
M2 COURSE: RANDOM NOTES ON SPECTRAL SEQUENCES
(UNFINISHED AND UNCHECKED!)

Abstract. This notes form an introduction to computations with spectral se-
quences. We review Lurie’s construction of a spectral sequence for a filtered object
in a stable ∞-category and explain how all other more familiar spectral sequences
can be recovered as an example.
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By default, and unless mentioned otherwise,all notations are homological.

1. Lurie’s spectral sequence of a filtered object

Goal 1.1. Let C be a stable ∞-category with a t-structure and let X : Z≥0 → C be
a sequence

0 = X−1 → X0 → X1 → X2 → · · · (1)

We will denote by X(∞) the colimit of the diagram. We will be interested in
computing the objects π∞

n := πn (X(∞)) in the heart of C. This object has a
natural descending filtration given by the successive images of the maps πn(Xp) →
πn(X(∞)). Namely, if we set

Fp
n := Im (πn(Xp) → πn(X(∞)))

we have a filtered object in the heart of C
1
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0 ⊆ F0
n ⊆ F1

n ⊆ · · · ⊆ Fp
n ⊆ · · · ⊆ π∞

n (2)
If we suppose that the t-structure is compatible with sequencial colimits (such as
the standard t-structure in Modk), then we find

colim
p

Fp
n ≃

⋃
p

Fp
n = π∞

n

meaning that the filtration of (2) is exaustive.

As we will see next, a spectral sequence is a scheme designed to compute the graded
pieces Fp

n/F
p−1
n of the filtration (2) out of the filtered object (1).

Remark 1.2. For instance, if C = Modk with k a field, then every short exact
sequence splits and therefore knowing the associated graded pieces gives us π∞

n by
direct sums. More generally, to lift elements of E∞ to the filtered pieces we will need
to solve an extension problem.

Remark 1.3. What are the graded pieces of (2)? Let us consider for each p, the
cofiber Yp

Xp−1
//

��

X(∞)

��

0 // Yp

(3)

Notice that Yp can also be described as the colimit of the sequence

colim
r≥0

(0 → Xp/Xp−1 → Xp+1/Xp−1 → · · · → Xp+r/Xp → · · · ) ≃

≃ colim
r≥0

(Xp+r/Xp−1) ≃ Yp

and by construction we have commutative diagrams

Xp−1
//

��

Xp

��

// X(∞)

��

0 // Xp/Xp−1
// Yp

(4)

from where we extract a short exact sequence of objects in the heart of C
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0 → Fp−1
n ⊆ Fp

n → Im (πn(Xp) → πn(Yp)) → 0

Indeed, the surjectivity of the last map is automatic since we are taking the image.
The fact that it is exact in the middle follows from the commutativity of the outer
diagram in (4) and the associated long exact sequence of homotopy groups.

In summary we want to compute

Fp
n/F

p−1
n ≃ Im (πn(Xp) → πn(Yp)) (5)

Construction 1.4. Given that Yp can be obtained as a filtered colimit colim
r≥0

(Xp+r/Xp−1),

one can look at the commutative diagram

Xp−1
//

��

Xp

��

// · · · // Xp+r

��

// · · · // X(∞)

��

0 // Xp/Xp−1
// · · · // Xp+r/Xp−1

// · · · // Yp

(6)

and consider for each r ≥ 0 the sequence of images

r 7→ Im (πn(Xp) → πn(Xp+r/Xp−1)) (7)

The main idea is that these images have enough structure (the structure of a spec-
tral sequence) that allows them to be computed by induction in r.

Since are are interested in what happens in the limit r 7→ ∞, we can allow ourselves
to modify the first terms of the sequence (7). For instance, since X−1 ≃ X−2 ≃ · · · 0,
for r > p we have Xp ≃ Xp/Xp−r so that (7) agrees with

r 7→ Im (πn(Xp/Xp−r) → πn(Xp+r−1/Xp−1)) (8)

where now r ≥ 1(∗). For r ≤ p the two definitions don’t have to agree, but again,
this won’t be a problem for the purpose of computing the large limit r → ∞. Why
is this trick relevant? Because this new formula satisfies a better recursive behavior
that allows us to compute the pieces by induction in r:

Consider the commutative diagram obtained by iterated pushouts:

(∗)Notice the change of variables (previous r) = (new r) + 1
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Xp−2r

��

// Xp−r−1

��

// Xp−r

��

// Xp−1

��

// Xp

��

// Xp+r−1

��

// Xp+r

��0 //

��

//

�� $$

//

��

//

��

//

��

//

��0 //

��

//

��

//

$$

��

//

��

//

��0 //

��

//

$$��

//

��

//

��0 // // //

• In green we represent the map in (8), ie,

r 7→ Im (πn(Xp/Xp−r) → πn(Xp+r−1/Xp−1)) (9)

