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0 Introduction: DT-invariants



CY varieties

@ Y a Calabi-Yau variety of dimension 3 over C, ie, wy ~ Oy.

@ Example: The Fermat quintic

Xs = {X¢ +x5 +3 +x; +x2 =0} C P

or more generally, any smooth quintic in Pé, wy ~005-4-1)~0y



Why CY?

o (Pre-history) Kaluza-Klein model: spacetime locally of the form
R3+1 « §1

gravity + electromagnetism in R3*1 < pure gravity in R3t! x St

what about electroweak and strong interactions?

o (Candelas-Horowitz-Strominger-Witten) In string theory, spacetime
is required to be of the form R3t1 x Y where Y is a CY-manifold of
real dimension 6.

Physic’s laws in R3*1 < Geometric and topological properties of Y.

e Paths/interactions of string-particles through spacetime, define
2-dimensional real surfaces (1-dimensional algebraic curves) of genus

ginY.
E—=>



Counting algebraic curves in a Calabi-Yau

e Counting parametrized curves f : C — Y (GW-invariants)

Mg,n(YHB) quaSi'SmOOth' Vol = fvirt class € Q
———— '

moduli space (stack) of stable maps
e Counting embedded curves C C Y:

Hilbcodim2(Y) not quasi-smooth, Vol X
—_——

Hilbert scheme of codim 2 subschemes
e Counting ideal sheaves /¢ € Coh(Y) (DT-invariants)

MCoh(Y) quasi-smooth , Vol =

—_———
Moduli of coherent sheaves CY + Serre duality

€EZ

f virt. class



Behrend approach to DT-invariants

Observation: Serre duality + CY condition imposes a symmetry on the
deformation theory of M Coh(Y'): symmetric obstruction theory

{15terderdef. of E € Coh(Y)} ~ {Obstructions to def. of E € Coh(Y)}"

Theorem (K. Behrend)

Let X be a quasi-smooth algebraic stack with a symmetric obstruction
theory (Ex: X = MCoh(Y)). Then there is a function Vgeprend : X — Z
such that

Vol(X) = /

[X]¥ = X(X7 VBehrend) = Z n'X(VBehrend = n)
n

Behind the scenes: This extra symmetry is a shadow of a (-1)-shifted
symplectic form on MCoh(Y') [Pantev-Toén-Vaquié-Vezzosi.

In this talk: DT-theory <+ (-1)-shifted symplectic geometry
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© (-1)-shifted symplectic forms



Shifted Symplectic Geometry

@ Deformation theory of a stack/derived stack X is controlled by its
cotangent complex Lx € DQcohoo(X). When X is locally of finite
presentation, Lx is a perfect complex, with dual Tx = LY the
tangent complex.

@ X Smooth, Lx = Q}<.
e n-shifted 2-forms = {Ox — Lx ALx[n]} = {Tx A Tx — Ox[n]}

o de Rham diff. DR(X):=[0x — %> Lx — %> Ly ALx — > ..]

[Connes, Toén-Vezzosi|: dr should not be understood as an internal
differential but rather as the action of an extra operator € of degree 1

@ n-shifted closed 2-forms: Need homotopy dr(w) ~ 0

{maps k(2)[-2n—1] — DR(X)}
—_—— ———

e=0 action e=dgr



Shifted Symplectic Geometry

Definition (Pantev-Toén-Vaquié-Vezzosi)

An n-shifted symplectic form on X is a n-shifted closed 2-form such that
its underlying 2-form Tx A Tx — Ox|[n] is non-degenerate , ie, induces an

equivalence
TX = ]Lx[n]

e X = T*A! = A2 has 0-shifted symplectic form given by w = dx A dy .

@ X = Perf the derived stack classifying perfect complexes has a
2-shifted symplectic form.

