(k")[Wiro,] = Dg(k)[Wizo,] = Dg'™ (k) (9.2.25)

or’ or

By the universal property of the localization and the commutativity of (9.2.12) this map can be
canonically identified with F}dem and the condition of being a map of modules implies the projection
formula. Further explanations about this methodology to deduce projection formulas will be given in
the proof of the Prop. 9.2.11 ahead.

Finally, the previous proposition is telling us that in fact Fi@™ lives as a 1-simplex in Modq gidem k® (PrE)
so that, as the restriction to compact objects is a monoidal functor (see [100, 5.3.2.11]), it induces a
1-simplex in Modqp giaem . (Catoo) given by the restriction of F}dem to compact objects. To conclude
we use the fact that (—)°? : Cato, — Cats is monoidal for the cartesian product to deduce that
the map (F J’;dem)o” in the diagram (9.2.23) is a map of modules and therefore satisfies the projection
formula.

We will now use this to prove the following result:

Proposition 9.2.11. Let f : Spec(k’) — Spec(k) be a smooth morphism of finite type (assume k
and k' Noetherian of finite Krull dimension for what concerns the commutative case). Then, both the
induced pullback functors f* : 8H(k) — SH(K') and f*™° : 8Hpe(k) — 8H (k') admit left adjoints,
respectively denoted as fy and f'° such that:

1. The diagram

Lpe,k

N(Affsm(k)) NeS(k) (9.2.26)
fof - (Fidenz)up
Lpe 1% /
N(Affsm(K")) : NeS (k')
l 5
o L
SH(k) 8Hoe (k)
/ - l y
SHC(K') i SH e (K)

commutes;

2. fy (respectively f7°) is a map of 8H®(k)-module objects (resp. 833, (k)-modules) in Prk,, with
SH(K") (resp. 8Hc(k')) considered with the module-structure induced by the monoidal map f*
(resp. ") and SH(k) (resp. 8Hnc(k)) seen as a module over itself via its tensor product.

3. For any pullback square of affine schemes

Spec(k’ @i A) EA. Spec(A) (9.2.27)

oo
Spec(k') —L— Spec(k)

with f smooth, the diagrams
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(fl)ﬂ (f/)'éu;

SH(K' @ A) SH(A) SHpe(k' @1 A) 8Hne(A)
(g/)*T 9*T (9’)*T Q*T
fe
SH(K) I SH(k) SH oK) : SH o (k)
(9.2.28)
commute by means of the natural transformations
(fgo (@) = (Fgo(g) o f o fy=(fyo(f) og o fy =g o f; (9.2.29)

respectively,

(f-/)'g,c o (g/)* — (f/)gc o (g/)* o f* o ﬁnc ~ (f/)j?c o (f/)* Og* o fgzc - g* o fﬁnc (9230)

Proof. As Catgég is a quasi-category, a standard argument using the definition of quasi-categories al-
lows us to reduce the proof that the diagram (9.2.26) commutes to the commutativity of the exterior
faces. The commutativity of 7 follows immediately from the fact the forgetful functor is compatible
with idempotent completions (see the Remark 9.2.4.) Now we deal with the commutativity of the
faces 0 and §. Using the universal property of presheaves, the adjunctions (9.2.5) and (9.2.23) in-
duce new adjunctions between the associated oco-categories of presheaves thus rendering the diagrams
commutative

N(Affsm(K)) —— L= N(Affsm(R)) Nes(k) — L Nes(h)
] o]
P(Afm(k) - - - T = = = P(AfFm(k)) PNeS(H) - — ~ - = = PNeS (k)
N(Afsm() N(Affsm(k)) NeS(K) NeS(k)
| | | |
PIN(Afsm(K))) <~~~ ~ PN (Affom(K)) PNeS()) < - —— — - P(NeS (k)
(9.2.31)

The fact that fﬁ (resp. ﬁrc) is a left adjoint to the pullback follows from Yoneda’s Lemma. The
important point here is that as the assignment of co-presheaves is a monoidal functor [100, 4.8.1.10],

the maps fﬁ and }g‘/c will again be maps of modules. Indeed, they can be identified with the image of
the 1-simplexes (f o —) and (F}de’”)"p along the transport of modules

P(-)
Mody(agrsm(k)) < (Catoo) ——>= Modp(n (agrsm (k)))< (Pr") (9.2.32)
respectively,
?() 5
Mody.sye (Catoo) ——= Modpnes (k)@ (Pr) (9.2.33)

(see our discussion in 3.3.9).

We now deal with the Nisnevich localizations. In both cases we know that the pullback functors
are compatible with Nisnevich local equivalences. We observe now that the same holds for both f;
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and fAﬁ”/C In the commutative case this follows because if X is a smooth affine scheme over Spec(k’)
and {V; — X };er is a Nisnevich covering of X over Spec(k’) then it will of course remain a Nisnevich
covering of X seen as a scheme over Spec(k) via the composition with f (the notion of Nisnevich
covering is independent of the base). In the noncommutative case we can also show that (F}dem)"p
preserves Nisnevich squares of dg-categories. Indeed, if

T p—— (9.2.34)
Ty — Ty

Ty —Tw

Ky_w —>*

is a Nisnevich square of dg-categories over k' (see the Definition 6.4.7) with associated close comple-
ments Kx_gy and Ky _yw, then its image

F}dem(fo—u) - F}'dem(*) ~ % (9235)

Fplem(Ty) ——— F{*™(Ty)

F}dem(Tv> F}dem (TW>

F}dem(K\;,w) — F}dem(*) ~ %

in Dg’d®™ (k) remains a Nisnevich square. Being a right adjoint F ]’;dem preserves pullbacks and as f is
smooth it preserves also dg-categories of finite type (Prop.9.2.10). Moreover, the functoriality ensures
that F' }dem(K X_U) ™ F}dem(K v_w ). We are reduced to showing that it preserves “open immersions

of dg-categories”, or in other words that the image of a pushout diagram in Dg'¥™ (k') of the form

K— >« (9.2.36)

L

Ty —— 1Ty

with Tx and Ty of finite type and K having a compact generator, keeps the same properties. For
that we use again that F' }dem commutes with colimits (Lemma.9.2.7) and that as by assumption K
is idempotent complete, F}dem (K) can be identified with the image of K along the standard forgetful
functor (see the Remark 9.1.3) so that its homotopy category is equivalent to the homotopy category
of K and therefore has a compact generator.

The main conclusion is that both ﬂ and ?ﬁ”vc preserve Nisnevich local equivalences so that by
the universal property of localization [99, 5.5.4.15] both admit canonical unique colimit preserving

—_~—

extensions f; ns and ﬁ”f\,is rendering the diagrams
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PAFsm(k)) — = P(AfFsm(k)) PNCS(K)) —— = P(NeS(K))  (9.2.37)
fH:Nis(k/) - - 7@7 - > j{NH(k) :H:Rfczs(k/) - Iﬁnz\“i - >j{?\fczs(k)
commutative.

We now remark two important properties of these maps. First we observe that fs n;s and fﬁ’f]c\,is
are left adjoints to the respective Nisnevich pullback functors. This follows because in this case the
pullback functors preserve Nisnevich local objects: this is because at the level of presheaves they
admit left adjoints which, as seen above, preserve Nisnevich local equivalences. Now we observe that

both f; nis and fti Qs satisfy the projection formula with respect to pullbacks. We deal with the com-
mutative case. The noncommutative one follows using similar arguments. As seen above, fﬁ can be
identified with a 1-simplex in the (0o, 1)-category Modp(n(agtsm (k)))> (Prk). The fact that it preserves
Nisnevich local equivalences means that it lifts to a 1-simplex in Modp(n(agrsm(k)))*, WNz.s) (WPrL) so
that its image along the localization functor LocP” defines a 1-simplex in M odg{® (iPr ). Finally,
the universal property of the localization tells us that this 1-simplex can be Canomcally identified with

fﬁ,N’L’s-

We proceed to the Al-localizations. Thanks to the fact that both f; nis and fu"jvm are maps of
modules with respect to the algebra structures induced by the respective pullback functors, we have
formulas

—_~—

Fanis(GX) % G(AL)) = Fonas(GX) x F*((AL)) = Fanis(G(X)) x G(AL) (9.2.38)

and

I %00 e () © Jre(Lpe (AL ))) = F7%050 e (X >®f*<jm<Lpe<Ai>>>>:%(jma»@jm(%{égigg)

so that both f; nis and fﬁ Nis DrEserve Al-generating local equivalences and we deduce the existence

of canonical colimit preserving extensions fj y;s a1 and fﬁ”]cvw a1 Tendering the diagrams

s jnc 18
Fovss () —L2 o G (R) T3 (F) — 003 (k) (9.2.40)
l / fﬁ’NiS’Al \L nc l ! f;m‘l nc l
fHNz’s,Al (k ) ***** > g{NisAl (k) :Hst AL (k ) ***** > :HNis,Al (k)

commutative, where the vertical arrows are the Al-localization functors. Using exactly the same ar-
guments as in the Nisnevich case we deduce that 1) these functors are left adjoints to the pullback
functors at the level of the Nisnevich-A'- theory and 2) define maps of modules in the current context.

In what concerns the noncommutative context and thanks to 6.4.19, we are done: fg‘fws a1 18 the
left adjoint we were looking for. We are left with the remaining steps of the commutative case.

For the pointing step we start by recalling that for presentable (0o, 1)-categories the pointing map
C +— @, can be identified with the base-change along the monoidal functor (—); : 8% — 8. This
follows from the general theory of idempotent objects in [100, Section 4.8.2], more precisely [100,
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4.8.2.11]. See also our compact summon of these results in 5.2.1. The universal properties involved

—_—~—

provide a colimit preserving functor f; yis a1« rendering the diagram

—

fﬁ,Nis,Al

Hvis,a1 (k) Hnis,ar (k) (9.2.41)

J{(_)* o i(_)*

Hnvis,ar (F)e > Hiyisar (k) @gx 80 — = g Huyis,ar (k) = Hiisar (k) @gx 87

—~—

commutative. Moreover, as f nis a1 defines a 1-simplex in Mody ., (k)x(i]’rL) and as the base
change (— ®gx 82') is a monoidal, its image along the induced transport map

MOdg{Nis,A\l (k)% (fP’I“L) — MOdg'Cms,Al k)~ (fPTZE't) (9.2.42)
is a map of modules which by the universal properties involved is enriching f; njs a1«
We are left to check that this extension is a left adjoint to the induced pointed pullback f;, also

arising from the universial property of pointing. As f ns a1 » commutes with colimits, it has a right
adjoint v fitting in a commutative diagram

Iz

Hnis,ar (k') Hnvis,ar (k) (9.2.43)
Hvispr (k)i < = == = = Hpis a1 (k)

where the vertical maps are the forgetful functors - right adjoints to the pointing maps. We want to
identify u with the map f,,. As the forgetful functors are obviously conservative, it will be enough
to check that the diagram (9.2.43) still commutes if we replace u by f,;. But this follows from the
explicit description of f7; given in the Remark 5.2.2, together with the fact that as a result of the

preceding steps, the pullback f* is a right adjoint to f; n;s a1 and therefore preserves the final object.

We now come to the last step in the construction of the left adjoints: the ®-inversion of the
projective line pointed at infinity. The key step is a canonical identification of SH (k') with the base
change of Hy;s a1 (k). along the monoidal functor Hy;s a1 (k)y — 8H®(k). To understand this

identification, recall that the inversion of (P}, o0) (see 4.1.8) is obtained by means of a pushout

free®(A[0]) ——= £, .co (afo))..) (Free® (A0]) (9.2.44)
i(l@im) l
Hois,ar (k)2 8H® (k)

in CAlg(Prk). In our case, as (P, 00) =~ f*((P1,0)) we can extend this to a new pushout

free®(A[0]) L?}T&e@(A[OD’*)(free®(A[O])) (9.2.45)
l(ﬂmi’oo) i
Hisar (k)L SH® (k)

3 |

Huis,ar (k)2 —— Hpis,ar ()L @9¢ (kyr SHP (k)

Nis,Al
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and therefore, by the universal properties envolved, obtain the desired identification. Recall that the
monoidal structure on commutative algebra objects is cocartesian - [100, 3.2.4.7] . Following this
identification we can use the induced base-change along H ;s a1 (k)7 — SH® (k)

Modsq (2 (Prh) = Modsgce ) (Prr) (9.2.46)

Nis,Al

to transport the 1-simplex fy njs.a1« to a map of modules

fr o SH(K') ~ Hvisar (K)« ®¢ 1, 41 (K] SH® (k) — SH(k) (9.2.47)
and the unit natural transformation of the base-change adjunction produces commutative squares

—_—

Fo Nisal s
Fnvisar (k) 5 Hvgo a1 (k). (9.2.48)
|,
SH(K) SH(k)

Finally, it follows from the functoriality of the base-change procedure that f; is a left adjoint
to the pullback f* : 8H(k) — 8H(k) which, as the diagram (9.2.45) indicates, is the image of
¥ Hisar (k) = Hpisar (k') along the same base-change. This proves 2). To conclude 1) the only
thing left is the commutativity of the face 7/. For this purpose we use the existence of a family of
compact generators in SH (k") given by Proposition 5.3.3. Thanks to the Prop. 2.1.2 and the fact all
the maps in 7/ preserve small colimits, we are left to check that 7/ commutes for objects of the form
(P},)""®V where V is a smooth affine scheme over £/, identified with its image in 8H(k’). Therefore,
the commutativity of 7/ follows from the equivalence P}, ~ f*(P}), together with the fact that both
Ly, and Ly are monoidal, that thanks to 2), both fy and J¢' satisfy the projection formula and finally,
from the commutativity of 7, 6 and o. Finally, to prove 3) we can again make use of the existence
of families of compact generators on both 8H,.(k") and SH(k'): As the functors involved commute
with all colimits, it will be enough to check that the diagrams commute for the compact generators.
Again, these follows from the commutativity of the diagrams before passing to motives as a result of
the transitivity of the fiber product of schemes and of the tensor product of dg-categories, together
with the projection formulas proved in 2).

O

Remark 9.2.12. It follows from the base change property given in the Proposition 9.2.11 that for
any open immersion of affine schemes j : U < X, the functors j3 and Jg¢ are fully faithful. This
is because the canonical maps U xx U — U are isomorphisms whenever j is a monomorphism. By
adjuction, the same holds for j, and jl*°.

Remark 9.2.13. One important observation is that if f : Spec(k’) — Spec(k) is smooth and proper
then the functors

are canonically equivalent. Indeed, recall from the Lemmas 9.2.6 and 9.2.7 the existence of a right
adjoint ¢ to the forgetful functor

F}denz . Dgidem(k/) N Dgidem(k) (9250)

where by construction we have F;}dem(éf (T)) ~RHom, (k',T). By [139, Thm 6.1] the last is given by

(kﬁ&c\T)pspe and as k' is smooth and proper over k it is equivalent to (lﬂf&ﬁ\T)pe so that, as F}dem
is conservative and satisfies the conjecture formula with respect to base-change (k' ®; —), the two
functors f* and éf agree on the class of dg-categories of finite type. In other words, the pullback
f*: NeS(k) — NeS(K') is simultaneously a left and a right adjoint to the forgetful functor fy. At the
level of presheaves this implies that fy : P(NeS(K')) — P(NeS(k)) is also a right adjoint to f* and
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by the unicity of adjoints, equivalent to f.. As both f* and fﬂ are compatible with the localizations
(Prop. 9.2.11) so that again by the unicity of adjoints, the motivic versions of fy and f, are necessarily
equivelent.

We can now prove the descent property.

Proof of the Proposition (9.2.1):
After the results in the Proposition 9.2.11 we have commutative diagrams

SHE (k) <——— 8H®(4) SHE, (k) <——— SHE,(A) (9.2.51)
t It
PﬁT (p')nT pnT (p’)g‘“T
SHE (V) - 8HE(A @4 R) SHE.(R) WCSSH?;C(A @k R)
J )t J )4

left adjoints to the diagrams in (9.2.2). In particular, the natural maps in (9.2.3) and (9.2.4) both
admit left adjoints

and

Sg{nc(A) X 8Fne(ADkR) Sg{nc(R) - Sj{nc(k) (9'2'53)

Objects in 8H(A) Xggc(ag,Rr) SHne(R) can of course be described as triples (a € 8H(A),r €
SH(R),w € 8H(A Rk R)) together with equivalences (p’)*(a) =~ w ~ (j')*(r), and the left adjoint in
(9.2.52) can be informally described by the assignment sending such a pair to a pushout P(a,b,w) of
the diagram

G (") 0 (p')*)(@))) ———=p4(r) (9.2.54)
ji(a) P(a,b,w)

in 8H (k) induced by the counits of the adjunctions ((p')¢, (p")*) and ((j')¢, (j')*). Here we have

() 0 (')")(@)) = g o (p)s(w) ~ py o (§)s(w) = py((5')z 0 (1) )(r))

Mutatis-mutandis for the left adjoint (9.2.53). We will now check this construction defines an
equivalence. Following the existence and form of compact generators in 8H (k) (see Prop. 5.3.3) and
as all the maps involved preserve all colimits preserve generators, we are left to check the units and
co-units of this adjunction are equivalences when restricted to smooth schemes.