• In red we represent (8) replacing p by p− 1, ie,

r 7→ Im (πn(Xp−r/Xp−2r) → πn(Xp−1/Xp−r−1)) (10)

• In blue we represent we represent (8) replacing r by r + 1, ie,

r 7→ Im (πn(Xp/Xp−r−1) → πn(Xp+r/Xp−1)) (11)

By construction we see that the suspension of the map in red re-appears in front of
the map in green: a few pushouts later:

Xp−2r

��

// Xp−r−1

��

// Xp−r

��

// Xp−1

��

// Xp

��

// Xp+r−1

��

// Xp+r

��

// 0

��0 //

��

//

�� $$

//

��

//

��

//

��

//

��

//

��

// 0

��0 //

��

//

��

//

$$

��

//

��

//

��

// //

��

//

��

0

��0 //

��

//

$$��

//

��

// //

��

//

�� ��

//

�� ��0 // //
u

//
s

//
v
//

w
//

providing us with a map
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dr : Im (πn(Xp/Xp−r) → πn(Xp+r/Xp−1)) → Im (πn(Xp−r/Xp−2r[1]) → πn(Xp/Xp−r−1[1]))

obtained by composition with w ◦ v ◦ s ◦ u.

We introduce the following notation:

Notation 1.5. Let us set

q := n− p

With this choice, we can introduce a new notation Ep,q
r :

Im (πn(Xp/Xp−r) → πn(Xp+r/Xp−1)) = Im (πp+q(Xp/Xp−r) → πp+q(Xp+r−1/Xp−1))︸ ︷︷ ︸
Ep,q
r

This choice of indices is particularly convenient to write the maps dr as

Im (πp+q(Xp/Xp−r) → πp+q(Xp+r/Xp−1)) → Im (πp+q−1(Xp−r/Xp−2r) → πp+q−1(Xp+q−1/Xp−r−1))

simply as

dr : E
p,q
r → Ep−r,q+r−1

r

Let us also denote as

Ep,q
∞ := Im (πp+q(Xp) → πp+q(Yp))

the graded piece of (5).

Proposition 1.6. We have dr ◦ dr = 0 in the homotopy category of C. Moreover,
we find canonical isomorphisms

Ep,q
r+1 ≃

Ker(dr : E
p,q
r → Ep−r,q+r−1

r )

Im(dr : E
p+r,q−r+1
r → Ep,q

r )
(12)

Proof. We consider again the diagram constructed above
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Xp−2r

��

// Xp−r−1

��

// Xp−r

��

// Xp−1

��

// Xp

��

// Xp+r−1

��

// Xp+r

��

// 0

��0 //

��

//

�� $$

//

��

//

��

//

��

//

��

//

��

// 0

��0 //

��

//

��

//

Ep,q
r+1

$$

��

//

��

//

��

// //

��

//

��

0

��0 //

��

//

Ep,q
r

$$��

//

��

// //

��

//

�� ��

//

Ep−r,q+r−1
r

�� ��0 // //
u

//
s

//
v
//

w
//

Since dr is defined by composition with w ◦ v ◦ s ◦ u, One can easily check then
using the cofiber sequences that d2r = 0. We can then use the long exact sequence
associated to the pushout square in yellow to establish the isomorphism (12).

□

Definition 1.7. An homological spectral sequence is a family of objects {Ep,q
r }r≥1

together with differentials dr : Ep,q
r → Ep−r,q+r−1

r with d2r = 0 and verifying the
formula (12). We write

Ep,q
r =⇒ πp+q

to say that there exists R ≥ 1 such that for every r ≥ R the maps dr vanish. In this
case we write Ep,q

∞ to denote the stable value

Ep,q
R ≃ Ep,q

R+1 ≃ · · · ≃ Ep,q
∞

giving us the graded pieces of a filtration on πp+q.

Remark 1.8. For r = 1 we have

Ep,q
1 = πn(Xp/Xp−1) = πq(Xp/Xp−1[−p])

In this case the maps dr are obtained as boundary maps

· · · → Xp/Xp−1[−p] → · · · → X2/X1[−2] → X1/X0[−1] → X0

and applying πq we obtain a chain complex in the heart of C
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· · · → πp+q(Xp/Xp−1) → · · · → π2+q(X2/X1) → π1+q(X1/X0) → π0+q(X0)

This is the usual presentation of the first page of the spectral sequence

q π0+q(X0) π1+q(X1/X0)oo oo · · · πp+q(Xp/Xp−1)oo · · ·oo

· · ·

q = 2 π0+2(X0) π1+2(X1/X0)oo oo · · · πp+2(Xp/Xp−1)oo · · ·oo

q = 1 π0+1(X0) π1+1(X1/X0)oo oo · · · πp+1(Xp/Xp−1)oo · · ·oo

q = 0 π0+0(X0) π1+0(X1/X0)oo oo · · · πp+0(Xp/Xp−1)oo · · ·oo

q = −1 π0+(−1)(X0) π1+(−1)(X1/X0)oo oo · · · πp−1(Xp/Xp−1)oo · · ·oo

...
...