Te pert = REnd(E)[1] ~ E ® EV[1]
Te pert ATE perr ~ E® EV[1]] ® E® EV[1] — O[2] evaluation map

e (PTVV) Y a CY of dimension 3 over k. Then X := Map(\\;, Perf)

3
is (2-3=-1)-symplectic. In particular,

MCoh(Y) C Map(Y, Perf) is -1-symplectic (= Behrend Symmetry)



Shifted Symplectic Geometry

@ U a smooth k-scheme with a function f : U — Ak. The derived
critical locus X = dCrit(f) is the derived fiber product

X := dCrit(f) -——= U

ok

U————T"U

coh.deg -1 0 1
. Hess(f)
P*Ty ——i*Ly = Tx
H(f)v
i*Ty —>( ) *Ly = Lx

symmetry of the Hessian = Tx ~ Lx[—1] is the underlying 2-form
of a (-1)-shifted symplectic structure on X.

Example: (U,f) = (A, x3) dCrit = Spec k[x]/(f' = 3x?)



Joyce's approach to DT-invariants
All examples are locally of this form:

Theorem (Brav-Bussi-Joyce (Darboux Lemma))

Let X be a (—1)-symplectic derived scheme. Then Zariski locally X is
symplectomorphic to a derived critical locus dCrit(U, f) with U smooth.

Consequence: Locally on X it makes sense to analyse the singularities of
the function f on U via the perverse sheaf of vanishing cycles

Pu.r € Pervgcrie(r)(U) = Perv(dCrit(f)) = Perv(Crit(f))
Problem: Ambiguity in the choice of local presentations:
dCrit(Al, x3) = Spec k[x]/(3x?) ~ Spec k[x, y]/(3x2,2y) = dCrit(A%, x3 + y?)

P(a1x3) and P2 3,2y non-canonically isomorphic.



Joyce's approach to DT-invariants

Theorem (Brav-Bussi-Dupont-Joyce-Szendroi (BBDJS))

Let X be a (—1)-symplectic derived scheme. Assume that there exists a
line bundle L together with an equivalence L @ L ~ det(Tx) (aka
orientation data). Then:

@ The locally defined perverse sheaves of vanishing cycles Py ¢ glue to
a globally defined perverse sheaf P € Perv(X).

@ X(P) = VBehrend computing locally the Euler characteristic of
vanishing cycles. Gives back DT-counting.

Proof: Glue by hand using local presentations of the underlying classical
scheme as classical critical loci.

@ method does not see the full derived structure.
@ strategy works for perverse sheaves because:

» they form a 1-category (no higher homotopies needed to glue).
» they have the A'-homotopy invariance property.
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Motivic DT and categorification

Different invariants capture vanishing cycles of f on U:

Vu,r € Motives < — — — — — — — — dgcats?Pe > MF(U, f)

.. Blanc-Toén-R.-Vezzosi, Pippi . R .
Ayoub Motivic Van. Cycles Orlov/Eisenbud cat. of singularities

Realization

HP
Efimov, Sabbah

Py, € Perv

MF: Uy := f~1(0), M € Coh(lp), infinite resolution by projective
modules becomes eventually 2-periodic [Serre-Auslander-Buchsbaum-
Eisenbud]

i F2Q—-F—=>Q—-P,— ..o Po—=>P =Py > M
EMF(U,f) €Perf(Up)




Motivic DT and categorification

Gluing Problem: Given a (-1)-symplectic derived scheme X, can we
glue the Darboux locally defined dg-categories MF (U, f) as a sheaf of
dg-categories on X7 Is Joyce's orientation data enough?

Rmk: Version of the gluing problem for the Fukaya category (Seidel,
Kontsevich, Nadler, Shende, Ganatra, Pardon,...).