Let S be a smooth affine scheme over k seen as an object in 8H (k) via the canonical map. As the
induced pullback in motives is compatible with the canonical map, its image along (9.2.3) is the triple
(S xx U, S xxV,S xx W) where again we understand these schemes as objects in motives via their
canonical maps to k. Its image along (9.2.52) corresponds to the pushout diagram

Jpo (@ )(S xx W) pi(S xx V) (9.2.55)

l |

ju(SXXU)—>P(SXXU,SXX‘/,SXXW)

which, using the Prop. (9.2.11-1.) can be identified with
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Sxx W SxxV (9.2.56)

| |

SXXU P(SXXU,SXXVY,SXXW)

where we understand these schemes as defined over X by composing their structural maps with j, p
and po (j') = jo (p').

The universal property of the pushout gives us a canonical map

P(SXXU,SXX‘/,SXXW)%SZSXXX (9257)

that corresponds to the counit of the adjunction (9.2.52). We are left to justify why this map is
an equivalence. The reason is obvious: the diagram (U, V, W) forms a Nisnevich covering of X and
as Nisnevich coverings are stable by pullbacks the diagram (9.2.56) is Nisnevich and therefore, by
construction of 8H(k), a pushout.

For the co-unit of the noncommutative case we use exactly the same arguments together with the
Prop.6.4.16 that ensures L. sends classical Nisnevich squares to nisnevich squares in the noncom-
mutative setting and the Prop. 6.4.14 ensuring that (noncommutative) Nisnevich squares are stable
under tensor products.

This proves that the maps (9.2.3) and (9.2.4) both are fully faithful. To show that they are
equivalences we show that the maps in (9.2.52) and (9.2.53) are conservative. As all the (oco,1)-
categories involves are stable, it will be enough to show that if the image of an object is zero then the
object itself is zero. Again, we are reduced to work with the compact generators. Let Y be a smooth
scheme over U and Y’ be a smooth scheme over V, seen as objects, respectively, in 8H(A) and 8H(R),
together with an equivalence (5/)*Y”’ ~ (p')*Y in 8H(A ®; R) and suppose that P(Y,Y”, (5/)*Y”)) is
a zero object in 8H(X). We want to show that both Y and Y’ are zero objects. In what concerns Y’
we show that the map

37 (G(Y) = 55 (P, Y, (§')7Y"))) = 57(0) ~ 0 (9.2.58)

is an equivalence.
Indeed, as j* is exact we have a pushout square

37 Ge((p")g 0 (0))Y))) = 57 (ps ()2 0 (5)) (V7)) 7" (ps(Y")) (9.2.59)

| |

7" (3:(Y)) J(PYY, (5)7Y7)))

in 8H(U) and by the Remark 9.2.12 we have (j')* o (j'); ~ Id and j* o jy ~ Id so that we are
reduced to showing that the top row in (9.2.59) is an equivalence. This follows from the equivalence
(47)* o (4")4 = Id together with the Smooth base change of the Prop. 9.2.11-3.

We are now reduced to showing the following property: if Y’ is a smooth scheme over V such
that both (j7)*(Y”') and py(Y’) are zero objects, then Y is also a zero object in 83(V'). This follows
because for a Zariski cover, p is also an open immersion so that again by the Remark 9.2.12 py is fully
faithful.

The proof for the noncommutative case follows exactly by the same arguments.

O

Remark 9.2.14. All the results in this section apply mutatis-mutandis to the further localization
8HLoc discussed in Chapter 7.
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9.3 Motives and Noncommutative Motives over a Scheme

In this section we use the results of the previous two sections to extend the definitions of motives and
noncommutative motives to a commutative base not necessarily affine. One possibility is the following:
as C Alg(Prk,,) admits all limits and the (non-full!) inclusion C Alg(Pr,,) «— CAlg(Cat’l¥) preserves
them (recall that limits of algebras are computed by means of the forgetful functor [100, 3.2.2.1, 3.2.2.5]
and the non-full inclusion Prk,, C Cat”""9 preserves limits [99, 5.5.3.13]), the universal property of

oo-presheaves [99, Thm. 5.1.5.6] provides an equivalence

Fun(N(BAff),CAlg(Prk,)°P) ~ Fun®(P(N(BAfF)), C Alg(Prk,,)°F) (9.3.1)

through which we can Kan-extend the oo-functors 8H® and 8H, to obtain new oco-functors

Kan(8H)®, Kan(8H,.)® : P(N(BAF))F — CAlg(Pry,) (9.3.2)

sending colimits in P(Aff) to limits. The same universal property transports also the original natural
transformation £% to a natural transformation between the extensions. As a result, given a stack F' €
P(N(BAF)), 8H(F)® is canonically equivalent to the limit of the 8H(k)® indexed by all Spec(k) — F.
Mutatis-Mutandis for 8H®,. In particular, as the category of schemes can be identified with a full
subcategory of stacks (via the functor that assigns to a scheme its functor of points), the restriction
provides oo-functors Kan(8H)®, Kan(8H,.)® : BSch®® — C Alg(Prk,,) which we can now informally
describe as

S+ Kan(8H)®(X) = limuzspec(A)HSSﬁ'CQ@(A) (9.3.3)

St Kan(8Hne)®(X) := limy:spec(a)ssSHE(A) (9.3.4)

An important consequence of the Zariski descent property for both SH® and S$HE, is that both
Kan(8H)® and Kan(8H,.)® send Zariski local equivalences to equivalences and therefore, factor
naturally through the Zariski localization Shzq.,(BSch) C P(BSch) and in particular are well-defined
for schemes.

Remark 9.3.1. In the commutative case we can follow a more concrete approach. Let us discuss
first the commutative case. As in Chapter 5, the theory of Morel-Voevodsky 8H® can be defined
directly for any Noetherian scheme of finite Krull dimension S. So far we restricted to affine schemes
because until now we were only looking for a comparison with non-commutative motives over a ring
but we can easily see use the same arguments of section 9.1-Step 1), to give sense to an co-functor
SH® : BSch® — CAlg(Pr™) that extends the map 9.1.15 to all schemes. Moreover, for smooth mor-
phisms we can use the same arguments of the section 9.2 to prove the existence of the adjoints (—)y
verifying the Prop. 9.2.11 and the statement of Zariski descent. Finally, as both the natural extension
SH® and the Kan extension Kan(8H)® satisfy Zariski descent, the canonical map SH® — Kan(SH)®
induced by the universal property of limits is an equivalence.

Notation 9.3.2. For the rest of this thesis we will simply write 8H%. to denote the Kan extension
Kan(8H,.)®

Remark 9.3.3. In the commutative case the previous remark tells us that the results of the Prop.
9.2.11 hold over a general basis. One can also confirm this in the non-commutative context. More
precisely, we can check that for every smooth map of base schemes f : X — Y the base change functor
[* 0 8Hpe(Y) — 8H,o(X) has a left adjoint fy satisfying the compatibility properties of the Prop.
9.2.11. One can see this in a directy way by describing the formula for this adjoint: if {uq : Uy < Y}
is a Zariski covering of Y by affine, we consider the fiber product
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X, e X (9.3.5)
lfa lf
U(XCL> Y
and the induced pullback diagram
8H e (X) —> 8FHpe(Xa) (9.3.6)

4

8H oY) —= 8H e (Un)

One can then prescribe a formula for f; using the Zariski descent of 8J(,,.: given a Zariski covering
{ta,i: Wa,i = X} by affine and E € 8F(,,.(X) we consider the object

((fa © tai)s (Ve 0 tai) (E))(a) € [ [ $Hne(Ua) (9.3.7)

Notice that (fo o ta,)y exists because the source and target are now affine. We now observe
that this family agrees in the intersections U, Xy Ug (these are affine because by assumption Y is
quasi-separated). To see this we are reduced to contemplate the commutativity of the diagram

8Hpe(Wa i) — 8Hpe(Wa,i xv, (Ua Xy Up)) (9.3.8)

\L(faOta,i)ﬁ i

Sg{nc(Ua) Sf]‘fnc(Ua Xy Ug)

for every «, 8 and i: this follows from the results of the Prop. 9.2.11 for affine schemes.
In other words this means that the family (9.3.7) lives in the equalizer K of the two restrictions

[ 8Hne(Ua) = [1, 5 8Hne(Uaxy Ug) and by Zariski descent there is an equivalence K % 8Hne(Y)

which allows us to glue it. One can now easily manipulate all these adjunctions to check that this
procedure provides a left adjoint to f*. Moreover, by construction, it satisfies all the properties listed
in the Prop. 9.2.11.

As a consequence of this discussion we have the following corollary:

Corollary 9.3.4. For any scheme X, the image of the tensor unit 1%¢ € SHEZ.(X) through the right
adjoint My : 8Hno(X) — SH(X) is equivalent to the object KHyx in SH(X) representing homo-
topy invariant algebraic K-theory. Moreover, by the same arguments explained in the introduction of
Chapter 7 the natural transformation L : 8H — 8FH,,. factors through the theory of K H-modules.

Proof. The Corollary 7.0.35 tells us that this is true if X is affine. In the non-affine case we start by
considering a a Zariski covering of S, {f; : U; — X};cr where each U; is affine. As the homotopy
invariant algebraic K-theory of schemes satisfies Nisnevich (therefore Zariski descent) we are reduced
to check that for every ¢ € I, the commutative diagram

Ly

SH(U;) — 8FH,o(Uy) (9.3.9)

e

SH(X) —% 8%(,0(X)

is horizontally right adjointable. This follows because each as u; is smooth, by the discussion preceed-
ing this Corollary, the results of the Prop. 9.2.11 work in the non-affine case, so that the diagram is
vertically left-adjointable, and therefore by adjunction, horizontally right adjointable.
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O

Remark 9.3.5. By Zariski descent and the Prop. 6.4.20, SH(X) — 8H,,.(X) sends (P!, 00) to the
unit non-commutative motive.

Remark 9.3.6. One can also consider the Kan extension of the assignment k + Dg'™® (k) to
introduce a Morita theory of dg-categories over a general base scheme X, in the spirit of [140, Def.
2.6], [147, Section 4.4] and [55]. By definition, an object in T € Dg®®™(X) is then a family of dg-
categories T4 € Dg'¥®™(A), one for each morphism Spec(A) — X, compatible with base change. In
the same way we can also Kan extend the theory of non-commutative spaces NcS®. By the universal
property of the Kan extension this definition comes naturaly equipped with a natural transformation
NeS® — 8HE, that allows us to pass from dg-categories of finite type over X to non-commutative
motives over X.

Remark 9.3.7. The results of this section apply mutatis-mutadis to the localizing version of non-
commutative versions studied in Chapter 7. In particular, we have also the smooth base change
properties of the Prop. 9.2.11.

9.4 The Grothendieck six operations in the commutative world - A
higher categorical framework

This section is mostly expository. Our main goal is to describe a general framework from which we
can deduce the existence of a formalism of six operations in the world of higher categories and explain
how to apply it to the motivic stable homotopy theory of schemes. None of this is new. Recently, in
[93, 94] the authors introduce a technique to describe the existence of a formalism of six operations
for the oco-categorical enrichment of the derived categories of etale sheaves. At the same time, the
existence of six operations for the motivic theory of schemes is also well know at the level of the
classical associated homotopy theories: it has been establish in J. Ayoub’s thesis [6, 7] inspired by
the insights of Voevodsky [41]. More recently, D-C.Cisinski and F. Déglise [30] gave a more distilled
presentation of the arguments in the proofs. In this sense, this section is the mere pedagogical exercise
of explaining how the techniques of [93, 94] can be used in a general context and applied to provide
a higher categorical enhancement of Ayoub’s results. Moreover, we prepare the path for the next
chapter where we explain our attempts to establish a similar behavior in the noncommutative world.

Throughout this section we will fix a category of base schemes BSch consisting of all small Noethe-
rian schemes of finite Krull dimension. One could also fix a scheme S and set BSch to be the category
of quasi-projective schemes over S. An important aspect is that whatever definition we choose, it
should verify Nagata’s compactification [39, Thm 4.1] (see below).

Let us start by recalling what is meant by a formalism of six operations. Re-writting the presen-
tation in [30] in the language of higher categories, it be presented as follows:

i) For any base scheme X, one is supposed to provide the data of a stable presentable symmetric
monoidal (0o, 1)-category T(X)®. By the Adjoint Functor Theorem T(X)® will necessarily be
closed. A classical example is to take T(X) as some oo-categorical enrichment of the derived
category of étale sheaves on X. Another example, which will be of primary interest to us in this
paper, are the stable presentable symmetric monoidal (oo, 1)-category SH(X)® and 8H,.(X)®
encoding the theories of motives, resp. noncommutative motives;

ii) For any morphism of base schemes f : Y — X, a colimit preserving monoidal functor f* :
T(X)® — T(Y)® called pullback along f. For any composition fog: Z — Y — X we also
ask for natural equivalences between the compositions (f o g)* ~ g* o f*. As a consequence of
the Adjoint Functor Theorem the compatibility with colimits forces f* to have a right-adjoint f,
which is necessarily lax monoidal [100, 7.3.2.7].
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iii)

iv)

vi)
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For any morphism f : Y — X which is separated and of finite type, a colimit preserving functor f; :
T(Y) — T(X). Again, this assignment should be functorial in the sense that for any composition
of separated morphisms of finite type fog: Z — Y — X we should have a natural equivalence
of functors f) o g1 ~ (f o g);. Moreover, again by the Adjoint functor theorem, f; will have a
right-adjoint f'.

Recall from [100, 4.8.1.3, 4.8.1.4, 4.8.1.14] (or from our survey in Chapter 3) the existence of a
natural symmetric monoidal structure Pr%® in the (oo, 1)-category Pr’ of presentable (0o, 1)-
categories together with colimit preserving maps as morphisms. Recall also that stable presentable
(00, 1)-categories are stable under this tensor product and that stable presentable symmetric
monoidal (oo, 1)-categories can be understood as commutative algebras in ?ré;?. Under this
identification, the condition (ii) above says that for any morphism of schemes f : Y — X, the
monoidal functor f* endows T(Y)® with the structure of a commutative algebra over T(X)®. In
particular, this algebra-structure restricts to a module structure T(X) ® T(Y) — T(Y") where the
module action can be intuitively described by the formula (X,Y) — f*(X)® Y the last tensor
being product taken in T(Y)®. If f happens to be separated of finite type, condition (4ii) provides
a new functor fi : T(Y) — T(X). As part of the framework of the six operations we ask for f to
be a map of T(X)®-modules in ﬂ’ré’;?. Intuitively this means that we have formulas like

AF(F)® E) ~ F® fi(E) (9.4.1)

for any object E € T(Y) and F' € T(X). These are known as Projection Formulas. By adjunction,
these imply also other formulas such as

f'Homy (F,G) ~ Homy (f*(F), '(G)) (9.4.2)
with both F and G in T(X) and

MX(]C!(E);F) = f*MY(Evf'(F)) (943)

For any morphism f : Y — X separated and of finite type, we want to have a natural transfor-
mation of co-functors f; — f. which we ask to be an equivalence whenever f is proper.

For any cartesian square of schemes

v s x (9.4.4)

with f separated of finite type, we ask for natural equivalences of co-functors

profiz (f)or) (9-4.5)

and

f! 0 Py (p')* o (f')! (9.4.6)

Of course, together with the condition (vi), when f is proper the first formula is equivalent to
proper base change.
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vii) For any smooth morphism of relative dimension d, f : ¥ — X the adjunctions (fi, f') and
(f*, f«) are expected to be related by an auto-equivalence Xy of T(Y) - the so-called tangent
Thom transformation of f, by means of an equivalence

frexitof (9.4.7)

If T is equipped with the choice of an orientation, ¥ is equivalent to the operation of tensoring
with 1x(d)[2d] where 1x(d) is the d-iterated tensor power of the Tate twist.

These axioms form the core of the formalism. In some examples the previous formalism is deeply
related to the duality form studied in [66]:

D1) Absolute Purity: For any closed immersion Z — S between regular schemes of constant codi-
mension ¢, one asks for canonical equivalences

14(~¢)[~2d = i!(1s)

with 17 and 1g, respectively, the units of T7(Z)® and T(S)®.
D2) If S is a regular base scheme and Kg is a ®-invertible object in T(S)®, then for any separated

finite type morphism f: X — S we set Ky := f'(Ks) and define the duality functor with respect
to Kg as

Dx := Homx(—, Kx) : T(X)? — T(X) (9.4.8)
and we ask for the following properties:

e The canonical natural transformation Id — Dx o Dy is an equivalence;
e For any objects M, N € T(X), there are canonical equivalences
Dx(M ® Dx(N)) ~ Homyx (M, N)

e For any morphism between separated S-schemes of finite type u: ¥ — X, the duality
functors Dx and Dy interchange u* and u! (resp. uy and uy).

These duality properties are not known for motivic stable homotopy theory of schemes.