...
...

p = 0 p = 1 · · · · · ·

Remark 1.9. The hypothesis that the t-structure is compatible with filtered colim-
its can be replaced by the requirement that for every n the sequence of homotopy
groups

πn(X0) → πn(X1) → · · · → πn(Xp) → · · ·

stabilizes after a finite number of steps, ie, for every n, there exists P such that ∀
p ≥ P , we have

πn(XP−1) → πn(XP ) ≃ πn(XP+1) ≃ πn(XP+2) ≃ · · · ≃ πn(X(∞))
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Indeed, this condition allows us to drop the assumption that the t-structure is com-
patible with filtered colimits, since in this case the filtration Fp

n is automatically
finite: since πn(XP ) ≃ πn(X(∞)) we can define for 0 ≤ p ≤ P

Fp
n := Im (πn(Xp) → πn(XP ))

Remark 1.10. Instead of a colimit of a sequence (1) we could try to compute the
limit of a sequence in C

· · · → X2 → X1 → X0 → 0 = X−1 (13)
For this purpose we observe that (13) can be seen as a ascending sequence as (1) but
in Cop, and the limit of (13) in C is the colimit in Cop. Therefore, the discussion above,
together with the fact that the opposite of an abelian category remains abelian (with
Im f op = Im f), implies the existence of a cohomological spectral sequence Ep,q

r with

Ep,q
1 = πp+q(Cp)

where Cp := fiber (Xp → Xp−1) and differentials

Ep,q
r → Ep+r,q−r+1

r

obtained from the boundary maps

X0 → C1[1] → C2[2] → · · ·

converging to the graded pieces of the filtration of πn(limXp) given by

Fp
n := Ker (πn(limXp) → πn(Xp))

Moreover, the higher pages of the spectral sequence are given by

Ep,q
r = Ker ( fiber(Xp+r → Xp−1) → fiber(Xp → Xp−r))

Example 1.11. Let us apply the machinery of the last section to compute the
cohomology of CP∞. The only thing we will need to know about this space is that
admits a canonical filtration given by its CW-decomposition

CP0 ⊆ CP1 ⊆ CP2 ⊆ · · · ⊆ CP∞

where the successive pieces are obtained by homotopy pushouts by attaching a single
cell
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S2n+1 //

��

D2n+2 ≃ ∗

��

CPn // CPn+1

Therefore, the complex of singular cochains C∗(CP∞,Z) can be obtained as a limit
of the sequence

C∗(CP∞,Z) ≃ lim
(
· · · → C∗(CP2,Z) → C∗(CP1,Z) → C∗(CP0,Z)

)
where we have cofiber-sequences

C∗(CPn+1,Z) //

��

C∗(CPn,Z)

��

Z // C∗(S2n+1,Z)

where C∗(S2n+1,Z) ≃ Z ⊕ Z[−2n− 1]). We have then the limit spectral sequence of
Remark 1.10, yielding

Ep,q
1 := Hp+q(fiber

(
C∗(CPp,Z) → C∗(CPp−1,Z)

)
) =⇒ Hp+qC

∗(CP∞,Z)

with

fiber
(
C∗(CPp,Z) → C∗(CPp−1,Z)

)
≃ Z[−2p]

Therefore, the first page writes as

Ep,q
1 = Hp+q(Z[−2p]) =

{
Z if q = −3p

0 otherwise

that we can picture as
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q p = 0 p = 1 p = 2 p = 3 · · ·

q = 0 Z 0 0 0 · · ·

q = −1 0 0 0 0 · · ·

q = −2 0 0 0 0 · · ·

q = −3 0 Z 0 0 · · ·

q = −4 0 0 0 0 · · ·

q = −5 0 0 0 0 · · ·

q = −6 0 0 Z 0 · · ·

...
...

...
...

...
...