Complications: The gluing no longer takes place in a 1-category but
in an oco-category. Complicated coherences are required. Need a gluing
mechanism.
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The Darboux Stack

Classical Picture: X a classical symplectic manifold, then locally X is of
symplectomorphic to some T*M (Darboux's lemma). We can analyse the
moduli of such Darboux parametrizations:

Darbx : S C X open — {M smooth manifold, S ~ T*M symplectic}

The data of a symplectomorphism S ~ T*M in particular implies:

@ The fibers of the projection S ~ T*M — M define a smooth
Lagrangian foliation ¥ on S (ie, Wiibers = 0).

@ The symplectic form on S is exact ie, there exists a 1-form «
(Liouville form on T*M) with dg(a) = w.

We call such (F, ) a Darboux datum on S.



The Darboux Stack

(-1)-shifted geometry: These notions make sense thanks to the work of
Toén-Vezzosi on derived foliations.

Theorem (Pantev-Toén)

S a (—1)-symplectic derived scheme. Then the following data are
equivalent:

@ Darboux data on S, ie a globally defined smooth derived Lagrangian
foliation & on S + an exact structure c.

@ the data of an exact structure on S + a smooth formal scheme U,
and a Lagrangian fibration S — U given by a closed immersion with
Sred = Ured-

@ the data of a smooth formal scheme U, a function f on U and a
symplectomorphism S ~ dCrit(U, f)

Classical Picture: Darboux dataon S < [SC T*M — M].
(—1)- picture : Darboux data on S < [S >~ dCrit(U, f) — UJ.

Idea: U := S/J the formal leaf space. f = exact struct. - isotropic struct.




The Darboux Stack

Example: (@,x3) gives Darboux data
dCrit(x3) = Spec(k[x]/(3x2)) — Al
Construction
The assignment:
S — X étale — {(«, F) : Exact structure o + smooth Lag. fol. ¥ on S}

defines a stack on the small étale site of a n-shifted symplectic derived
scheme X. We call it the Darboux stack Darby.

Remark: Darby := x LagFoly"

Comment: In the case where X is (—2)-symplectic, this recovers the
local data used by Borisov-Joyce and Oh-Thomas to glue DT-invariants
for Calabi-Yau 4-folds.



The Darboux Stack

Construction

Both MF and Joyce's construction have Darbyx as a natural domain, and
define natural transformations of sheaves on the small étale site of X:

P : Darbx(S) > (U, f) — Py € Pervx(S) := Perv(S)~

MF : Darbx(S) > (U, f) — MF(U, ) € dgcatil'(S) := (dgcata’e")™
%,_/

categorical crystals
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Action of Quadratic Bundles
Ambiguity Problem: in the choice of local presentations:

dCrit(AY, x3) = Spec k[x]/(3x?) = Spec k[x, y]/(3x?,2y) = dCrit(A%, x> + y?)
Definition

Quadyr(S) :=={(Q,q) : (loc. trivial) quadratic vector bundles on Syr}

Construction
X a (—1)-symplectic derived scheme. Then:

@ The assignment S/X étale — Quadyr(S) defines a sheaf of monoids
Quadx,, on Xe for the sum of quadratic bundles,

o Quadx,,(S) acts on Darbx(S),

dCrit(U, f) ~ S ~ dCrit(U X Q,f +q)
dR

Rmk: Every morphism of Darboux foliations on X, (U, f) — (V,g) is
étale locally of the form (U, f) — (U By Q,f+q)
dR
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Recovering the perverse gluing of BBDJS:

Fact: (M, q) € Quadx_,(S) then det(M) is a 2-torsion over S,
ie, det(M)? ~ Os. This follows from the non-degeneracy of the Hessian.

Construction
X a (—1)-symplectic derived scheme. Then:

o det : Quadx,, — Bus x = fib(BG, x ;) BGpm x) is a map of
monoids.

@ P : Darbx — Pervx comes with homotopy coherent data rendering
the actions compatible on both sides ( on the right the action of B,
is defined by BBDJS).