Remark 9.4.1. Such a duality phenomenon provides an alternative fashion to define the adjunction
(f1, f') because the combination of the properties above yields to f' =~ Dy o f* o Dy. This is useful
for instance to establish the framework in the context of D-modules (see [26, Chapter VII, 10.2] and
[42, Def. 3.1.5]). In a different context, in [56, 58] the authors use this form of duality to explain the
interplay between the two assignments

X — D(X) := co-derived category quasi-coherent sheaves on X

and

X — IndCoh(X) := Ind completion of the (0o, 1)-category of coherent sheaves on X

The existence of such a formalism has deep consequences:
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Example 9.4.2. (Grothendieck-Serre Duality) The usual statement of Grothendieck-Serre duality
(as presented for instance in [66]) can be seen as a consequence of a formalism of six operations: if
f: X — S is a proper morphism we have f; ~ f, and the formula (9.4.3) can be written as

Ds(f+(E)) ~ f(Dx(E)) (9.4.9)

with Kg := 1 and the dualizing complex is given by Kx = f'(15). This has the form of Grothendieck-
Serre dualty.

Example 9.4.3. (Spanier-Whithead Duality) If f : X — S is a smooth proper map, separated of
finite type and of relative dimension ¢ then f;(1x) and fi(1x) are duals in T(S)®. Indeed, for any
E € T(S), as fi =~ f«, we have

Homg(fi(1x),E) ~ fiHomy (1x, f'(E)) ~ fif (E) (9.4.10)

~ fi(1x(c)2¢ ® 1x(—c)[—2c] @ f*(F)) ~ fi(1x) ®s E (9.4.11)

where the last equivalence follows from the projection formula.

The main result we want to emphasize in this chapter (see Thm 9.4.36) is that T® = §H® satisfies
the Grothendieck formalism of six operations (as a functor valued in stable presentable symmetric
monoidal (oo, 1)-categories).

Remark 9.4.4. Again, and as mentioned in the introduction, the fact the homotopy categories of
SH® satisfy the six operations is well-known after the results of Ayoub [6, 7]. Our only contribution
is to present the functoriality of the assignment S — 8H®(S) in the framework of (oo, 1)-categories.
As we shall see in this chapter, this follows from the techniques recently introduced in [93, 94] and
from the fact all the (oo, 1)-categories involved are stable so that all the proofs can be reduced to the
level of the homotopy categories.

9.4.1 A higher categorical framework for the six operations - following
Liu-Zheng

In this section we explain how to built up a machine that encodes what we described in the introduc-
tion as the formalism of six operations. There are rather complicated technical issues, mainly the fact
that all the higher coherences need to be considered as part of the data. In this section we review the
methods of [93, 94] that allow us to encode these higher coherences in a clean and systematic way.
Nothing in this section is new apart from the exposition.

First of all we would like to recall an important construction given in [100] (which we already
used in the previous section). If €% is a symmetric monoidal (oo, 1)-category, we can construct a
generalized co-operad Mod(C)® whose objects in the underlying (oo, 1)-category Mod(€) can be un-
derstood as pairs (A, M) where A is a commutative algebra object in € and M is an object in C
equipped with a structure of a left A-module and a morphism of pairs (4, M) — (B,N) can be
understood as a map of commutative algebra objects u : A — B together with a map of objects
M — N in C, which is A-linear with N endowed with the A-module structure induced by u - see
[100, Constuction 3.3.3.1, Definition 3.3.3.8, Theorem. 3.3.3.9 , Corollary 3.4.3.4, Definition 4.2.1.13,
Example 4.2.1.18, Proposition 4.4.1.4 and Theorem 4.5.3.1]. This (oo, 1)-category is a key figure in
the framework of the six operations. Let us give a brief explanation of why this is so. Assume for the
moment that we have an assignment X — T(X)® satisfying the form of six operations presented in
the introduction of the paper. For any morphism of schemes f : Y — X we have a monoidal pullback
functor f* : T(X)® — T(Y)® which makes T(Y)® a commutative algebra object in Pr,, defined over
T(X)®. In particular, this action makes T(Y) a T(X)®-module so that we can now understand the
pair (T(X)®,T(Y)) as an object in Mod(Prk,,). Moreover, if f is separated of finite type then we
have also a direct image f : T(Y) — T(X) satisfying the projection formula. The important point is
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that the projection formula is nothing but saying that f is a map of T(X)®-modules. In this case,
an equivalent and more compact way to formulate the projection formula is to say that f, should
be understood as map (T(X)®,T(Y)) — (T(X)®,T(X)) in Mod(Prk,,). At the same time, for any
morphism of schemes f : Y — X, the induced pullback f* can itself also be seen as a morphism
of pairs (T(X)®,T(X)) — (T(X)®,T(Y)) given by the identity of T(X)® and f* seen as a map of
T(X)®-modules. Our goal with this discussion is to motivate Mod(Prk,,) as a natural target place
to formulate the six operations.

We can now ask what properties or additional structure should an oo-functor T : BSch®? —
CAlg(Prk,,) have in order to satisfy the formalism of the six operations, or in different words, how
can we extract from T the adjunctions (fi, f') and when will they satisfy the expected properties. The
first basic ingredients are the following assumptions under which we shall work for the rest of this
section:

(I) For any smooth morphism of finite type f: Y — X, f* := T(f) has a left adjoint f; : T(Y) —
T(X) such that:

(a) (Smooth Projection Formula) As f* is monoidal, by adjunction, for any £ € T(Y) and
B € T(X), there is a natural map

fi(E® f*(B)) = fi(E)® B

We ask for this map to be an equivalence;

(b) (Smooth base change) For any cartesian square of base schemes

x Loy (9.4.12)
&' %

/
x—toy

with f smooth of finite type, the commutative diagram

T(X') =~ T(Y") (9.4.13)

G0N
(g')*T Q*T

T(X) < T(Y)

is horizontally left-adjointable. In other words, if the diagram

7x7) L gy (9.4.14)

(g/)*T g*T
Iy

T(X) = T(Y)

commutes by means of the natural transformation

(fgo(g) = (fgolg) odd— (f)o(g) of ofy=(f)so(f) og" ofi =g ot
(9.4.15)

(IT) For any proper morphism of base schemes f : Y — X the pullback f* has a right adjoint f.
given by the Adjoint functor Theorem [99, 5.5.2.9]. We assume that
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(a) this right adjoint itself also has a right adjoint;

(b) (Proper Projection Formula) As f* is monoidal, by adjunction, for any E € T(Y) and
B € T(X), there is a natural map

f«(E)® B — f.(E® f*(B))
We ask for this map to be an equivalence;

(c) (Proper base change) For any cartesian square of base schemes (9.4.12) this time with f
proper, the induced pullback diagram (9.4.13) is right adjointable. In other words, the
diagram

()«
—_—

T(X') T(Y") (9.4.16)
<g'>*T g*T
fs
T(X) L~ T(Y)

commutes by means of the natural transformation

g ofe = (o (f) og ofu=(feo(g) of ofi=(fold) (9.4.17)

Remark 9.4.5. Tt is important to remark that the two projections formulas I-a) and II-b) can be
written in terms of the adjointable condition of certain commutative diagrams. If f* has a left adjoint
fy then id ® f; is a left adjoint to the top horizontal arrow in the commutative diagram

T(X) © T(X) 220 7(x)  T(Y) (9.4.18)

b

TJX)———T(Y)

so that, to say that f; satisfies I-a) is equivalent to say that this diagram is left adjointable. One can
easily establish a similar statement for II-b) in terms of a right-adjointable diagram.

Example 9.4.6. After our discussion in section 9.3, both the examples T = 8H®, T = §H%, and
T = 8HLow® gatisfy all assumptions in (I). Assumption (II)-a) is also satisfied. Indeed as f, is a
functor between stable presentable (0o, 1)-categories, for it to admit a right adjoint, by the Adjoint
Functor Theorem, it is enough to check that it preserves filtered colimits. Let d : I — 8H(Y) be a
filtered diagram. We need to show the canonical map

colimier fv 0 d — fu(colimicr(d))

is an equivalence. For this purpose we use the existence of a nice family of compact generators in
8H(X) given by the Prop. 5.3.3. Tt is enough to check the generators see this map as an equivalence.
But this follows from their form, the fact they are compact and the fact f* preserves them. Similar
arguments imply that both T = 8H®, and T = §HLo%® also verify (II)-a).

We will see in the last section of this chapter that in the example T = SH® all the assumptions
left in (II) are also satisfied. This follows from the fundamental results of J. Ayoub.

Under these assumptions a first answer to the problem of constructing the six operations was
given by P. Deligne in [2, XVII - 3.3.2] in the classical case where T takes values in triangulated strict
1-categories. The first ingredient is the Nagata’s compactification theorem (see [39, Thm 4.1] ) which
tells us that any separated morphism of finite type f : ¥ — X between quasi-compact separated
schemes admits a factorization

x?l.x "ty (9.4.19)
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with j an open immersion and p proper. Using this result, Deligne proposes a definition of f, (f
separated of finite type) as a colimit in the category of functors from T(Y') to T(X) of the diagram
(4,p) — ps« o j; indexed by all the possible factorizations of f in the form of the compactification
theorem. If f is proper, the factorization with j the identity is an initial object in the category of
factorizations, so that fi ~ f.. In the same spirit we have also fi ~ f; if f is an open immersion.
It is an immediate observation that in order for the assignment f — fi constructed this way to be
functorial we need to make another assumption on 7:

Definition 9.4.7. (Deligne). Let T : BSch®® — CAlg(Prk,,) satisfy (I) and (1I). We say that T
satisfies the Support Property (Supp) if for any cartesian diagram of schemes (9.4.12) with g proper
and f an open immersion, the commutative diagram (9.4.14) written as

7(x) - gx (9.4.20)

ifﬁ \L(f’)ﬁ

TY) LT

is Tight adjointable. In order words, if the diagram

T(X) <~ T(X') (9.4.21)

(g")«
ifﬁ l(f')u

T(Y) <— T(V)

commutes by means of the adjoint natural transformation

fro(g)e =1Ido fro(g)e = geog®ofyo(d)e =guo(fyo(d) (g = g0 (f): (9-4.22)

In Deligne’s theory, since the target of (=), is a (2,1)-category in order to verify that functoriality
holds, one only needs to consider coherence up to 2-cells (see [30, Section 2.2.9]). Back to our context
where T takes values in a (0o, 1)-category, repeating the strategy of Deligne by hand is virtually
impossible for we need to verify an infinite amount of coherences. As a solution to this problem, in
[93, 94] the authors propose a technical procedure based on the language of multi-simplicial sets that
provides a machine that encodes and ensures all these coherences. Their main result can be stated as
follows:

Theorem 9.4.8. ( [93, 94]) Let T : BSch®® — CAlg(Prk,,) satisfy (1) and (II) and (Supp). Then
there exists an oco-functor (=) defined on the subcategory spanned by the separated morphisms of
finite type, sending a scheme Y to T(Y') and such that if f is an open immersion we have a natural
equivalence fi ~ jy and if f is proper we have fi ~ p,. Together with T, (—): satisfies the formalism
of the siz operations described in (i)-(vi) in the introduction.

Remark 9.4.9. The result in the theorem 9.4.8 can also be proved in a much compreensible way,
avoiding the rather technical aspects of multi-simplicial sets. It follows from a universal characteri-
zation of the (00, 2)-category of correspondences built out of a fixed class of maps. This approach is
currently being worked by D. Gaitsgory and N. Rozenblyum and will soon appear in literature. A
preliminary version is already available at [59]. Their results provide a much clear understanding of
the results in [93, 94]. The key idea is that out of an (0o, 1)-category € together with two classes of
morphisms €; and € we can produce (0o, 2)-categories Cg%'" (resp. C¢”") having the same objects
of € and morphisms given by correspondences X - W — Y where the second arrow W — Y is in
€;. The good behavior of compositions in these categories is equivalent to the base-change conditions
described above. If £; and €5 are contained in a bigger class of morphisms € such as in Nagata’s
lemma, there is a procedure to glue the (0o, 2)-categories C¢7’" and C¢7". See [58, Thm. 5.2.2 and
Section 5.4.3] for a more detailed explanation.
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As the tools mentioned in the Remark 9.4.9 are not yet available we will use the technical steps
of [93, 94]. In order to give the text a more definitive form we isolate the two main technical steps -
Lemmas 9.4.10 and 9.4.14. Once the results of Gaitsgory-Rozenblyum become available in the liter-
ature these are exactly the two main lemmas whose content will become much clear. The rest of the
proof should then follow by the very same steps presented here.

The goal of this section is then to review the techniques of [93, 94] and explain the proof of the
theorem. In 9.4.1.1 we review the theory of multi-simplicial sets, multi-marked simplicial sets and
multi-bimarked simplicial sets and explain how to relate them. We recall the notion of Cartesian
restricted nerve. In 9.4.1.3 we follow the steps of loc.cit to give a precise form and proof to the
theorem.

This result solves the problem of constructing (—), in a coherent way. The question whether this
construction satisfies the phenomenon in (vii) is of independent nature. More precisely, and following
[30] it is possible to give conditions on T such that the output of the theorem satisfies (vii). We shall
briefly review this in section 9.4.2.4.

9.4.1.1 Multi-simplicial sets, Multi-marked simplicial sets and Multi-bimarked
simplicial sets

We now review the main ingredients in the theory of multi-simplicial sets and following [93, 94] explain
how to use them to achieve our goals. Let I be a finite set. We denote by Al the category of functors
from I (seen as a discrete category) to A. By definition, an I-simplicial set is an object in AT, meaning,
a presheaf of sets over A’. Following the notations of [93, 94] we let AliDicr denote the image by
Yoneda of the object ([n;])ie;r € AL. For any map of sets f : I — J the composition with f induces a

functor (A7)* : A7 — AT and the composition with this functor produces a new functor A/ — A7,
It admits a right adjoint (Af),. There are two cases of special interest to us:

e I ={1,..,k}, J = {*} and the unique map. In this case the induced functor from A = A’ to
AF = A x ... x A = Al is the diagonal functor (which we shall denote as 6;) and the induced
—_———

k
functor & := (A7)* : AF — A is determined by the formula 6;(S), := S([n], ..., [n]) with the
k

boundary and degeneracy maps given by the compositions with the image of the boundaries and
degeneracies in A along the diagonal. In particular, the image of the representable AliDier
can be canonically identified with the product [[,.; A[n;] in A where A[n,] is the representable.
This follows directly from the definition of §; and the Yoneda’s lemma. This observation allows
us to prescribe a right adjoint 6% := (Af), to &}

Sk
—
Ak A
~—
5k

by means of the following universal property: for any simplicial set X,
Hom o (AMdier 6¥(X)) ~ Homz (]| Alnil, X) (9.4.23)
icl

The following terminology will be useful later: if S is a k-simplicial set we say that a cell
7 Allmlictvy — S is of direction i € I if the map 7 factors by the degeneracy maps
everywhere except in position ¢ where it factors as the identify map:

A([”i])ie{l ..... K} A([O]vr[nl]”[o]) N S
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e J=1{1,...k} and I C J with f the inclusion. In this case the composition map A¥ = A/ — Af
corresponds to the product of the projections in the coordinates indexed by the elements in I. As
[0] is a final object in A, this functor admits a right adjoint A’ — AF sending a family ([n;])ses to
the family ([m;]);jeq1, ..k} With m; =n; if j € I and [0] otherwise. We let €f : A¥ — A denote
the functor induced by composition with this last functor. In particular we set the notation ef

when I consists of one element i € .J. By definition, an n-cell of €¥(A{"Diet1,.#1) is an element

in the product

A[Tll]o X .o X A[Tli_l]o X A[’Ill}n X A[ni+1]0 X oo X A[le]o (9424)

Another important construction is that of taking partial opposites. Recall that A admits an endo-
functor op : A — A defined by the identity on the objects and sending boundary maps 9} : [n—1] — [n]
to O7_, and degeneracy maps €' : [n + 1] — [n] to €”_,. The opposite of a simplicial set X is then
defined to be the simplicial set obtained by composing X with op. If now S is an I-simplicial set
and K C I, we define the partial opposite of S with respect to K, denoted as opk-(5), as the com-
position of S with the functor AT — Al defined by applying op to the copies of A indexed by K

and the identity functor in the remaining ones. If I = {1, ..., k} we set 0} i as the composition 0y ooph..
To conclude, let us remark that for any k, k' > 0, there is a functor
K : Ak x AR 5 AR+F (9.4.25)
defined by the formula

(S®S) ([l s [ni], [Pkl ooy [nrgwe]) s= ([l s [n]) X S (k4] o [0 a])

Moreover, it follows immediately from the definitions that the diagrams

AF x AF B At (9.4.26)
ia;xag, lg’:“’
AxA—= A

commute.

Th first key technical result from [93] is the following lemma

Lemma 9.4.10. (see [93, Prop. 1.4.53]) Let I = {1,..,k} and let S be a k-simplicial set. Let J C I
be a subset and f: 0;,S — Catso be a map of simplicial sets. Assume the following conditions:

1. For every j € J and every edge e : A[1] — 6;.S of direction j, the functor f(e) : A[l] = 6;5 —
Cats has a left adjoint;

2. Foralliel—J,je€J and every T € eﬁj(S), the induced square

5 (T f
OO s — s Cat (9.4.27)

f(r) - All] < Afl]
18 left adjointable.
Then, there exists a map of simplicial sets fj: 07 ;S — Catos satisfying the following properties:

1. f and f; are equal when restricted to those cells in any direction in I — J. More precisely, we

have f7|07_;(A™).S) = flo7_;(AY).S) with u the inclusion map I —J C I.