It follows that all boundary maps d1 vanish and the spectral sequence degenerates
already at page 1. It follows that for n ≤ 0

H2n(C
∗(CP∞,Z)) ≃ k

and vanishes otherwise. It follows that as a complex we have

C∗(CP∞,Z) ≃
⊕
n≤0

Z[2n]

2. Serre Spectral Sequence

We will start with the spectral sequence associated to a Serre fibration p : X → Y .
Let us fix a base point y : ∗ → Y and denote by Fy the homotopy fiber product
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Fy
//

��

X

p

��

∗ // Y

(14)

Since Serre fibrations are in particular right fibrations [Lur09, Chapter 2], we can
use the Grothendieck construction for spaces to present p as an ∞-functor

P : Y → S

sending y 7→ Fy.

Remark 2.1. By taking fiber products in (14) we obtain a canonical action of the
loop space ΩyY ≃ ∗ ×

Y
∗ on the fiber Fy. Let us assume that Y is connected. Then

this action completely determines the original Serre fibration since this case by the
Boardman-Vogt theorem [Lur17, 5.2.6.10], Y is equivalent to the bar-construction
on the E⊗

1 -loop group Ωy Y so that the functor Y → S can be written as

B(ΩyY ) → S

It follows from [Lur09, 3.3.4.3] that

X ≃ colim
Y

P (15)

In order to understand this colimit we will use the technique for decomposing dia-
grams in [Lur09, 4.2.3]. More precisely, we consider the diagram

F : N → S/Y

given by the different skeletal decompositions of Y , ie,

n 7→ Skn(Y )

with

Sk0(Y ) ⊆ Sk1(Y ) ⊆ · · · ⊆ Y

It follows from [Lur09, 4.2.3.4, 4.2.3.9, 4.2.3.10] that

X ≃ colim
n

(
colim
Skn(Y )

P|Skn(Y )

)
≃ colim

n
Xn (16)

where Xn is the fiber product
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Xn
//

��

X

p

��

Skn(Y ) // Y

(17)

We now consider the ∞-functor Σ∞ : S → Sp and its composition with − ⊗
S

HZ :

Sp → ModZ. This composition coincides with the functor of singular chains C∗(−,Z)
and commutes with all homotopy colimits. We obtain a colimit preserving functor

Y ≃ B(ΩyY ) → ModZ

sending y 7→ C∗(Fy,Z). It follows then from (15) that

C∗(X,Z) ≃ colim
y∈Y

C∗(Fy,Z) (18)

We now apply the discussion in Section 1 to the sequence

C∗(X0,Z) → C∗(X1,Z) → C∗(X2,Z) → · · · → colim = C∗(X,Z)

to deduce a (homological) spectral sequence

Ep,q
1 := Hp+q(Xp, Xp−1,Z) ≃ πp+q(C∗(Xp, Xp−1,Z)) =⇒ πp+q(C∗(X,Z)) = Hp+q(X,Z)

where C∗(Xp, Xp−1,Z) is the cofiber of C∗(Xp−1,Z) → C∗(Xp,Z) in ModZ and by
definition computes the relative homology of the pair (Xp, Xp−1).

We can finally establish the main theorem of this section:

Proposition 2.2. Suppose the action of π1(Y ) on Fy is trivial. Then there is an
homological spectral sequence with

Ep,q
2 ≃ Hp(Y,Hq(Fy,Z)) =⇒ Hp+q(X,Z))

Moreover, in the particular case where the groups Hq(Fy,Z) are finitely generated
free Z-modules, we have

Hp(Y,Hq(Fy,Z)) ≃ Hp(Y,Z)⊗ Hq(Fy,Z))

Proof. As explained in the Remark 1.8, the first page of the spectral sequence is
given by

· · · → πq(C∗(Xp, Xp−1,Z)[−p]) · · · → πq(C∗(X1, X0,Z)[−1]) → πq(C∗(X0,Z))
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We claim that we can identify the homology groups Hp of this complex with

Hp(Y,Hq(Fy,Z))

□

Example 2.3. Let us use the homological Serre spectral sequence associated to the
fibration

S1 //

��

S5

��

∗ // CP2

to compute the singular homology of CP2. Since π1(CP2) = 0 and the homology
groups of the circle are free Z-modules, the spectral sequence gives

Ep,q
2 := Hp(CP2,Z)⊗ Hq(S

1,Z) =⇒ Hp+q(S
5)

Writing this page explicitely, and using the fact that CP2 is a 4-dimension real
manifold (see Lemma 2.34-(b).)

p = 0 p = 1 p = 2 p = 3 p = 4 · · ·

0 0 0 0 0 · · ·

Z H1(CP2) H2(CP2) H3(CP2) H4(CP2) 0

Z H1(CP2) H2(CP2)

jj

H3(CP2)

jj

H4(CP2)

jj

0

jj

At the same time, since this spectral sequence is concentraded in rows one and
two, it follows that it degenerates at the page 3, with d3 = 0. Since H0(S

5) = Z,
H5(S

5) = Z and all other homology groups vanish, this page 3 is

https://pi.math.cornell.edu/~hatcher/AT/AT.pdf
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q p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 · · ·

q = 2 0 0 0 0 0 0 · · ·

q = 1 0 0 0 0 Z 0 · · ·

q = 0 Z 0 0 0 0 0 · · ·

By degree reasons, this implies that in page 2 we must have

H1(CP2) = 0 , H2(CP2) → Z is an iso, and

H4(CP2) → H2(CP2) , H3(CP2) → H1(CP2)

are isomorphisms. Combining these remarks, we conclude that Hp vanish for p ≥ 5

and we get Z if p is even and zero otherwise.