@ In particular, P descends to the quotients

P Darbyx /Quadx,, — Pervx /B x




Recovering the perverse gluing of BBDJS:

Warning: Quadx,r is not a group but By x is. The construction factors
through the group completion

Quadj{d R’ Darbx / Quadx,, := Darb;g / Quadj{dR

Theorem (Hennion-Holstein-R. as a reformulation of BBDJS )
X a (—1)-symplectic derived scheme.Then the quotient map
P : Darbx/Quadx,, — Pervx/Bua x

is null-homotopic, ie, it admits a factorization through X (seen as a the
final object of the étale topos X ):

Darbyx / Quadx . Pervx /B x
finall - ”
- =
In other words, the gluing of the perverse sheaves Py ¢ is always
well-defined in the quotient Pervx /By x.




Recovering the perverse gluing of BBDJS:

Remark
The composition

X — PervX/Bugx = */B,ug,x = BB,LLQ’X

is the class in H*(X,Z/27) of the bundle classifying square roots of
det(']I‘X).

An orientation data of BBDJS corresponds precisely to the choice of a
null-homotopy of this composition

Pervy ——— = %

-
7
i i pullback i

X /? Pervy [ Bjia x — BB x

Such a null-homotopy provides a lifting through the fiber product and
defines a well-defined glued perverse sheaf.




What about gluing MF:

Fact: (M, q) € Quadx,.(S) then MF(M, q) has a structure of 2-torsion
over Syr. This is a consequence of
Preygel-Thom-Sebastiani followed by Knorrer periodicity

MF (M, q) @ MF(M, q) ~ MF(M x M, qHB —q) ~ MF(S4r,0)

Construction
X a (—1)-symplectic derived scheme. Then:
o MF : Quadx,, — Az2per 271 s 2 map of monoids.

e MF : Darbx — dgcati’(j:r comes with homotopy coherent data
rendering the actions compatible on both sides ( on the right the
action of Azzp er2-1o" is given by tensor products of dg-categories).

@ In particular, MF descends to the quotients

MF : Darbx/Quadx,, — dgcaty! 2” ° /AzféJ :r2 for




What about gluing MF:

Dishonest Corollary

Let X be a (—1)-shifted symplectic derived scheme. Assume X is
equipped with a section

X — Darbx / Quadx,,

Then the locally defined categories MF (U, f) glue as a sheaf of 2-periodic
dg-categories on X under the prescription of a categorical orientation data,
ie, a trivialization of the composition

X — Darbx /Quadx,, — dgcatys | AZy e " — BAZS 2t




New Orientation data

The orientation data of BBDJS is (a priori) not enough to glue MF. A
categorical orientation provides new obstruction classes coming from the
fibration sequence

2per,2—tor 2per 2per
AszR — AszR Z) AszR

o mo(AZPE ) ~ 1L)27 x /27 — {MF (+,0), MF(A!, x?)}}.

o m(AZLS ) ~ 7,/27 ~ {Id, [1]}
BBDJS

° 7T2(Az)2<5:r’27tor) = 7./27 ~ Ker(z? : C* — C*)

° Wn(Azf(i:r,Z—tor) —0n > 3'



What about gluing MF:

Honest gluing of MF: requires a factorization

‘MF 2per 2per,2—tor
Darbx / Quadx,, —— dgcathR / AszR

_ 7
finall _ -
P
Intermediate Results (Obstructions)
o m§heaf (Darby / Quadx,,) = (transitivity of the action).

m5heaf (Darby / Quady,, ) # O in general

eventually truncated because X is quasi-smooth

The map MF is zero on all higher 7$h¢2* for n > 2.




Gluing

Work in progress

Darbx
(Al — invariance on morphisms + Quadx,, — action)

~

Question: What happens through Mirror symmetry? Relation to the
works of Nadler, Shende, Ganatra, Pardon gluing Fukaya categories of
0-shifted Weinstein manifolds via Kashiwara-Schapira microlocal sheaves?



Thank you for your time.
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