2. For every j € J and every edge e : A[l] — 67 ;S, the functor f;(e) is a left adjoint to f(e).
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3. ForallieI—J,jeJ and every T € € ;(S) = € ;(0p(S)) the induced square f;(7) is left
adjoint to f(T) (in the sense of 2.1.10).

Remark 9.4.11. This lemma is in fact a shadow of a very beautiful result to appear in the works
of Gaitsgory-Rozenblyum related to the Gray tensor product of (0o, 2)-categories: If S, T and X
and (o0, 2)-categories then there is an equivalence between the space of 2-functors from S @ T — X
sending 1-morphisms in S to 1-morphisms in X having a right-adjoint and the space of 2-functors
from T'® S°? — X sending 1-morphisms in S°P to 1-morphisms in X with a left-adjoint. I'm very
grateful to Nick Rozenblyum for explaning me this very elegant result.

We now move to the second main technical result. The second notion that we will need is that
of a Multi-marked simplicial set. Recall that a marked simplicial set is a simplicial set X together
with a collection € of edges in X containg all the degenerated edges. As a natural extension of this
notion, an I-marked simplicial set (I again a finite set) consists of a pair (X, € = {&€;}ier) with X a
simplicial set and € a family of collections of edges in X, all containing the degenerated edges. We
let Aj; denote the category of I-marked simplicial sets with the obvious morphisms.

The theories of I-marked simplicial sets and I-simplicial sets are naturally related: if (X,& =
{&€:}icr) is an I-marked simplicial set we define an I-simplicial ¥ (X, &) as the full sub-I-simplicial set
of 6¥(X) spanned by those ([n;])icr-cells corresponding via (9.4.23) to those maps in A

[[AaR]—x
iel
such that for every i € I and every map o : A[1] — ef(A(niiet1..%1) | the composition
All] 2 A0] x ... x  A[1]  x...x A[0] Z [Lic; Alni] —= X (9.4.28)

~—

ith-position

is an edge in &;. This construction is functorial ¥ : Epr — Al and admits a left adjoint send-
ing an I-simplicial set S to the I-marked simplicial set defined by the pair (6;(S), {E€;}icr) with &;
is the collection of edges A[1] — 6 (S) corresponding to those cells AlllDier — S which factor as
ADier —y AL Usel0) _y g

The last ingredient is the notion of a Multi-bimarked simplicial set. It is an extension of the pre-
vious notion: instead of considering a simplicial set with collections of edges we consider collections
of commutative squares. More precisely, an I-bimarked simplicial set is a pair (X, B = {B;;}: jer)
where X is a simplicial set and B is an I-indexed family of collections B;; of maps A[1] x A[l] - X
such that for any 4, j in I, B;; contains the degenerated squares A[1] x A[1l] — A[0] — X and the B,;
and B;; are in bijection by means of the permutation of the two factors in A[1] x A[1]. We set N
the category of I-bimarked simplicial sets with the natural morphisms compatible with the markings.

We shall now see how ¥ factors through the theory of Multi-bimarked simplicial sets. To start
with, there is an adjunction between the theories of I-bimarked simplicial sets and that of I-marked
simplicial sets, obtained by the following procedure: if (X, & = {€;};er) is an I-marked simplicial set
we consider the I-bimarked simplicial set U(X, €) := (X, {&€; *x &,}i jer) where &; xx €, is defined as
the collection of maps A[1] x A[1l] = X such that

e for any map o : A[1] — €}(AULID) the composition

All] ~ A[1] x A[0)] Z—= A[1] x A[l]] —= X (9.4.29)

isin &;;
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e for any map o’ : A[1] = e3(ATLMD) the composition

’

All] ~ A[0] x A[1] Z—= A[1] x A[l] —= X (9.4.30)
isin &j;
One can show that this construction admits a left adjoint (see [93, 94]).

At the same time there is also an adjunction between the theories of I-bimarked simplicial sets
and that of I-simplicial sets: if (X, B = {B;;}i jer) is an I-bimarked simplicial set we consider the
I-simplicial set ®(X,B) obtained as a full sub-I-simplicial set of §%(X) spanned by those cells

such that for every 4,j € I and every map u : A[l] x A[1] — e’fij}(A(["i])ié{lka}), the composition

A X ALl = AJ0] X oo x A[] xewx A[l] x... x AJ0] — e, Aln] —= X
~—~ ~—~
ith-position jth-position
(9.4.31)

Again, it is possible to show the existence of a left adjoint to ®.

The commutativity of the diagram

Ny (9.4.32)

\ TU
7
Ary
is obvious from the definitions. We can now modify a bit the constructions and establish to the
following definition:

Definition 9.4.12. Let I = {1,...,k} and let C be an (0o, 1)-category with finite limits, together with

.....

k-simplicial set obtained by applying ® to the sub-I-bimarked simplicial set of U(C, {Ei}ie{li.__,k.}) =
(C,{€i*x Ej}ijeqn,... .k}) consisting of the same underlying simplicial set C but this time equipped with
the sub-collections &; x5¢" &; defined as follows:

o ifi=j, &« E; =& xx &;;

o if i £ j, & ¢ &  is the sub-collection of &; xx &; spanned by the elements that are pullback
diagrams in C.

The simplicial sets of the form ¢} Ggl‘”t ¢, are the key players in the methods developed in [93, 94]
to encode the formalism of the six operations. In the case k = 2 and assuming the conditions in Def.
9.4.12 we have

e The O-cells of 43 Ggl“fgz are the objects in C;

e 1-cells are given by commutative squares in C

X— =Y (9.4.33)
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such that o is a pullback in €, the horizontal maps are in €; and the vertical maps are in Es.
The source of this 1-cell is X and the target is Y. Moreover, o is of direction 1 (resp. 2) if the
vertical (resp. horizontal) maps are identities;

e the 2-cells are already complicated to visualize;

e etc;

Remark 9.4.13. In the case € is the nerve of an strict 1-category this description can be improved:
the 0-cells and 1-cells admit the same description and because of the definition of the nerve functor,
the n-cells can be identified with commutative diagrams in C

X070 Xl,O X270 Xn,() (9434)
Xo1 Xi11 X21 Xn
Xon Xin Xo, Xon

)

where every horizontal map is in €1, every vertical map is in €5 and every square is a pullback. Such
a cell is of direction 1 (resp. 2) if the vertical (resp.horizontal) maps are identities. In this case every
1-cell

) A v (9.4.35)

b'd L_ y!

can be tautologically described as an edge in the 9'-boundary of two different 2-cells, namely,

X Poy——vy (9.4.36)
A= X oy—v
o oo |
X Ly —Y'
and
X—x- oy (9.4.37)
f/l o(f") lf’ lf
B= X ==X "Y'
X ==X =Y

where o(f) and o(f’) are 1-cells of direction 1 and o(p’) and o(p) are of direction 2. In both cases the
0'-boundary is given by the outer commutative square. In this case, for any map of simplicial sets
o5 Gg;"gg — D with D an (oo, 1)-category, will have (by the definition of the composition operation
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in a quasi-category and the fact ¢ is a map of simplicial sets, therefore compatible with boundary
maps)

$(0) = ¢(9'(A4)) = 0'(6(A)) = 8°(6(A)) 0 9*($(4)) = $(°(4)) 0 $(8*(A4)) = (o (f)) 0 $(o(p"))
and by the same steps

¢(o) = ¢(0"(B)) = ¢(o(p)) o $(a(f))
This will be the key feature the encoding base-change properties.

We are almost done with the preliminaries. As a last step we compare the functorial behavior
of multi-marked simplicials, multi-bimarked simplicials sets and multi-simplicial sets. Let f: I — J
be a map of finite sets. In the beginning of this section we saw that f produces an adjunction
((AN)*, (AT),) between I-marked simplicial sets and J-marked simplicial sets. We now contemplate
a similar phenomenon for multi-marked simplicial sets and multi-bimarked simplicial sets. For the
first, f defines a natural adjunction

(f9)”

—
+
(f4)«

A; Ay, (9.4.38)

defined by the formulas
e Given (C,{&;}icr) € ﬁu we set (f4)*((€,{&i}ier)) := (€, {&;}jes) where by definition we set
&= Uief,l({j}))& if f~*({j}) is non-empty and &; = collection of degenerated simplices in C
if f71({7}) is empty;
o At the same time, given (C,{0,};cs) € £J+ we set (f4)«((C,{0;}jes)) == (€,{O0;}icr) where
by definition we set O; := Oy(;;
One sees easily that these constructions are adjoint.

In the same spirit, one can also establish adjunctions relating the theories of multi-bimarked
simplicial sets:

R )"
AV A (9.4.39)
(f4+)«
To conclude, by a direct manipulation of the definitions, we contemplate the commutativity of the
diagram of right adjoints

N (9.4.40)
s
KI il EIJF
(f++)«
(af). Ajisr ()

o,
L\
AJ et Ay
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We can finally present the second key technical result from [94]. It is the heart of the mechanism
through which it will be possible to implement the same gluing strategy of Deligne. We consider the
previous diagram in the case where f corresponds to the map I = {1,2,....k} = J={1,2,....k — 1}
defined by f(1) = f(2) = 1 and f(i) =i — 1 for ¢ > 3. In this case, if C is an (oo, 1)-category and
€o,E1,E9,...,E are collections of edges in € with both £; and €, contained in £y, then, using the
commutativity of the diagram (9.4.40) and adjunctions, we find a natural map

(Af)*(egﬁ”gQ”gk) — eg(i’%tg,...,gk (94'4‘1)

As the composition of f with the projection J — {1} is the projection I — {1}, using the
definitions, we find d;_, o (AF)* = ;. In particular, applying ¢;_, to the previous map we find a map

Gr(CEMY, e)) = 0 1CEME e (9.4.42)

Lemma 9.4.14. (/94, Theorem 0.1, Corollary 5.3 and Remark 5.4]) Let C be an (00, 1)-category given
by the nerve of a strict 1-category and consider €g, &1, Ea, ..., &k collections od edges in C. Assume the
following

1. C admits pullbacks;

2. For every 0 < i < k, the collection &; contains every isomorphism of C and is stable under
pullbacks;

3. Both &1 and E5 are contained in €y and satisfy the following condition: for any pair of compos-
able arrows u,v in C, with v € &;, the composition v o u is &; if and only if u is;

4. Every morphism p € £y is of the form p=vou withv € & and u € &,

Then, the map (9.4.42) is a weak-equivalence of simplicial sets with respect to the Joyal model
structure.

9.4.1.2 The cc-operad Pf®

In this section we analyse the properties of an co-operad introduced in [93] as a means to study module
objects in the commutative case. We let Pf denote the coloured operad with two colors {a,b} and
operations given by:

{*} fX,=aforallieclandY =a
Homps({Xi}ier,Y) = {*}, if3FjelwithX;=m,X;,=aforalliecl—{j}andY =m
0 otherwise
(9.4.43)
We let Pf® denote its operadic nerve (see [100, 2.1.1.23]). It follows immediately from this
definition that the full subcategory of Pf® spanned by the operations involving only the colour a is
a copy of the commutative operad. As explained in [93, Remark 1.5.7] this co-operad is a simplified
version of the oo-operad LM® of [100, Def. 4.2.1.7] (see also our survey in Chapter 3.3.6) in the sense
that for any symmetric monoidal (oo, 1)-category €% we have a natural equivalence

Algp e (C) =~ Mod ™™ (€) (9.4.44)

or in other words, an algebra over Pf® consists of a commutative algebra object given by the evalu-
tation at a and a module over this algebra given by the evaluation at m.

In [93, Notation 1.5.8] the authors remark a very important description of P f® which we shall now
explain. Let A[1]" be the co-operad associated to A[1] by means of the universal property of cocarte-
sian monoidal structures [100, Thm 2.4.3.18] (consult also our fast survey in 3.1.8). By construction
(see [100, 2.4.3.1]), the objects of A[1]! can be identified with sequences ((n);(X1,...,X,)) with
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(n) € N(Fin,) and Xj,..., X,, objects in A[l]. Morphisms ((n); (X1,..., X)) — ((m); (Y1,....,Y))
correspond to pairs (a, (fi)ica-1((my+)) With a : (n) — (m) and f; : X; — Y, in A[l]. As A[l]
only has two objects a unique non-trivial morphism, which we denote here as 0 — 1, objects in A[1]H
can be identified with pairs ((n); S) where S is the subset of (n)™ consisting of those indexes i with
X; = 1. In this notation, a morphism ((n), S) — ({m),T) is just the data of a morphism « : {(n) — (m)
in N(Fin,) with a(S) C TJ{0}. It follows from this description that the co-operad Pf® can be
identified with the sub-simplicial set of A[1]": we identify the colour a with 0, the colour m with 1
and consider only those morphism « : (n) — (m) where the map S Na~}(T) — T is a bijection. in

other words, we discard the operations generated by the unique arrow 0 — 1. This inclusion is a map
of oco-operads Pf® — A[1]1.

Let us now explain the relevance of this discussion. Let €® be a symmetric monoidal (oo, 1)-
category and let f : A — B be a morphism of commutative algebra-objects in €. Then we expect to be
able to say that B aqcuires the structure of an A-module via f. The map of co-operads Pf® — A[1]!
encodes exactly this possibility. More precisely, we can see f as an object in Fun(A[l],CAlg(C))
so that by the universal property of A[1]!, f corresponds to a uniquely defined map of co-operads
A" — €®. Composing this map with the inclusion Pf® — A[1]" we obtain a map of co-operads
Pf® — €% which as explained in the formula (9.4.44) corresponds to a uniquely determined object
in Mod(@). It follows from the nature of the inclusion Pf® — A[1]! that this procedure returns the
pair (A, B) with B considered with the A-module structure induced by f.

To conclude this section we prove a very useful result that combines the key Lemma 9.4.10 with
the discussion of this section, in a essential way

Proposition 9.4.15. Let f€ : €2 — D® be a colimit preserving monoidal functor between presentable
symmetric monoidal (0o, 1)-categories. Assume that the underlying functor f of f® has a left adjoint
g : D — C and that g satisfies the projection formula in the condition I-a). Then g lifts to a map of
module-objects in Pr®, where D is equipped with the structure of C®-module induced by f& and C
has its natural C®-module structure induced by the tensor product.

Proof. We start by writing the map of module objects produced by f®, (€%, €) — (€%, D). For that
purpose we consider the commutative square A[1] x A[1] — CAlg(Prl) given by

e, 8 (9.4.45)

iid lf@)
f®

e® > P®

We can see this diagram as an object in Fun(A[l], Fun(A[1], CAlg(Prl))) and thanks to the
procedure explained in the paragraph above, by composing with the inclusion Pf® — A[1]Y, the
diagram provides an object in o9 € Fun(A[1], Mod(Prt)) which we can naturally identify with the
map of modules (C®,€) — (€®, D) given by the identity on C® and f as a map of modules between
C and D. Our goal is to, using the existence of g : D — € satisfying the projection formula, say that
g is a map of modules (€%, D) — (€®,€). For that purpose we use the Lemma 9.4.10. We consider
the fact that Pr® has a lax inclusion in Cat*"9* and consider the composition

All] —% Mod(Prt) o~ Algp e (Prr) — Algp e (Cat2l™) (9.4.46)

so that as Cat 2 is cartesian, the (co,1)-category Algy e (Cat’e™) is equivalent to the (co,1)-
category of Pf®-monoid objects Mong s (Cat ™) - see [100, Def. 2.4.2.1]). As defined in loc. cit,
these are objects in Fun(Pf®, Cat’?") satisfying a standard Segal-like condition. In particular, oo
establishes an co-functor o) : A[1] x Pf® — Cat’"9 satisfying the Segal condition in the second
variable. Now we introduce the technology of multi-simplicial sets. After the formula (9.4.26) we have
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(AR PFE) ~ A[1] x Pf® (9.4.47)
and we apply Lemma 9.4.10 to the I = {1,2}-simplicial set S = A[1] ¥ Pf® with the map oy :
03 (A RPFE) — Cat®™™ and J = {1}:

1. The assumption that f has a left adjoint g ensures that for any edge e of direction 1, the functor
o1(e) has a left adjoint.

2. The assumption that the square in Cat’" induced by any commutative square in ef o (Al K
Pf®) is left adjointable follows from the assumption that g satisfies the projection formula by
mimicking the argument explained in the Remark 9.4.5.