Remark 2.4. Under the same hypothesis, the homological spectral sequence of
Proposition 2.2 has a cohomological version with

Ep,q
2 ≃ Hp(Y,Hq(Fy,Z)) =⇒ Hp+q(X,Z))

Example 2.5. Let us use the cohomological spectral sequences associated to the
fibrations

S1 //

��

S2n+1

��

∗ // CPn

to compute the cohomology of the projective space. From the long exact sequence
of homotopy groups associate to the fibration, we see that that π1(CPn) = 0 so that
we can apply the existence result for the spectral sequence. Moreover, since the
cohomology groups of the circle are free Z-modules, the E2 page reads as

Ep,q
2 = Hp(CPn,Z)⊗ Hq(S1,Z)
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q p = 0 p = 1 p = 2 p = 3 p = 4 · · ·

q = 2 0 0 0 0 0 · · ·

q = 1 Z

))

H1

))

H2

))

H3 H4 · · ·

q = 0 Z H1 H2 H3 H4 · · ·

By degree reasons, it follows that no differential reaches H1 = E1,0
2 and since it

cannot persist to infinity (as it does not appear in the cohomology of S2n+1), it must
vanish. By degree reasons, to must vanish all cohomology groups for odd p. The
second page therefore reads as

p = 0 p = 1 p = 2 p = 3 p = 4 · · · p = 2n · · ·

0 0 0 0 0 · · ·

Z

))

0 H2

))

0 H4 · · · H2n · · ·

Z 0 H2 0 H4 · · · H2n · · ·

and again by inspection of the cohomology of S2n+1 we see that all the differentials

H2k → H2k+2

have to be isomorphisms for 0 ≤ k ≤ n− 1 and that for k = n, the map

H2n → H2n+2 = 0

has to be the zero map (since CPn is a 2n-topological manifold), so that the copy of
H2n+1(S2n+1,Z) ≃ Z is possible at infinity in position p = 2n, q = 1. It follows that
Hp = 0 for p > 2n.
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Example 2.6. Let use the cohomological Serre spectral sequence to compute the
cohomology of the space K(Z, 2) knowing that we have a homotopy fiber sequence

S1 ≃ K(Z, 1) //

��

∗

��

∗ // K(Z, 2)

Since π1(K(Z, 2)) = 0 by construction, we find a cohomological spectral sequence

Ep,q
2 := Hp(K(Z, 2))⊗ Hq(S1) =⇒ Hp+q(∗)

Writing this page explicitely in cohomological notation, we find

q p = −1 p = 0 p = 1 p = 2 p = 3 · · ·

q = 2 0 0 0 0 0 · · ·

q = 1 0

**

Z

++

H1(K(Z, 2))

++

H2(K(Z, 2))

++

H3(K(Z, 2)) · · ·

q = 0 0 Z H1(K(Z, 2)) H2(K(Z, 2)) H3(K(Z, 2)) · · ·

Snce this spectral sequence is concentraded in rows one and two, it follows that it

degenerates at the page 3, with d3 = 0. Since H0(∗) = Z, and all other homology
groups vanish of the point vanish, this page 3 is

q p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 · · ·

q = 2 0 0 0 0 0 0 · · ·

q = 1 0 0 0 0 0 0 · · ·

q = 0 Z 0 0 0 0 0 · · ·

It follows that all the maps in the E2-page are isomorphisms. Therefore, we find

H2nK(Z, 2) = Z
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and zero otherwise. In particular, this shows that the class 1 ∈ Z ≃ H2(CP∞,Z)
computed in Example 1.11, seen as a homotopy class of maps

CP∞ → K(Z, 2)

induces an isomorphism on singular cochains. In particular, the Hurewicz theorem
implies that it is an equivalence.