Then the Lemma 9.4.10 provides us with a new map of simplicial sets

21 03 1y (AL R Pf®) ~ A[1]P x Pf€ — Cat) (9.4.48)

which equals o7 in direction 2. In particular, it continues to verify the Segal-like conditions. Moreover,
as A[l] ~ A[1]°P, o4 can again be written as a map

All] = Algpse(Cat?l™) (9.4.49)

and again becasue o9 equals o7 in direction 2 and as left adjoints commute with colimits, o, factors
as

A[l] = Mod(Prt) — Algp e (Cat?l?) (9.4.50)

It follows from the results of the Lemma that oo is the module enrichment of g we were looking
for.
O

9.4.1.3 Gluing restricted Nerves and the formalism of the six operations

In this section we explain the proof of the Theorem 9.4.8. To illustrate how the Lemma 9.4.14
encodes the mechanism that allows us to implement the strategy of Deligne, let us consider BSch’ the
subcategory of BSch containing all objects together only with those morphisms that are separated
and of finite type and consider also P the class of proper maps and J the class of open immersions.
Then, the combination of this Lemma with the Nagata’s compactification theorem gives the following
result

Proposition 9.4.16. ( [94, Corollary 0.3]) The natural map of the Lemma 9.4.1}

55N (BSch') 5" — N(BSch') (9.4.51)

is a weak-equivalence of simplicial sets with respect to the Joyal’s model structure.
The potential of this result is obvious: if D is an (oo, 1)-category, the data of an oco-functor
F : N(BSch") — D is equivalent to the data provided by a map of simplicial sets 5’2"]\T(B,S'ch')%“flt —-D

which is essentially the same as specifying the value of F' on open immersions and proper maps. The
gluing is made by means of a choice of a quasi-inverse to the composition with (9.4.51).

Let us now explain how to use this gluing strategy to construct the six operations. Let T :
BSch® — CAlg(Prk,,) be an co-functor satisfying the assumptions (I), (II) and (Supp). Everything
will be extracted from the map induced by the composition with T:

Fun(A[1], BSch®?) — Fun(A[1], CAlg(PrL,,)) (9.4.52)

By the universal property of A[1] and composing with the inclusion Pf® — A[1]H as explained
in the previous section, we obtain a map
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Fun(A[1], BSch®?) — Fun(A[l], CAlg(PrE,,)) — Mod(Prk,) (9.4.53)

that corresponds exactly to the assignment sending a morphism of base schemes f : Y — X to the
pair (T(X)®,T(Y)) € Mod(Prk,,) where T(X)® is a commutative algebra object in Prk,, by means
of its monoidal structure and J(Y") is seen as an module over T(X) by means of the pullback functor
fr.

Let us now manipulate the source of this map. It is obviously equivalent to Fun(A[l], BSch)°P
and therefore, by the properties of multi-marked simplicial sets to 0} {1}(Fun(A[1], BSch)). Let

Yy —=Y; (9.4.54)
b ]
Xo —= X,
be an arrow in Fun(A[1], BSch). We consider four different collections of arrows:
e &3:= ALL is the collection of all arrows with u and v arbitrary;
e &( := F is the collection of all arrows with v and v separated of finite type;
e &, := P is the collection of arrows with v and v proper;

o &5 := J is the collection of arrows with u and v open immersions;
In particular we have both P and J contained in F' and all contained in ALL, so that using the

properties of multi-marked simplicial sets and the natural adjunctions, we have canonical map of
simplicial sets

03 11,2,8y (Fun(A[1], BSch)55 1) (9.4.55)

sy

5;{1’2}(Fun(A[1]7 BSch)g)“ATZL)

8% 11y (Fun(A[1], BSch)5¢7)

) (Fun(Al[l], BSch))

(1)

We now focus on the composition map

00 : 05 (1.0.5y (Fun(A[1], BSch) 5% 1) — Mod(Pry,) (9.4.56)

Using the lax inclusion ‘J’réf — C’atgi’ig’x and same strategy as in the proof of the Prop. 9.4.15,

we establish a map of simplicial sets

01 ¢ 65 11.9.3) (Fun(A[l], BSch) 5% 1) x Pf® — Catl’ (9.4.57)

satisfying the standard Segal-like conditions in the second variable. Moreover, the formula in 9.4.26
implies that the source of o1 is in equivalent to oy : 6] 1 4 5 (Fun(Afl], BSch)8% ", K PfE). We
now come to the main step of the construction. We apply the dual version of the key Lemma 9.4.10
to the I = {1,2,3,4}-simplicial set 0p?1,273} (Fun(A[1], BSch)3%Y ., M Pf®) together with the map

o1 and J = {1}. This is possible because:
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1. The existence of right adjoints for morphisms in direction 1 follows from the assumption II)-a);

2. The right adjointable condition for both directions (1,2) and (1,3) results from the assumption
II-c);

3. As in the proof of the Prop.9.4.15 the right adjointable condition for direction (1,4) is given by
the proper base change formula in II-b).

The output of 9.4.10 is a new map of simplicial sets

02 ¢ 6} 1.3y (Fun(A[1], BSch) 5% 1, R PfP) — Catll™ (9.4.58)

which is equal to o7 in all directions except the first where it now sends a proper map of schemes p
to the induced pushfoward p,.

We still need to correct the assignment for open immersions. For this purpose we apply now the
Lemma 9.4.10 to the I = {1,2,3,4}-simplicial set op?Q’g}(Fun(A[l],BSch)gf‘f’fL‘LL X Pf®) together
with the map o7 and J = {1}. Again, this is possible because

1. The existence of left adjoints for morphisms of direction 2 follows from the assumption I);
2. The left adjointable condition for direction (2,1) is a consequence of (Supp);
3. The left adjointable condition for direction (2,3) results from the assumption I-c);

4. As in the proof of the Prop.9.4.15 the left adjointable condition for direction (2,4) is given by
the smooth base change formula in I-a).

Again, the output is a new map of simplicial sets

031 0} 11 (Fun(A[1], BSch) 5% 1, R PfE) — Catll (9.4.59)

which is equal to o2 in all directions except the second where it now sends a open immersion j to
the left adjoint jy. In particular, it is equal to o1 in what concerns the last direction so that it still
satisfies the Segal conditions and therefore can be re-written as a map

03 1 65 5y (Fun(A[], BSch)gf}:i‘LL) — Algyf@;(Catggig) (9.4.60)
and again because it equals o1 in what concerns the module-structures, it factors again as
03 1 65 g5y (Fun(A[1], BSch) 3% " 1) — Mod(Pr") (9.4.61)

The final ingredient is where Deligne’s strategy of using Nagata’s compactification theorem is
implemented. It results from the combination of the key Lemma 9.4.14 with the classical Nagata’s
compactification theorem [39, Thm 4.1]

Lemma 9.4.17. [93, Lemma 3.2.4] The natural map
83 (3 (Fun(A[L], BSch) g% 1) — 85 (2 (Fun(A[1], BSch) 747 1) (9.4.62)
is a weak-equivalence of simplicial sets with respect to the Joyal model structure.

By means of a choice of a quasi-inverse to the composition with (9.4.62), o3 determines a uniquely
defined map of simplicial sets

04 1 65 1oy (Fun(Afl], BSch)gffﬁL) — Mod(Prt) (9.4.63)

This concludes the procedure. Let us now read the information encoded by o4. Following the
Remark 9.4.13, we have the following description of the simplicial set &3 {2}(Fun(A[1], BSch)%‘ZZL)
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e its O-cells are morphisms of schemes f: Y — X.

e a l-cell from fy: Yy — X to f3: Y3 = X3 is a commutative diagrams of schemes

Yy ——mmmm= Y% (9.4.64)
/ fo / f1
Y, Y3
f3
f2 Xo Xy

S

Xo— - X,

where the diagonal arrows can be any morphism of schemes and the horizontal arrows are
separated morphisms of finite type. Moreover, both the lower and upper faces of the cube are
pullback squares in the category of schemes. In particular, a 1-cell of direction 1 is the data of
a commutative square of schemes

7 (9.4.65)

ifﬁ lfs
Xo — X3
where both horizontal arrows are separated morphisms of finite type.

Using this descrition we have:

e By construction, o4 of a O-cell f: Y — X is the pair (T(X)®,T(Y)) € Mod(Prt), with T(X)
considered with its monoidal structure and J(Y") seen as a module-object over T(X) via f;

e Let f:Y — X be a separated morphism of finite type. Then the commutative square 7:=

/

—_—

f

b

(9.4.66)

Idx

-

"

b

Idx
_—

is a 1-cell of direction 1. It follows the construction that o4(7) : (T(X)®,T(Y)) — (T(X)®,T(X))
encodes the !-pushfoward f; as a map of modules.

e To observe that the assignment (—), satisfies the required base-changed formulas, one considers
the 1-cell 7:=
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Yo v (9.4.67)
Spec(Z) 1 Spec(Z)
A s
Spec(Z) 1 Spec(Z)

where the vertical maps are the canonical projections, u and v are arbitrary and f and g are
separated of finite type. The base-change formula between (—); and (—)* follows now from the
mechanism explained in the Remark 9.4.13.

To conclude, we explain how to extract the assigment f — f as a functor out of the category
of schemes with separated morphisms between them. For that purpose, we consider the functor
BSch — Fun(Al[l], BSch) sending a scheme X to the structure morphism X — Spec(Z). It induces
a map

83 19y BSCh G411 — 03 oy (Fun(A[1], BSch) %% 1 1) (9.4.68)
which, when composed with o4 and restricted to the first direction, produces an oco-functor

(=) : BSch**® — Mod(Prl) (9.4.69)

where BSch®®? is the nerve of the category of base schemes and separated morphisms between them.
This concludes the proof of the Theorem 9.4.8.

Notation 9.4.18. For future notations we will denote the map o4 resulting from this procedure as
EO(T)

9.4.2 Ayoub-Voevodsky fundamental properties

In this section we review the basic properties understood by Voevodsky in [41] and studied by Ayoub
in [6]. As we shall review in the next section, together they imply the whole formalism of the six
operations.

Throughout this section we fix an co-functor T® : BSch®® — CAlg(Prk,,) satisfying the assump-
tions (I) and (II)-a).

9.4.2.1 Localization Property

Let ¢ : Z — X be a closed immersion of base schemes. Let U := X — Z be the open complementary
of i and let j : U C X be the associated open immersion. As j is smooth, by I)-b) and because the
intersection of U and Z in X is empty, we find j* o4, ~ 0. In this case, for every object E € T(X) we
have a commutative diagram produced by the units and counits of the adjunctions

g o J*(E) 4>Jj (9.4.70)
0 —— i, 0i*(E)

We say that T® satisfies the Localization Property with respect to 4 if the following two conditions
hold:
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1. The pushfoward i, is conservative;

2. For every FE € T(X), the square (9.4.70) is a cofiber/fiber sequence.

One says that T® satisfies the Localization Property if it satisfies the Localization property with
respect to every closed immersion 3.

Remark 9.4.19. This property has powerful consequences:

A) An obvious consequence of the fiber/cofiber sequence is that a morphism v : E — F in J(S) is an
equivalence if and only if both the restrictions j*(u) and i*(u) are equivalences.

B) i, is fully faithful. Indeed, from the exact sequence (9.4.70) applied to E = i, M with M € T(Z),
as j* oiy, ~ 0 we find i, M ~ i, 0i*(i.(M)). But as i, is conservative we deduce M ~ i* o i, (M)
so that i, is fully faithful.

C) If T satisfies Localization with respect to a closed immersion i : Z — X then T will also satisfy
conditions II-b) with respect to i. It follows from the combination of A) ,B) and the fact i* is
monoidal.

One can also describe this property in the following terms:

Proposition 9.4.20. Let T be as above and i : Z — X be a closed immersion. The following are
equivalent:

1. T satisfies the localization property with respect to i.

2. The commutative square of (0o, 1)-categories

%

T(Z) —== T(X) (9.4.71)

is an homotopy fiber sequence.

3. The following conditions hold:

a) 14 1S conservative;
b) i. satisfies the projection formula II-b)

¢) the commutative square

Jgoj*(lx) ——1x (9.4.72)

| |

00— i.0i"(1x)
is a cofiber/fiber sequence in T(X).

Proof. The fact that 1) and 3) are equivalent follows immediately from the assumption II-b). Let
us explain the equivalence between 1) and 2). Denote by Tz(X) the homotopy fiber of the pulback
functor j* : T(X) — T(U). It is naturally identified with the full subcategory of T(X) spanned by
those objects E with j*(F) =~ 0 in T(U). As we have j* o4, ~ 0 by the universal property of the fiber
there is a unique (up to homotopy) factorization of i, as
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T(Z) = Tz(X) C T(X) (9.4.73)

so that 3) is equivalent to say that this map T(Z) — Tz(X) is an equivalence. We first observe it is
fully faithful. This is because i, itself is fully fathful as explained in the previous remark.

We now prove that T(Z) — Tz(X) is essentially surjective. To see this we observe that the
inclusion Tz (X) C T(X) has a natural left adjoint: For any E € T(X), the homotopy cofiber

Jjpoj*(F) ——F (9.4.74)

|

0———=¢(F)

lives in the subcategory Tz (X) because j* is an exact functor and because, as j is smooth, the smooth
base change property implies jy is fully faithful so that the image of the top horizontal map in (9.4.74)
is the identify map and therefore j*(¢(E)) ~ 0. It follows from the fact this sequence is exact that the
assignment F — ¢(E) is left adjoint to the inclusion Tz(X) C T(X). This makes Tz(X) a reflexive
localization of T(X). In particular, ¢ is essentially surjective. Finally, assumption 1) is equivalent to
say that as an object in T(X), ¢(F) is canonically equivalent to i, o i*(E). Therefore, if 1) holds, the
map is essentially surjective. If 3) holds then the sequence in (9.4.70) is exact due to the definition of
c.

O

We now describe the local behavior of this property. Assume that now T satisfies Zariski descent
(like in the Prop. 9.2.1). We say that T satisfies the Nisnevich (resp. Zariski) separation property if
for every Nisnevich (resp. Zariski) morphism of schemes X’ — X the pullback map T(X) — T(X’) is
conservative. Of couse, if T satisfies Nisnevich descent it satisfies Zariski separation.

Example 9.4.21. Al T = 8H, T = 8K, and T = 8HL9¢ satisfy the Nisnevich separation properties.
Indeed, let f : X’ — X be a Nisnevich morphism. Then, as we are working with stable (co,1)-
categories and exact functors, it is enough to check that the image of an object E € T(X) in T(X’) is
a zero object, then F is itself a zero object. Let us first deal with the commutative case. Thanks to the
existence and description of compact generators for SH (Prop. 5.3.3) it is enough to consider E the
image in motives of a smooth variety over V over X. In this case, the pullback f* : SH(X) — SH(X’)
is given by the fiber product V — V xx X’. Moreover, as f is smooth, f* has a left adjoint f;.
Moreover, as f is Nisnevich and as Nisnevich morphisms are stable under pullbacks, the projection
V xx X’ — V is a Nisnevich covering of V in the category of smooth schemes over X. Moreover, as
V x x X’ seen as a smooth scheme over X is canonically equivalent to fjo f*(V'), so that as a result of
forcing Nisnevich localization, we have f; o f*(V) ~ V in 8H(X). The conclusion is that if f*(V) is
zero, so will V' be. For the non-commutative case 8H,. one observe first that by zariski descent it is
enough to consider the case where V' and X are affine. We can now proceed by the same arguments
as in the commutative case using the Prop. 6.4.14-2). Similarly for SHLo°.

Proposition 9.4.22. If T® satisfies the Nisnevich separation property then the Localization property
is local for the Nisnevich topology.

Proof. Let {us : Xo — X} be a Nisnevich covering of X and let i : Z — X be closed immersion. Let
7 : U — X be its open complementary. We set

Ja

Zo = 7 xx X, —2 X, U,

=U Xx X
R

A : X

o (9.4.75)
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and show that T satisfies localization with respect to i : Z — X if and only if for every «, T satisfies
localization with respect to i,.

The morphism [[, X, — X is a Nisnevich morphism and as T is assumed to satisfy the Nisnevich
separation property, the map T(X) — T([], Xa) is conservative. Moreover, as by assumption T
satisfies Nisnevich separation, we have T(][, Xo) ~ [], T(Xa) so that the previous pullback is the
product of the pullbacks T(X) — T(X,). The same for Z and U. Therefore, we have a commutative
diagram

[1.7(Za) o [1. T(Xa) oo [, T(Ua) (9.4.76)
Ha(uf)*T Ha(ua)*T Ha(ug)*T
7(Z) - T(X) - T(U)
[ J
and the key observation is that the diagram
[T T(Za) —2 o [, 7)1, 7(w,) (9.4.77)
Ha(ui)*T HQ(Ua)*T l‘[a(ufi)*T
7(2) i T(X) z T(U)

also commutes. Indeed, as each wu, is a Nisnevich map, in particular, it is étale, therefore smooth.
Smooth base change implies that the right square commutes. It also implies that the left square
commutes: as i* o (uq)s =~ (uZ); o (ia)*, by adjunction we have (uq)* 0, > (iq)s o (uZ)*.

The conclusion now follows from the fact the maps [, (u{)*, [T, (uZ)* and [],(uq)* are conser-
vative.

O
Remark 9.4.23. The previous result is of course true if we replace Nisnevich by Zariski.

Assume now our base schemes are S-schemes for some scheme S. Let us introduce some more
terminology. We say that T® satisfies the Weak Localization property if it satisfies the localization
property with respect to every closed immersion i : Z — X with Z and X smooth over the basis S.

Proposition 9.4.24. Assume that T satisfies the Nisnevich separation property. Then, T satisfies the
Weak Localization property if and only if it satisfies localization with respect to every closed immersion
11 Z — X which admits a smooth retract.

Proof. This follows from the previous result because locally for the Nisnevich topology ¢ (with Z and
X smooth) admits a smooth retract (see [40, 4.5.11]). O

To conclude we recall a crucial theorem of Morel-Voevodsky

Theorem 9.4.25. (Morel-Voevodsky [105, Thm 2.21 pag. 114] and [7, Section 4.5.3]) The motivic
stable homotopy theory of schemes 8H® satisfies the Localization property.

Although we won’t provide here the proof of this theorem it is useful to identify the three key
ingredients:

o If i : Z — S is a closed immersion of schemes, then locally for the Nisnevich topology every
smooth scheme over Z is the pullback of a smooth scheme over S [6, Lemma 2.2.11];

e In the commutative world the Nisnevich localization is topological in the sense that Nisnevich
coverings form a Grothendieck topology. This is not the case in the noncommutative setting. In
particular, in the commutative world, to prove that a map of presheaves is Nisnevich equivalence
it is enough to test its values on Henselian local rings [105, Lemma 3.1.11];
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e In the commutative world a scheme is smooth iff locally for the Zariski topology it admits an
etale map to some affine space [63, 17.11.4]

In the next chapter we will explain our attempts to establish a similar result in the non-commutative
world, where unfortunately, none of these phenomenom are known for dg-categories of finite type.

9.4.2.2 Homotopy Invariance

T is said to verify homotopy invariance if for any base scheme X, the pullback 7* along the canonical
projection 7 : AL — X is fully faithful. In other words, if the natural transformation my o 7* — Id is
an equivalence. As 7y satisfies the projection formula, this is equivalent to ask for the canonical map
my(m*(1x)) — 1x to be an equivalence.

Example 9.4.26. Both the examples 7 = SH and T = 8H,,. satisfy the homotopy invariance property
just described, as an immediate consequence of forcing A'-invariance.

9.4.2.3 Stability

Let f: X — S be a smooth separated morphism of finite type between base schemes and suppose it
admits a section s : S — X (which in this case will necessarily be a closed immersion). Following [30]
one defines the Thom transformation associated to the pair (f, s) as the endofunctor Th(f, s) of T(S)
defined by the composition

Ty

T(S) —> T(X) ——= T(S) (9.4.78)

As s is closed and T satisfies II-a), it has a right adjoint

T(S) <= T(X) < T(S) (9.4.79)

Definition 9.4.27. We say that T (under the hypothesis of this section) satisfies the Stability property
if for any pair (f, s) as above, the Thom transformation Th(f, s) is an equivalence of (00, 1)-categories.

Remark 9.4.28. Let (f : X — S,s) and (¢ : Y — S,t) be two pairs as above and let p : ¥ — X
be a morphism compatible with both f and g and s and ¢. In this case by the universal property of
pullbacks we have a diagram

s (9.4.80)
N
t
SXXY;Y
N
P P
s . x-1. g

and using the assumed base change properties we find a canonical map

Th(g,t) — Th(f,s)oTh(p',t) (9.4.81)

We now recall a result of [30] re-writting this Stability condition in terms of the Tate motive being
®-invertible, whenever T satisfies the homotopy property. We start with a small remark

Remark 9.4.29. Let T satisfy the hypothesis of this section. Then, if T satisfies the weak localization
property, the Thom transformation associated to a pair (f, s) as above is equivalent to the endofunctor
of T(S) given by tensoring with the object Th(f, s)(1ls). Indeed, as s is a closed embedding admitting
a smooth retract, the assumption of weak localization implies localization with respect to s (see Prop.



9.4 The Grothendieck six operations in the commutative world - A higher categorical framework 259

9.4.24) so that by the Remark 9.4.19-C), s, satisfies the projection formula. As f is smooth, fy satisfies
the projection formula (assumption I-a) and the result follows from the equivalence s* o f* ~ Id.
In particular, in the situation of the Remark 9.4.28 the canonical map in 9.4.81 produces a map

Th(g,t)(1s) = Th(f,s)(1s) ®s Th(p',t')(Ls) (9.4.82)

Notice also that if j : U C X is the open complementary of S in X, we have an exact sequence in
J(X)

Jpoj*(lx) ——1x (9.4.83)

|

00— s.(1ls)
and its image through fy remains exact.

Proposition 9.4.30. Let T satisfy the hypothesis of this section. Then, if T satisfies also the weak
localization property and the Zariski separation, the following become equivalent:

1. T satisfies the Stability property;

2. The Thom transformation associated to the canonical projection Ay — S (together with the zero
section) is an equivalence;

3. The image of the tensor unit 1s € T(S)® along the Thom transformation associated to the
projection Ay — S is a @-invertible object in T(S)®.

Proof. The equivalence between 1) and 2) is [30, Prop. 2.4.11] and the equivalence with 3) follows
from the Remark 9.4.29. O

Let S be a base scheme and let p : ]P’}9 — S be the projection. Following the standard conventions,
we define the Tate object over S as 1x(1) := Q?(K) where 2 is the inverse of the suspension functor
and K is fiber of the map py(p*(1s)) — lg in T(S). As p admits a section s, given by the point at
infinity, K can also be described as the cofiber of the map s : 1g — ps o p*(1g), which we usually
denote as (P}, 00) (see also the Remark 5.2.2). We denote as 1x(d) the d-iterated tensor product of
the Tate object. As in section 5.3 we consider the standard covering of P§ by two copies of the line
A}g intersecting at Gmg, all considered pointed at 1, and combined with the Remark 9.4.29, deduce
the existence of pushout/pullback squares in T(.5)

(Gmg, 1) — (AL, 1) (9.4.84)

| |

(Ag1) — (P, 1)

| |

# ——— Th(m,s)(1s)

where Th(m,s)(lg) is the image of 1g along the Thom transformation associated to the natural
projection 7 : ALY — S. In particular, if T satisfies the homotopy property, the choice of pointing
at 1 or 0 becomes equivalent and the map (A}g,l) — % becomes an equivalence. So does (P}g,l)
and (P}, 00) become equivalent and the induced map (Pk,00) — Th(m,s)(ls) an equivalence. In
particular, as the tensor product in J(S) is exact in each variable, we have the following conclusion
of the previous proposition:

Proposition 9.4.31. Let T satisfy the general hypothesis of this section. Then if T satisfies the
Homotopy property T satisfies the Stability property if and only if the Tate object is ®-invertible.
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9.4.2.4 Purity and Orientations

In this section we recall the discussion in [30, Sections 2.4.b and 2.4.c] concerning the notions of purity
and orientation.

Let f : X — S be a smooth and proper morphism of base schemes. By considering the pullback
diagram

Xxg X1 =X (9.4.85)

lf ' if
f
X———S5
together with the diagonal 6 : X — X x ¢ X, the pair (f’, ) is in the conditions of the previous section
and it makes sense to consider its Thom transformation Xy := Th(f’,d) : T(X) — T(X). We will
call it the tangent Thom transformation of f. As f’ is a retract of §, we have §* o (f')* ~ Id and as

the diagram (9.4.85) is cartesian and T satisfies I-b), manpulating the adjunctions we find a canonical
natural transformation fy — f. o Xy.

Definition 9.4.32. We say that f is T-pure if both the Thom transformation Xy and the natural
transformation fy — f. o X are equivalences. We say that T satisfies the Purity property for smooth
proper morphism if every smooth and proper morphism X — S is T-pure. We say that T satisfies the
Weak Purity property if for every n > 0 the canonical projection Py — S is T-pure.

Remark 9.4.33. Assume now that 7 satisfies I, IT and (Supp). Then by the Theorem 9.4.8 there
is a well-defined oo-functor (—)i, equivalent to (—). on proper morphisms. In this case the notion of
Purity described in the previous definition can be extended to any smooth separated morphisms of
finite type f : X — S not necessarily proper: using the adjunctions and base change properties we
can now produce a natural transformation f; — fi o3y

Let us now recall the following crucial result

Theorem 9.4.34. (Homotopy Purity - see [30, Thm 2.4.35]) Let T satisfy the hypothesis in the be-
ginning of this section and assume it satisfies also the weak localization property, Nisnevich separation
and the homotopy property. Then for every closed immersion of smooth S-schemes

ASRE e (9.4.86)

NF

S

the deformation to the normal cone produces a canonical equivalence in T(S)

Pa(i(12)) = (g0 Q)z(e.(12)) = Ths(NzX) (9.4.87)
where Nz X is the normal bundle of Z in X, q: Ny X — Z is the canonical projection and e : Z —
Nz X is the zero section.

Let T be as in the theorem and let now f : X — S be a smooth separated morphism of finite type.
In this case, combining the Remark 9.4.29 with the theorem we have

S = () 06, = (/) 0 8.(1x) ©x —) = (Thx(Ty) ©x -) (9.4.88)
where where we define Ty as the normal bundle of X in X xg X.

To conclude this section we recall the notion of an orientation on J. Assume T satisfies the
weak localization property. Let X be a base scheme and let £ — X be a vector bundle on X.
Together with its zero section it has an associated Thom transformation which we will denote here as
Thx(E):T(X) — T(X). As explained in the Remark 9.4.29, it is given by tensoring with the object
Thx(E)(1x). By definition an orientation t on T consists of the following data:
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e For every base scheme X and every vector bundle F — X of rank n, an equivalence in T(X)

tX,E : Thx(E)(lx) — 1X(n)[2n] (9489)
satisfying the following conditions:

1. compatibiity with isomorphism of vector bundles;
2. coherence under pullbacks of vector bundles on X along morphisms ¥ — X

3. for any exact sequence of vector bundles on X, E' — E — E”| the Thom equivalence tx g is
equivalent (via the map in 9.4.82) to the tensor product tx g ®x tx g

Thanks to the formula (9.4.88) and to the considerations in the Remark 9.4.33 we conclude that if T
satisfies I), IT), (Supp), weak localization and comes equipped with an orientation, for every morphism
f X — S smooth separated of finite type of relative dimension d we will have ¥ ~ 1x(d)[2d] ®x —.
In particular, if f is T-pure we have

fe~ f(lx(d)[2d] ®x —) (9.4.90)

Remark 9.4.35. Let T = 8H®. Given a base scheme X there is a notion of orientation on a
commutative algebra object A € CAlg(SH(X)) (see [30, Def. 12.2.2]). Thanks to [149, Thm 4.3]
orientations in A are in one-to-one correspondence with morphisms of commutative algebras MGL —
A where MGL € 8H(X) is the algebraic cobordism spectrum of [150]. As explained in [30, Example
12.2.3] if we have a collection of commutative algebra objects {Ax }xecpsecr compatible under base-
change, the data of a compatible system of orientations for the algebras is in one-to-one correspondence
to the data of a compatible system of orientations of the system of symmetric monoidal (co,1)-
categories X — Moda, (8H(X))® in the sense of the preceeding discussion.

More generally, given T together with monoidal colimit preserving natural transformation 1 :
SH® — T with right adjoint ), if T satisfies the weak localization property then one can check that
the data of a orientation on 7T is equivalent to the data of an orientation for each algebra object
AM1y(x))-

9.4.3 The formalism of six operations for SH®

We now come to the main result of this chapter:

Theorem 9.4.36. The oo-functor SH® satisfies the assumptions (I), (II) , (Supp) so that the meth-
ods of the previous section can be applied to construct an enhanced map

BO(8H®) : 65 oy Fun(A[1], BSch) 74}, — Mod(Prg,,) (9.4.91)

satisfying all the properties (i)-(vi). Moreover, every smooth separated morphism of finite type is
SH-pure and together with the orientation we have (vii).

Both the assumptions (I) and (IT)-a) were already confirmed (see the Example 9.4.6). The main
results of Ayoub and Cisinski- Déglise can now be stated as follows:

Theorem 9.4.37. (Ayoub-Voevodsky and Cisinski- Déglise) Let T : BSch®® — C Alg(Prk,,) satisfy
the assumptions (I) and (II)-a). Then,

i) if T satisfies the localization property, homotopy invariance and stability, then it satisfies weak
purity.
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it) if T satisfies the localization property and weak purity then is satisfies the assumptions 11I-b), II-c),
(Supp). In particular the Theorem 9.4.8 can be applied to produce a formalism of siz operations.
Moreover, it satisfies (Purity) for any smooth separated morphism of finite type in the sense
explained in the Remark 9.4.53.

Proof. As all the (0o, 1)-categories involved are stable, we are reduced to check the statement at the
level of the associated homotopy categories. For i) this is [6, 1.7.9] (see also [30, 2.4.2.8]). For ii) this
is [30, 2.3.13 and 2.4.23] for II-b), II-c) and (Supp) and [30, 2.4.26-(3)] for (Purity). O

Proof of the Theorem 9.4.36: As T® = SH® satisfies the basic assumptions I and Il-a) (as ex-
plained in the Remark 9.4.6) and as it also satisfies the Nisnevich separation property (see 9.4.21),
the fundamental results of Ayoub and Cisinski- Déglise recorded in the previous theorem allow us
to reduce the first claim to the verification of the Localization property, Homotopy invariance and
Stability. The assumptions of homotopy invariance and stability are clear after the Prop. 9.4.31. The
localization property was already recalled in Thm 9.4.25.

O

To conclude this section we contemplate the extension of this formalism to module-objects. Let
T : BSch®® — CAlg(PrF) be an oo-functor verifying the conditions I), II) and (Supp) so that by the
Theorem 9.4.8 it can be enhanced to a map of simplicial sets

EO(T) : 65 19y Fun(A[1], BSch)§ot, —— Mod(Pr§,,) (9.4.92)

Assume that for each base scheme X we are given a commutative algebra-object Ax in T(X)®
and that his data is compatible with pullbacks. Then, by following the methods previously used in
this chapter, we can present the system of stable presentable symmetric monoidal (oo, 1)-categories
Moda, (T(X))® as an oo-functor Moda(T)® : BSch®” — CAlg(Prl), together with the data of a
natural transformation of diagrams T% — Mod 4 (T)®. Moreover, using the fact the forgetful functors
Moda, (T(X)) — T(X) are conservative, we can deduce that Mod4(7) continues to verify I), IT) and
(Supp) so that the Theorem 9.4.8 provides an enhanced (oo, 1)-functor

EO(Moda(T)) : 65 (0 Fun(A[1], BSch) %}, —— Mod(Pré,,) (9.4.93)

2.(2)
codifying the formalism of six operations for modules.

Remark 9.4.38. Using the projection formulas and the fact the forgetful functors are conservative
we can easily check that the transformation T — Mod4(7) is compatible with operations ()*, (). for
any morphism of base schemes and ()4 for smooth morphisms. In particular it is compatible with the
Thom transformations. We leave this as a small exercise to the reader.

Remark 9.4.39. As the family of objects K H representing homotopy invariant algebraic K-theory
is stable under base-change (see [29, Prop. 3.8]) this discussion applies to its theory of modules. One
of the important features of K H is the Bott periodicity phenomenom that gives us an equivalence in
SH

KH ~ RHom((P*, 00), KH) (9.4.94)

compatible with base change. See [29]. As (P!, c0) is ®-invertible in 8H®, this is equivalent to say
that KH ~ (P',c0) ® KH. By the projection formula for the adjunction 8H — Mod r(8H) and
the fact the forgetful functor is conservative, this is equivalent to say that the image of (P!, 00) in
Modk H(8KH) is a unit for the monoidal structure. As K H is also known to be orientable in the sense
of the Remark 9.4.35 (see [30, Remark 13.2.2]) the system X — Modg, (SH(X)) has a canonical
orientation, which, as the Tate motive is now trivial because of the preceeding discussion, makes all
Thom spaces trivial. In particular, at the level of KH-modules, ()4 and () are equivalent.

This concludes this chapter.