Example 2.7. Let us illustrate how sometimes the data of the spectral sequence
alone is not enough to compute the cohomology of the total space of a fibration. Let
us consider the Hopf fibration

S1 //

��

S3

��

∗ // S2

The first page of the associated cohomological spectral sequence is

q p = 0 p = 1 p = 2 p = 3 · · ·

q = 2 0 0 0 0 · · ·

q = 1 Z
d2

))

0 Z 0 · · ·

q = 0 Z 0 Z 0 · · ·

A priori, the only thing we know about the map d2 is that it is a map of Z-modules,

and therefore it is given by multiplication by some n ∈ Z. In fact, we can show that
n=1, because we know by other means that the cohomology of S3 is zero in degrees
1 and 2, so that both the kernel and cokernl of d2 have to vanish, meaning that d2
is an isomorphism. But this observation is extrinsic to the spectral sequence. In the
next section we will see that it is possible to endow the spectral sequence with extra
structure that allows us to have more explicit knowledge of the boundary maps.
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3. Multiplicative structure on the cohomological Serre spectral
sequence

As seen in the previous example of the last section, sometimes the data of the
spectral sequence is not enough to have a satisfactory description of the boundary
maps. In this section we will discuss an extra structure on the cohomological Serre
spectral sequence that allows us to solve this problem in some cases. It is motivated
by the following example:

Example 3.1. We can now try to compute the cohomology of K(Z, 3) with Z and
Q coefficients, using the multiplicative structure on the cohomological Serre spectral
sequence for the fiber product

K(Z, 2) ≃ K(Z, 1) //

��

∗

��

∗ // K(Z, 3)

Ep,q
2 := Hp(K(Z, 3),Z)⊗ Hq(K(Z, 2),Z) =⇒ Hp+q(∗,Z)

Writing Hp := Hp(K(Z, 3),Z), we get a second page where all boundary maps vanish.

q
...

...
...

...
...

...
... · · ·

q = 5 0

''

0

''

0

''

0

''

0

''

0

''

0 · · ·

q = 4 Z

''

H1

''

H2

''

H3

''

H4

''

H5

''

H6 · · ·

q = 3 0

''

0

''

0

''

0

''

0

''

0

''

0 · · ·

q = 2 Z

''

H1

''

H2

''

H3

''

H4

''

H5

''

H6 · · ·

q = 1 0

''

0

''

0

''

0

''

0

''

0

''

0 · · ·

q = 0 Z H1 H2 H3 H4 H5 H6 · · ·

Therefore, for the third page we find
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q
...

...
...

...
...

...
... · · ·

q = 4 Z

%%

H1

%%

H2

%%

H3

%%

H4

%%

H5 H6 · · ·

q = 3 0

%%

0

%%

0

%%

0

%%

0 0 0 · · ·

q = 2 Z

%%

H1

%%

H2

%%

H3

%%

H4

%%

H5 H6 · · ·

q = 1 0 0 0 0 0 0 0 · · ·

q = 0 Z H1 H2 H3 H4 H5 H6 · · ·

Notice that this spectral sequence converges to Hp+q(∗) which is concentrated in

p = q = 0. Since the copies of H1 = E1,0
2 and H2E2,0

2 , by the nature of their positions
are not touched by any non-zero differentials for the higher pages of the spectral
sequence, it follows that H1 = H2 = 0. We can re-write the spectral sequence as

q
...

...
...

...
...

...
... · · ·

q = 4 Z

##

0

$$

0

%%

H3

%%

H4

%%

H5 H6 · · ·

q = 3 0

##

0

$$

0

%%

0

%%

0 0 0 · · ·

q = 2 Z

##

0

$$

0

%%

H3

%%

H4

%%

H5 H6 · · ·

q = 1 0 0 0 0 0 0 0 · · ·

q = 0 Z 0 0 H3 H4 H5 H6 · · ·

The same discussion as for H1 and H2 above, the copy of H4 = E4,0
2 by the nature its

position position is not touched by any non-zero differentials for the higher pages
of the spectral sequence. Therefore it persist to the limit r → ∞. It follows that
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H4 = 0. Therefore the page E3 is actually given by

q
...

...
...

...
...

...
... · · ·

q = 4 Z

##

0 0 H3

$$

0 H5 H6 · · ·

q = 3 0 0 0 0 0 0 0 · · ·

q = 2 Z

d

##

0 0 H3

$$

0 H5 H6 · · ·

q = 1 0 0 0 0 0 0 0 · · ·

q = 0 Z 0 0 H3 0 H5 H6 · · ·

Let us look at the first map d : Z → H3. We claim that this map is an isomorphism.

Indeed, in the next page of the spectral sequence, we find

q
...

...
...

...
...

...
... · · ·

q = 4 ? 0 0 ? 0 H5 ? · · ·

q = 3 0 0 0 0 0 0 0 · · ·

q = 2 ker d 0 0 ? 0 H5 ? · · ·

q = 1 0 0 0 0 0 0 0 · · ·

q = 0 Z 0 0 coker d 0 H5 ? · · ·

By the same arguments as above, we see that both coker d and ker d survive to

the limit page and therefore have to vanish. This proves that the map d is an
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isomorphism was we wanted. Therefore, the E3-page can be written as

q
...

...
...

...
...

...
... · · ·

q = 4 Z

##

0 0 Z

$$

0 H5 H6 · · ·

q = 3 0 0 0 0 0 0 0 · · ·

q = 2 Z

d

∼

##

0 0 Z

$$

0 H5 H6 · · ·

q = 1 0 0 0 0 0 0 0 · · ·

q = 0 Z 0 0 Z 0 H5 H6 · · ·

Unfortunately, there is not much one can do at this point without further input.

Definition 3.2. A multiplicative structure on a cohomological spectral sequence E

is the data of a commutative bigraded ring structure on the bigraded objects Er (ie,
if x ∈ Ep,q

r and y ∈ Ep′,q′
r then x.y ∈ Ep+p′,q+q′

r ), such that dr is a graded derivation,
ie, if x ∈ Ep,q

r and y ∈ Ep′,q′
r

dr(x.y) = dr(x).y + (−1)p+qx.dr(y)

As a result the cohomology groups with respect to dr, H(Ep,q
r ), are bigraded groups.

We further ask that the isomorphisms

H(Ep,q
r ) ≃ Ep,q

r+1

are isomorphisms of bigraded groups.
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Example 3.3. Let us compute the ring structure on the graded module H∗(CPn,Z)
using the work already done in the Example 2.6. Let us revisit the E2 page

p = 0 p = 1 p = 2 p = 3 p = 4 · · · p = 2n · · ·

0 0 0 0 0 · · ·

Z

))

0 H2

))

0 H4 · · · H2n · · ·

Z 0 H2 0 H4 · · · H2n · · ·

We now know that it admits the structure of a bigraded-ring. Lets name ϵ the

generator of H1(S1,Z) and s := d2(ϵ). Then the second page reads as

Z.ϵ

((

0 Z

''

0 Z · · · Z · · ·

Z 0 Z.s 0 Z · · · Z · · ·

It follows from the bigraded rule that ϵ.s is in the copy of Z = E2,1
E . We claim that

this element is non-zero. Indeed, since multiplication by ϵ in H∗(S1,Z) induces an
isomorphism between H0(S1,Z) and H1(S1,Z), it induces an isomorphism between
the bottom line and the top line of the spectral sequence. Finally, using the fact
that d2 is a derivation we have

d2(ϵ.s) = d2(ϵ).s+ (−1)1+0.ϵ.d2(s) = s2 − ϵ.0 = s2

Moreover the fact that d2 is also an isomorphism, s2 is non-zero. We can therefore
write the second page as

Z.ϵ

((

0 Z.ϵ.s

((

0 Z · · · Z · · ·

Z 0 Z.s 0 Z.s2 · · · Z · · ·

We can iterate this argument to show all the way until we reach p = 2n, where we
find

Z.ϵ

((

0 Z.ϵ.s

((

0 Z · · · Z.ϵ.sn · · ·

Z 0 Z.s 0 Z.s2 · · · Z.sn · · ·
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and running it only one last time, we deduce that sn+1 = 0. In other words, we
proved that as graded algebras we have

H∗(CPn) ≃ Z[s]/(sn+1)

where s is a generator in degree 2. The same computation applied to the Ex-
ample 2.6 to get that

H∗(CP∞) ≃ Z[s]

is a polynomial algebra with a free generator in degree 2.

Example 3.4. Now that we are aware of the multiplicative structure, let us con-
tinue the Example 3.1 above. The cup-product operation on the graded algebra
H∗(K(Z, 3),Z) manifests itself as an operation between the different pieces of the
spectral sequence. For this purpose we use the computation of the ring structure
on H∗(K(Z, 2),Z) = H∗(CP∞,Z) = Z[u] of the Example 3.3 the free polynomial
algebra with a generator in coh. degree 2. Moreover, the second page of the spectral
sequence is obtained as a tensor product of two graded rings

H∗(K(Z, 2),Z)⊗ H∗(K(Z, 3),Z)

and the differentials d3 are derivations with respect to the bigraded ring structure
on the tensor product. Let us write s := d(u). It follows from the formula for
derivations

d3(u
n) = n.un−1.du = n.un−1.s
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that we can the E3-page can be written as

q
...

...
...

...
...