CHAPTER ]. O

Towards a formalism of six operations in the
Noncommutative World and Fully-faithfulness
over a general base

In this final chapter we explain our attempts to establish a formalism of six operations in the setting
of non-commutative motives. More precisely, we fix a base field k of characteristic zero, set BSch
as the category of smooth quasi-projective schemes over k and explore the possibility to enhance
the (0o, 1)-functor 8K, : BSch — CAlg(Prk,,) with the extra operation (—), and the standard
compatibilities. Thanks to Hironaka’s theorem of resolution of singularities the output of Nagata’s
compactification can be made smooth and we can apply the machinery described in the last chapter.
After the discussion in the previous chapter, as SH?, satisfies the basic assumptions I and II-a) (see the
Remark 9.4.6), the Homotopy property (because of Al-invariance) and the Stability property (because
the non-commutative image of (P!, 00) is the tensor unit - Prop. 6.4.20), if the localization property
( Section 9.4.2.1) is verified, the existence of (=) and the other standard properties will then follow
automatically from the theorems 9.4.8 and 9.4.37. Let us briefly review what it means to prove this
property. Following the discussion in Chapter 9 (more precisely, the Remarks 9.2.14, 9.3.7 and 9.4.23
and the Example 9.4.21), we know that this localization property is local for the Zariski topology and
we are reduced to consider closed immersions between affine base schemes. Let S = Spec(A) be a
smooth quasi-projective k-scheme and let i : Z = Spec(A/I) < S be a closed immersion corresponding
to an ideal I C A and let j : U — S denote its open complementar. One first observation is that as
our base schemes are smooth, 7 is then a regular embedding (see [63, 17.12.1]) and I can be assumed
to be generated by a regular sequence. A second important observation is that as SH,. satisfies
the Nisnevich separation property (Example 9.4.21) we can assume that ¢ admits a smooth retract
(Prop. 9.4.24). According to the Prop. 9.4.20-(3) and to the description of the compact generators
in non-commutative motives, we are reduced to showing that

A) ¢ 8Hpe(Z) — 8Hne(S) is conservative. This is immediately seen to be true because of the
existence of a retract and because of the functoriality of (—)4;

B) the commutative diagram

g 0 gne(15) ————1° (10.0.1)

| |

0 i 0 i, (13F) = i2°(13)
is a cofiber/fiber sequence in 8H,.(S);

C) For any A-dg-category of finite type T, the natural map in 8H,,.(A)

263
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(1) T — i3°(ir,.(T)) (10.0.2)
is an equivalence. Here T denotes the non-commutative motive obtained by localizing the presheaf
co-represented by T

Notation 10.0.40. All the tensor products used in this chapter are derived, unless otherwise specified.

Unfortunately, we were not able to accomplish the proof of this conditions for 83, .. We found
two main difficulties. The first major problem concerns the use of dg-categories of finite type as the
basic models for noncommutative spaces. These are not known to satisfy any of the properties used in
the proof of the localization property in the commutative world (see the list following the Thm 9.4.25).

The goal of this chapter is to explain our attempts to solve this question and explore some of its
consequences. The first main difficulty that we found concerns the proof of a very basic statement in
the theory of dg-categories, which we could confirm in the case of smooth and proper dg-categories
and also for dg-categories of commutative origin. The general case of a dg-category of finite type
remains unknown.

Conjecture 10.0.41. Let k be a field of characteristic zero and let f : X — S = Spec(A) be a proper
morphism between smooth k-schemes. Thanks to the results of [141] (see also the formula 6.3.1) we
know that for any idempotent complete A-dg-category T of finite type, there is a natural inclusion of
A-dg-categories of A-dg-modules

L —

(Lpe,AEQ\@A T)c - (Lpe,A<X) ®A T)pspe (10.0.3)

We claim that this inclusion is an isomorphism.

Remark 10.0.42. As any dg-category of finite type T over A is of the form U, for some A-dg-algebra
U which is homotopically finitely presented, the conjecture can also be formulated as follows:

Let k be a field of characteristic zero and let A be a smooth k-algebra. For any proper commutative
A-scheme X smooth over k and any A-dg-algebra U homotopically finitely presented, the forgeful
functor

Lye.a(x)BiMody (A) — LMody (A) (10.0.4)
detects compact objects.

Remark 10.0.43. Another useful equivalent formulation is the following: As in the Remark 9.2.13,
using the existence of a right adjoint ¢ to the forgetful functor?

FJIem : DgHem(X) — Dg*ter(4) (10.05)

satisfying F}de’”(cﬁf(T)) ~ (Lpe, A&)\Q@ A T)pspe » together with the fact F}dem is conservative and
satisfies the projection formula with respect to base-change f*, we can formulate the conjecture by
saying that the two functors f* and (,Z; ¢ agree on the class of dg-categories of finite type.

As base-change preserves dg-categories of finite type it is obvious from this description that the
conjecture is stable under compositions.

Let us now comment the contents of the conjecture itself. To start with, it is clearly not true if we
allow it for all A-dg-categories T' not necessarilly of finite type. Indeed, as X is quasi-compact and
quasi-separated Lp. 4(X) is of the form B2 for some proper A-dg-algebra B. We observe that the
conjecture cannot be true for B itself unless f is also a smooth morphism. Indeed, if the inclusion

There Dg'@®™(X) is defined as the limit of Dg?**™(R) for all R affine over X.
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(B®aB)e C (B ®a B)pape (10.0.6)

were an equivalence this would imply, in particular, that, as B is compact as an B dg-module (over
A), it would also be compact as an B ®4 B A-dg-module and therefore (as discussed in section 6.3.2)
it would be smooth over A, which is the case if and only if f is smooth. This follows from the results
of [141] (see our survey in section 6.3.2).

To prove the weak localization property we will need to know the conjecture in the case of a regular
closed immersion i : Z = Spec(A/I) — S = Spec(A). We can confirm it in the following cases:

Proposition 10.0.44. Let k be a field of characteristic zero and let i : Z = Spec(A/I) — S =
Spec(A) be a closed immersion of smooth k-schemes. Then the conjecture is true for the following
dg-categories:

(i) T = A as an A-dg-category;
(ii) T smooth and proper over A;

(iii) A-dg-categories coming from the commutative world in the form of perfect complexes.

Proof. (i) As explained in the Remark 10.0.42 the conjecture is equivalent to say that the forgetful
functor

i AJT— A (10.0.7)

detects perfect complexes. As we are in the smooth case, perfect complexes correspond to
bounded coherent complexes (see for instance [137, Prop. 2.2.12]). It is obvious that the forgetful
functor preserves the boundness condition (as it preserves the cohomology groups). The result
now follows because an A/I-module is finitely generated if and only if it is finitely generated as
an A-module.

(ii) The case of a smooth and proper A-dg-category T follows easly from (i). Assuch a T is dualizable
we have

RHom 4(A/I,,T) ~RHom 4(A/T, ©4 TV, A) ~ RHom ,(T",RHom ,(A/I,, A))  (10.0.8)
which by (i) is equivalent to RHom 4(T", /T/\I ) an again by duality to

RHom 4 (A, T ®4 A/T,) ~T @4 A/I, (10.0.9)

(iii) The last case now follows by the exact same arguments of (i): to say that T is of geometric origin
is the same as saying that there exists a smooth map f : V — Spec(A) with T ~ Ly, 4(V). As
in (i) the conjecture is equivalent to say that the forgetful functor

— A A
A/l ®4 LpeyA(V) — Lpe’A(V) (10.0.10)

detects perfect complexes. Notice that this functor corresponds to the direct image along the
closed immersion Z x gV < V obtained by the pullback of f alongi. As the pullback of a smooth
map is smooth this is again a closed immersion of smooth k-schemes and therefore locally it is
given by a regular sequence. By Zariski descent we can now suppose that V is affine. The same
arguments of (i) tell us that as V-dg-categories the direct image

— Vv ~
AJT@aV = VYV (10.0.11)
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detects perfect complexes. The conclusion now follows because of the Remark 9.2.3: the forgetful
functor Fy from V-dg-categories to A-dg-categories is compatible with the theories of dg-modules,
so that (10.0.11) is the image of (10.0.10). The notion of compact object does not depend on
the enrichement.

O

Unfortunately, knowing these particular examples is not enough to deduce the localization prop-
erty: one is required to know the conjecture for all dg-categories of finite type.

The second difficulty concerns the nature of the noncommutative Nisnevich localization: contrary
to the geometric situation, non-ncommutative Nisnevich squares do not form a Grothendieck topology.
In particular, we could not identify the corresponding analogue of points.

Open Problem 10.0.45. Let k be a field of characteristic zero and let i : Z = Spec(A/I) —
S = Spec(A) be a closed immersion of smooth k-schemes. Does the induced direct image functor
i 1 PP (NeS(A/I)) — PP9(NeS(A)) preserves (noncommutative) Nisnevich local equivalences?

The commutative analogue of this problem is easily solved by knowing the description of points
in the geometric Nisnevich topology as henselian local rings ( see [105, Prop. 1.27]).

Remark 10.0.46. We can use the Conjecture 10.0.41 to formulate this problem in a more explicit
form. If we denote ja,; : NeS(A/I) — P(NeS(A/I)) the Yoneda map, our goal is to describe the i,
image of a square

Jayr(W) ——=jas1(V) (10.0.12)
Jayr(W) ——jas1(X)

associated to a Nisnevich square of A/I-dg-categories

Ty — Ty (10.0.13)

L

Ty ——Tw
By defintion, we have

Z'*(jA/[(fXI)) ~ MachS(A/I)(’i*(—), DC) ~ Ma/ngidem(A/I)(Tx7 f(—)) (10.0.14)

and if the conjecture is true, as formulated in the Remark 10.0.43 we have i*(—) =~ ¢; so that using
the adjunction (F}9™ ¢,) the mapping space in the previous formula is equivalent to

Mangidem(A) (Fiidem (Tx), —)
so that solving the problem is equivalent to understanding how far the square of A-dg-categories

Fidem (Ty) > Fidem(Ty) (10.0.15)
Fiidem (TV) o Fiide7'L(Tw)

is from being Nisnevich. After the discussion in the proof of the Prop 9.2.11, the only property that
is not preserved by F@*™ in this case is the condition of being of finite type.
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The last difficulty, less serious, concerns a tecnhnical issue with the definition of non-commutative
motives. Essentially, the problem is that by localizing with respect to our notion of noncommutative
Nisnevich squares we don’t have sufficent control on what happens to exact sequences of dg-categories
when we regard them in motives. Of course, this is exactly the kind of problem we can solve simply
by forcing the extra localization 83,.(S) — 83%2¢(S) described in Chapter 8.

nc

At the present moment our efforts can be summarized as follows:

Proposition 10.0.47. Let k be a field of characteristic zero. Then:

e Assume that the Conjecture 10.0.41 holds for a closed immersion f =i : Z = Spec(A/I) — S =
Spec(A) with both S and Z smooth over k. Then the co-functor SHL® satisfies the property
B) with respect to i.

e Assume that the Conjecture 10.0.41 holds for a closed immersion f = i : Z = Spec(A/I) —
S = Spec(A) with both S and Z smooth over k and that the Open Problem 10.0.45 has a positive
answer. Then the co-functor 8HEo“® satisfies the property C) with respect to i. In particular,
by (i) it also satisfies B) and as it satisfies the homotopy property and stability, by the Theorem
9.4.37 it verifies the full formalism of six operations over the category of smooth quasi-projective
schemes over a field of characteristic zero.

We will explain the proof of this proposition in the section 10.1 below.

As a consequence of the conjecture, and independently of the solution to the open problem. More
importantly, we establish the following fully-faithfulness extension of the Corollary 8.0.16 to any
smooth base S:

Proposition 10.0.48. Let k be field of charecteristic zero and let S be a regular scheme over k.
Assume the Conjecture 10.0.41. Then the canonical functor from motives to noncommutative motives

Lrrs : Modg s (83H(S)) — 83, (S) — 8FHLe(S) (10.0.16)
is fully-faithful.

The proof of this Proposition will be explained in section 10.2.

10.1 Towards the six operations

Our goal in this section is to explain the proof of the Proposition 10.0.47. Most of the contents in this
section are independent of the Conjecture 10.0.41 and of the Open Problem 10.0.45. These will only
be used, respectively, in the proofs of Prop. 10.1.8 and 10.1.10, respectively in the last paragraph of
this section.

We start by exploring the conditon B). Our first observation is that as the Localization property
holds in the commutative world and as the natural transformation £& : SH® — §HLo¢® is monoidal,
exact and commutes with f; for f smooth (Prop 9.2.11), the square

Ls(jgoj*(1s)) =~ ji¢ 0 jne(1%°) —— Ls(ls) ~ 1%° (10.1.1)
0 Ls(i(12))

is a cofiber/fiber sequence in 8H,.(S). In particular, to show B) we are reduced to showing that the
natural map

b Ls(in(17)) — "°(1%) (10.1.2)
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is an equivalence. To understand this map we investigate first both its source and target. Let us start
with the source. For that purpose we consider the exact sequence of A-dg-categories

LP€7A72(S) — Lpe,A(S) — Lpe,A(U) (1013)

associated to the closed immersion i : Z < S (see the discussion in the section 6.4.1). Unfortunately
we do not have any control over what happens to this sequence when seen in 8J,.(A) but we can
correct this problem by working in the further localization 8H£2¢(A), where it becomes a cofiber /fiber
sequence of motives. More precisely, its image along the composition map

=) nc

( B
Dygidem (A)or Ao Phio(NeS(A)) —N o 896, (A) —Lo5 scLee(A) (10.1.4)
given by
Lol wisXa” ™7 = Unoclitf naX s = Lioclif isxa? 7 (10.1.5)

is a cofiber/fiber sequence (consult our notations in Chapter 8). Moreover, as the f-image along j :
U < S commutes with the localizations (Remark 9.4.23), the non-commutative motive Locl kS nis Xﬁpe’A(U)
is naturally equivalent to jg‘c(l}}c) and the last cofiber/fiber sequence is equivalent to the one in the

diagram (10.1.1) and the unversal property of cofibers gives us a natural equivalence

Ls(ix(12)) 2 lpoclt$ yso et # ) (10.1.6)

By definition, the right hand side of this equivalence is the localization of the presheaf of spaces
XiPC’A’Z(S) : Dgldem(A)ft — § given by the formula

T+ Mangidan(A)(Lpe7A,Z(S),T) (1017)

It is already Nisnevich local (as it commutes with limits) and as explained for instance by the
arguments in the proof of [140, Prop. 3.9]), the A-dg-category L. 4 z(S) has a compact genera-
tor, namely, the object A/I seen as an A-dg-module. In particular this implies that Ly 4 z(S) is

— A

Morita equivalent to the A-dg-category Enda(A/I), of perfect A-dg-modules over the A-dg-algebra
Enda(A/I) of endomorphisms of A/I in the derived category of A-dg-modules. As in this case we
have a model structure this agrees with the classifying object of endomorphisms discussed in Section
3.4.

Proposition 10.1.1. Let i : Spec(A/I) — Spec(A) be a closed immersion of smooth k-schemes.
Then the natural map of A-dg-categories

—A —— A
A/I, — Enda(A/I), (10.1.8)
induced by the map of A-dg-algebras corresponding to the multiplication map
AJI — Enda(A/I) (10.1.9)

is an Al -homotopy equivalence of A-dg-categories in the naive sense.

Proof. This follows because Enda(A/I) is equivalent as an A-dg-algebra to End ;(A/I) where here

A denotes the formal completion of the ring A with respect to the ideal I, together with the fact
that this formal completion is in this case isomorphic to A/I[[I/I?]]. This implies that Enda(A/I) is
equivalent as an A-dg-algebra to the underlying A-dg-algebra of the free A/I-cdga on the A/I-module
(I/I?)V[—1]. In this case Enda(A/I) has a natural grading and the A[t]-action defining this grading
is the required co-homotopy. O

An immediate consequence of this result is that xf‘pe""z ) s homotopy equivalent as a presheaf
— A
of spaces to the presheaf X;A/ Le ), which is also Nisnevich local. In particular
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Corollary 10.1.2. The non-commutative motive Lg(i.(1z)) € SHL°(A) is naturally equivalent to
the non-commutative motive obtained by localizing the presheaf of spaces defined by the formula

— A
T — Mappgizem(ay(A/1, , —) (10.1.10)

We now investigate the source of the map . By adjunction, for any dg-category T of finite type
over A we have

Mapgh e a)(T2i2°(12)) 2 Mapghipoe 4,1y (i (1), 12) =~ KHy (i, (T)) (10.1.11)
where the last equivalence follows from the Corollary 7.0.35.

Notation 10.1.3. Let R be a commutative ring. Throughout this section, and as in the previous
formula, we will adopt the notation K Hg for the Ak-localization of non-connective K-theory K 1%

Proposition 10.1.4. Let T be a dg-category of finite type over A. There is a natural equivalence
KHyz (i) . (T)) ~ KHA(T ®4 A/I) (10.1.12)
— A .
where T'® 4 A/I denotes the tensor product of T with the A-dg-category A/I, in Dygidem(A).

Proof. We ask the reader to remind the notations in Section 7.1.2. We start by comparing the
connective K-theories of both sides. the formula for the Waldhausen’s construction tells us that

. ) — AT
K5 (i, (T)) := Qcolimppenor Mappgiaem a/ry ([0 = ayr),  ine(T)) (10.1.13)
and as we have a canonical equivalence
A/ A
(n=1an), ~in([n—1]a),) (10.1.14)
the formula becomes
. -5 — A -k
=~ Qcolimipjenor Mapp giaem a1y (ine(([n = 1]a), ), 05,.(T)) (10.1.15)
and by adjunction
. A idem (%
=~ Q colimpjepcr Mapp gidem 4y ([0 — 1] a), , 7" (5,.(T)) (10.1.16)

which, by means of the projection formula for the forgetful functor, becomes equivalent to Kg (T®a
A/I) (see our notations in section 9.1). This equivalence is valid not only for the K-theory spaces
but also for their associated connective spectra. This can be seen using the explicit description of
this spectra by iterating the Waldhausen S- construction. Finally, the result follows from the explicit
formulas for both the B-construction of Thomason and the A'-localization - both are constructed by
taking colimits/limits computed objectwise in spectra (see our discussion in Chapter 7)- together with
the fact that both (Gy,)a,r and (A')4,; come from (G,,)a and (A')4 via base change, and finally,
because base-change is monoidal and the forgetful functor satisfies the projection formula.

O

The following result extends the Theorem 7.0.32 and its Corollary 7.0.33

Proposition 10.1.5. Let R be a commutative ring and let T be an object in Dg'*™(R) having
a compact generator. Then the presheaf KHRr(T ®pr —) defines an object in 8H,.(R), naturally
equivalent to the non-commutative motive obtained by localizing the presheaf of spaces

Mapg giaem(gy(R, T @ —) : Dg"*™(R)I* — 8 (10.1.17)
In particular, when T = R we recover the Theorem 7.0.32 and its Corollary 7.0.33.
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Proof. The proof of this result is an exercise of re-writting the main steps of Chapter 7 carrying along
the operation T'®pr —. We perform the crutial steps.

To start with we observe that KHr(T ® g —) indeed defines an object in 8H,,.(R). Indeed, as the
tensor product of an exact sequence in Dg*¥*™(R) with a dg-category T remains an exact sequence (see
the arguments in the proof of Prop.6.4.14) K Hr(T ® g —) sends exact sequences to exact sequences of
spectra. Moreover, by the same arguments as in the Prop 7.1.4, it is Nisnevich local. By construction
it is also A'-local.

We now follow the same steps used in Chapter 7 to prove the Theorem 7.0.32. For a dg-category
T € Dgi¥e™(R) we consider the simplicial object Seq” : N(A°) — P9 (NcS(R)) given by the formula

_——_ R
[n] = Mappgiaem gy (([n — 1r), , T ®r —) (10.1.18)

which, contrary to the situation in chapter 7 is not induced by a simplicial object in NeS(R). However,
it remains Nisnevich local because of our assumption that T has a compact generato. This follows
from the Prop. 6.4.14 together with the Remark 6.4.15. Moreover, the Waldhausen’s construction
gives us

_——— R
K$ e (T @R —) 1= Qcolimppje por Mappgidem gy ((In — 1]g),. , T ®r —) (10.1.19)

This construction can also be iterated to construct a functor with values in connective spectra
K eotra(T @R —) with QK o (T®r—) ~ K ,.o(T ®r —). We now ask the reader to remind the
commutative diagram (7.4.10) and the result in the Prop. 7.4.2. With these results in mind we start
by observing that, as the B-construction of Chapter 7 is determined object-by-object, the Nisnevich
localization of Kscl;ectm (T ®g —) is the non-connective K-theory K°(T ® g —). By the same reason its
further Al-localization is the spectral presheaf K Hr(T ®x —). The corresponding diagram-chasing of

(7.4.10) gives

Q.
Q colimppjepor Seq? ke | KS(T ®@p —) (10.1.20)

nc nc
lO,Al Ly
oo
Nis,Al

ng (Q colim[n]eAnpSeq,TL) <~—— 1 KHR(T ®r —)

~

and as in the Lemma 7.4.4 we find

165 (Q colimpyenor Seqy, ) = Qg5 (colimppe por Seqy ) 2 Q colimpe ponly G (Seq))  (10.1.21)
At last, by the same arguments as in the Prop. 7.4.5, the natural map

—— R
Map@gidem(R)(([n — 1]R)c , T ®gr —) — Mappgidem(R)(RGBn,T QR —) (10.1.22)

is an Al-homotopy equivalence for every n > 0 and the last colimit in the formula (10.1.21) becomes

Q COlim[n]erp lg&l (Maprgidcm(R) (R®n, T®gr —)) (10123)

To conclude, by the same arguments presented after the Corollary 7.4.6 we are reduced to check
that this colimit is equivalent to

Yl (Mapp giaem gy (R, T ®g —)) (10.1.24)
But this follows because 8H,.(R) is stable and because the simplicial object

[Tl] — lgﬁM (Mangidem(R)(REBn,T@R —)) (10125)

satisfies the Segal conditions for the same reasons that
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[n] = 121 (Mapsp giac 5y (RE", =) (10.1.26)

does. This was proved in the Lemma 7.4.7. This concludes the proof.
O

Remark 10.1.6. As KHgr(T ®pr —) satisfies Localization, the statement of the Prop. 10.1.5 also
remains valid after the localization 8H,.(R) — SHE(R).

Finally, combining the last remark with the Prop. 10.1.4 we conclude that

Corollary 10.1.7. The non-commutative motive i7°(1%°) € 8HE2¢(A) is naturally equivalent to the
non-commutative motive obtained by localizing the presheaf of spaces defined by the formula

T Mangidem(A)(A, A/I ®A —) (10.1.27)

This concludes our description of the source and target of . This is the moment when the
Conjecture 10.0.41 is needed: it allows us to contruct an inverse to .

Proposition 10.1.8. Let k be a field of characteristic zero and assume the Conjecture 10.0.41 for
reqular closed immersions. Then 1 is an equivalence.

Proof. We construct an inverse to ¢. By the existence and description of internal-homs in Dg®*™ (R)
(see [139] and our survey in section 6.1.1) for any A-dg-category of finite type T, we have natural
equivalences

A ~

— A —
Mapap giaen ) (AJT, , T) ~ (AJT@A T, )™ (10.1.28)

pspe)

which, if the conjecture is true for the closed immersion i : Spec(A/I) < Spec(A), is then isomorphic
to

_—— A
~ (A/I XA TC ): ~ Map'Dgidem(A)(A,A/I XA T) (10.1.29)

In particular, when we pass to motives this equivalence becomes an inverse to 1.
O

To conclude this section we are left to verify the condition C). Again we investigate both sides of
the natural map

O it(1°) @ T — i"(i* (T)) (10.1.30)

where T' denotes the non-commutative motive {5, xt.

Remark 10.1.9. The case when T is smooth and proper is trivial: from one side we have

Mapsgfggc(A)(—,ifc(lrzw) ®T) ~ Mapgg%gc(A)(— @aTY,i"™(1%)) ~ KHA(— @4 TY @4 A/I)
(10.1.31)
where the last equivalence follows from the Prop. 10.1.5. For the right hand side we have

Mapsggczoe(ay (= 12(i0e(T))) = Mapsscroeayr (ix (=), 55 (T)) = Mapsgcroe(ayr (ix(—) @a 1.(T) Y, 1%°)
(10.1.32)
and the result follows again from the Prop. 10.1.5.

Proposition 10.1.10. Assume the conjecture 10.0.41 is valid for a regular closed immersion i :
Spec(A/I) < Spec(A). Then the non-commutative motive i"¢(1%°) @ T € SHL(A) is equivalent to
the Al-localization of presheaf Mapp giaemay (T, AJT @4 —).
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Proof. After the Cor. 10.1.7, the Conjecture provides an equivalence between i7¢(1%°) and Iy Xﬁ/ !

and as the A'-localization is monoidal we find an equivalence

‘nc/qnc nc A
(1) @ T ~ 155 (G @ x4 (10.1.33)

We now remark that y 4 : Dg'¥e™(A)°P — PY9(NcS(A)) is also a monoidal functor with respect to
the opposite of the monoidal structure in Dg?¥®™(A) of the Prop. 6.1.20 and the canonical monoidal
structure in P (NeS(A)) recalled in the Example 3.2.7. Indeed, as P9(NcS(A)) as all limits x%
can be described as the Left Kan extension

j°

Dyl (A) — I Phig(NeS(A))P (10.1.34)

7

—
—
—

-
_
e Xa

Ind(Dg’'(A)) ~ Dg'em (4)

and by the monoidal universal property of the Ind-completion (see again our survey in Section 3.2.8),
XA is monoidal. This tells us that i7¢(1%°) ® T is equivalent to the Al-localization of the presheaf

x£®AA/I which, by the Conjecture 10.0.41, is equivalent to the presheaf Mapqp gidem (4)(T, A/ @4 —).
O
Considering the base-change adjunction with respect to ¢
Fiidem,
Dgidem(A/T)oP Dyidem(A)ep (10.1.35)

-~
we notice that because of the projection formula for the forgetful functor (see the Remark 9.2.5),
Mapqpgiaem 4y (T, A/I @4 —) can also be written as the composition x% o F/4*™ o i*, or by defintion

of i, : PY9(NeS(A/T)) — PY9(NeS(A)), as i, (x] o Fidem) ~ b 1),

Let us now describe the target of 8r. By adjunction, for any dg-category T' of finite type over
A we can identify the space-valued presheaf i}°(ij,.(T')) with the composition [(}5, X" M) o * where
Az

165 XiZ* ™) is now an object in 8H,.(A/I). Moreover, as this composition is Al-local, thanks to the
Ay

Prop. 10.1.10 the map 67 can be identified with the canonical map induced by the universal property
of the Al-localization

0.AL (iaxz ™) = leAleZ(T) 0" (10.1.36)

Unfortunately we were not able to prove that this map is an equivalence and this is the reason why
the Open Problem 10.0.45 is relevant to us. Recall from the formula (7.4.8) that the Al-localization
functor of space-valued Nisnevich sheaves iterates the naive Al-localization with the Nisnevich local-
ization. Moreover, one can easily check that as A, ~ i*(AL), the map in (10.1.36) is an equivalence
if we just apply the naive Al-localization. The problem concerns the Nisnevich localization. The
conclusion of this discussion can be stated as follows:

If the Open Problem 10.0.45 admits a positve answer and if the Conjecture 10.0.41 is valid for
regular closed immersions, then the property C) holds for any dg-category of finite type.

The author will continue to investigate these questions in the future.
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Let us now explain how to prove the Prop. 10.0.48. Let us start with a small observation:

Proposition 10.2.1. Let f® : €% — D® be a monoidal functor between stable presentable symmetric
monoidal (00, 1) categories compactly generated in the sense of section 2.1.23 and suppose the under-
lying functor f : € — D admits a right adjoint g which by [100, 7.8.2.7] we know is laz-monoidal.
In particular, g(1p) has the structure of commutative algebra object in C®. Then, the following are
equivalent:

1. For every object E € D, the natural map given by adjunction

9(lp) @e E — g(f(E)) (10.2.1)
is an equivalence.
2. The composition
3 f —®rog(1p)lD
f : MOdg(er)(e) E—— MOdfog(LD)(D) —— MOdl,D(g) ~ D (1022)

is fully-faithful. Here the first map is the map induced by f at the level of modules (see section
3.8.9) and the second map is base-change with respect to the canonical map of algebras f o

g(lg) — 1@,

Proof. Notice first that f admits a right adjoint § and that again by the discussion in section 3.3.9,
the two diagrams

f

e D C<~——D (10.2.3)
—®1@g(1b)l / forgetT /
MOdg(er)(e) Modg(l,D)(G)

commute. Moreover, under the assumption that € admits a family of compact generators, say
{Eus}aca, by the Prop. 3.8.3, the family {E, ®1, 9(1p)}aca is a family of compact generators
in Mody(1,,)(€).
In this case, f is fully faithful if and only if for every « the unit morphism
Eo ®1¢ 9(1p) = §(f(Ea @1, 9(1p))) (10.2.4)
is an equivalence in Mody(,,)(C). The commutativity of the diagram (10.2.3) and the fact forget is
conservative, tells us that this is true if and only if

forget(Ea ®1¢ 9(1p)) = 9(f(Ea)) (10.2.5)

is an equivalence. Finally, the projection formula for the forgetful functor (which results from con-
struction of tensor products) concludes the equivalence between 1) and 2).
O

We will use this proposition to prove the theorem. Let S be a scheme. So far we know about the
existence of a family of compact generators in 8H(S) given by the Prop. 5.3.3: using the tools intro-
duced in this chapter it can be described as the family of objects (P4, 00)®" @ f3(1v) € 8H(S) indexed
by the collection of smooth morphisms f : V' — S and n € Z. Notice that by the projection formula
for f; these can also be writen in the form f;(f*((Pk, 00)®")) ~ fy((P%,00)®"). As a consequence of
the fact that 8H® satisfies the six operations and localization, one can use Nagata’s compactification
theorem to find S-compactifications of f and use their associated localization sequences to prove the
following result:
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Proposition 10.2.2. (Ayoub [6, Lemma 2.2.23] and Cisinski-Déglise [30, Prop. 4.2.13 and Cor.
4.4.3]) Let k be a field of characteristic zero. If S is a regular scheme over k then the collection
of objects of the form f.((Px,00)®") for f: X — S a projective morphism over k, X regular as a
k-scheme and n € Z, is a family of compact generators in SH(S) in the sense discussed in section
2.1.23.

We will now show that the condition 1) in the Prop. 10.2.1 holds for composition of the adjunctions

Ls lloc,S
8H(S) " 8Hue(S) 8HLoe(9) (10.2.6)
Ms

when S is smooth over a field k& of characteristic zero.

Notation 10.2.3. To simplify the notations, we will again denote the composed adjunction by
(L5, Ms).

As in the proof of loc. cit, it will be enough to check that the condition holds for the compact
generators introduced in the Prop. 10.2.2. Let f : X — S be a projective morphism with X regular
over k. We want to show that for every n € Z, the canonical morphism

Ms(1%) ®s fol(Px,00)%") = Ms(Ls(f((Px,00)®™))) (10.2.7)

is an equivalence. As in the commutative world all the six operations hold, f, satisfies the projection
formula and all we have to prove is that the map

Ms(18°) @5 fo(1x) ®s (Ps,00)®" = Mg(Ls(fo(lx) ®s (Pg,00)%")) (10.2.8)
is an equivalence. Using the Remark 9.3.5 the right hand side is immediately seen to be equivalent to
Ms(Ls(f(1x)))-

For the left hand side, by the Corollary 9.3.4, Mg(1%°) is equivalent to the object K Hg in 8H(S)
that represents homotopy invariant algebraic K-theory. Using the projection formula for f, in the
commutative setting, we find

(Ps,00)®" @5 KHs ®s fi(1x) ~ fu(f*((Ps,00)*" @5 KHg)) (10.2.9)

where the last is equivalent to f.((Px,o0)®")®x K Hyx) because by [29, Prop. 3.8] we have f*KHg ~
KHx. As it was already mentioned in the Remark 9.4.39 the Bott isomorphism in K-theory implies
that the later term is equivalent to f, K Hyx. In this case, to prove the theorem we are reduced to
check that the canonical map

is an equivalence. The left hand side can immediately be identified with the spectral presheaf sending
a smooth S-scheme V to the homotopy invariant K-theory K Hg(V xg X). Let us now describe the
right hand side. As f is a projective morphism between smooth k-schemes, it factors (over k) as

X ispr<l oy (10.2.11)
S

with ¢ a closed embedding between smooth k-schemes, p is the canonical projection and j the open
immersion of the complementary of i. The localization property in the commutative setting gives us
an associated exact sequence in 8H(P%)

jﬁlU — lpg — i*lx (10212)
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which as 7, is exact produces a new exact sequence in 8H(S)

W*jﬁlU — F*l]pg — f*lx (10.2.13)

Using the notations of the previous chapter, weak purity in the commutative world implies that
. is equivalent to my(Thpy (1) ® —) so that the previous sequence can be written as

Wﬁ(Th]pg (Tﬂ-) ®jﬁ1U) — Wﬁ(Th]pg (Tﬂ—) & ].]pg) = filx (10214)

and as Lg is exact we find a new exact sequence in 83L2¢(S)

Ls(ﬂ'ﬁ(Th[pg (TW) ®julU)) — Ls(ﬂ'ﬁ(Th]pvg (TW) ® 1@:2)) — Ls(f*lx) (10.2.15)

After the discussion in Chapter 9, we know that £ and () commute and as £ is monoidal the
sequence can also be written as

T (Ls(They (Tr)) ® JEO15°) — mf(Ls(They (Tr)) © 185) — Ls(folx) (10.2.16)

The key point now is that as £ factors through the theory of modules over K-theory (Cor. 9.3.4).
As explained in the Remark 9.4.39 the later is orientable with a Tate object equivalent to a tensor unit
and as this factorization is monoidal the object L£s(Thpy(Tx)) is the unit non-commutative motive.
In this case the previous exact sequence is equivalent to

T g1y = il — Ls(filx) (10.2.17)

By Zariski descent, and as base change and (—); are compatible we can assume that S is affine.
In this case the first term can be identified with the localization of the presheaf co-represented by

)

L,.(U) as an S-dg-category, which we shall denote as Xé"c . In the same way the second term is the

motive associated to Xé"e@g) for L, (P%) as an S-dg-category. Finally, by the definition of 83£o¢(S)
the sequence (10.2.17) is the motivic image of the exact sequence of S-dg-categories

Ly (PG
(L@ Ly L)

— xgre X ) (10.2.18)

where Ly, x (P%) is the full S-dg-category of L,.(P%) spanned by those perfect complexes supported
on X. By the same arguments used to prove the Proposition 10.1.1, this dg-category is A-homotopy
equivalent to the S-dg-category Ly.(X).

The conclusion now follows as in the Prop. 10.1.10 because of the Prop. 10.1.5

Corollary 10.2.4. Let k be a field of characteristic zero and assume the Conjecture 10.0.41 is valid
for proper morphisms of smooth k-schemes X — S. Then the natural map 07 is an equivalence for
any S-dg-category of finite type T.
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