...
... · · ·

q = 10 Z.u5

.5

%%

0 0 Zu5.s

%%

0 H5 H6 · · ·

q = 9 0 0 0 0 0 0 0 · · ·

q = 8 Z.u4

.4

%%

0 0 Zu4.s

%%

0 H5 H6 · · ·

q = 7 0 0 0 0 0 0 0 · · ·

q = 6 Z.u3

.3

%%

0 0 Zu3.s

%%

0 H5 H6 · · ·

q = 5 0 0 0 0 0 0 0 · · ·

q = 4 Z.u2

.2

%%

0 0 Zu2.s

%%

0 H5 H6 · · ·

q = 3 0 0 0 0 0 0 0 · · ·

q = 2 Z.u

d

∼

%%

0 0 Zu.s

%%

0 H5 H6 · · ·

q = 1 0 0 0 0 0 0 0 · · ·

q = 0 Z 0 0 Z.s 0 H5 H6 · · ·

Since the multiplication by 2, is injective, we deduce that the copy of H5 = E5,0
2 is

persistant in the spectral sequence, so that it must be zero. Also for degree reasons,
and taking into account the shape of the last page, we deduce that the sequence

Z →.2 Z → H6 → 0
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is exact on the right. It follows that H6 ≃ Z/2Z. Finally, the E3-page reads as

Z.u3

.3

%%

0 0 Zu3.s

%%

0 0 Z/2Z H7 H8

0 0 0 0 0 0 0 0 0

Z.u2

.2

%%

0 0 Zu2.s

%%

0 0 Z/2Z H7 H8

0 0 0 0 0 0 0 0 0

Z.u

d

∼

%%

0 0 Zu.s

%%

0 0 Z/2Z H7 H8

0 0 0 0 0 0 0 0 0

Z 0 0 Z.s 0 0 Z/2Z H7 H8

Notice that d3(u
2.s) = 2.ud3(u).s = 2.u.s.s = 2u.s2 = u.2.s2 and 2.s2 = 0 in H6.

Similarly, we have d3(u
n.s) = n.un−1d3(u).s = n.un−1.s.s = n.u.s2 = u.n.s2 which is

0 if n is even.
Also, an element in H7 = E7,0

2 can only be killed by the element u3 in the page E7.
But since multiplication by 3 is injective, this element is already killed in page 4.
We conclude that H7 = 0.
We have:
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Z.u5

.5

%%

0 0 Zu5.s

%%

0 0 Z/2Z 0 H8

0 0 0 0 0 0 0 0 0

Z.u4

.4

%%

0 0 Zu4.s

0

%%

0 0 Z/2Z 0 H8

0 0 0 0 0 0 0 0 0

Z.u3

.3

%%

0 0 Zu3.s

%%

0 0 Z/2Z 0 H8

0 0 0 0 0 0 0 0 0

Z.u2

.2

%%

0 0 Zu2.s

0

%%

0 0 Z/2Z 0 H8

0 0 0 0 0 0 0 0 0

Z.u

d

∼

%%

0 0 Zu.s

%%

0 0 Z/2Z 0 H8

0 0 0 0 0 0 0 0 0

Z 0 0 Z.s 0 0 Z/2Z 0 H8

We see that in the place of u2.s in page 4 = page 5, appears a copy of Z/3Z. But

we know that at this copy is not present at infinity. The only way this can happen
is if the map d5 : Z/3Z → H8, determined by the element t := d5(u

2.s), is an
isomorphism. So far we have computed all the following cohomology groups:

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

Z 0 0 Z.s 0 0 Z/2Z 0 Z/3Z

We could try to continue the computation (see this seminar of Cartan) but we it
would be impossible to compute H14 without further input. Instead let us observe

http://archive.numdam.org/article/SHC_1954-1955__7_1_A11_0.pdf
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that what we have so far is enough to deduce the cohomology groups of K(Z, 3) with
coefficients in Q. Indeed, in this case, the maps in page 3 given by multiplication by
n become isomorphisms and the E3-page with rational coefficients becomes

Q.u5

.5

∼

%%

0 0 Qu5.s

&&

0 0 H6(−,Q) 0 H8(−,Q)

0 0 0 0 0 0 0 0 0

Q.u4

.4

∼

%%

0 0 Qu4.s

0

&&

0 0 H6(−,Q) 0 H8(−,Q)

0 0 0 0 0 0 0 0 0

Q.u3

.3

∼

%%

0 0 Qu3.s

&&

0 0 H6(−,Q) 0 H8(−,Q)

0 0 0 0 0 0 0 0 0

Q.u2

.2

∼

%%

0 0 Qu2.s

0

&&

0 0 H6(−,Q) 0 H8(−,Q)

0 0 0 0 0 0 0 0 0

Q.u

d

∼

%%

0 0 Qu.s

&&

0 0 H6(−,Q) 0 H8(−,Q)

0 0 0 0 0 0 0 0 0

Q 0 0 Q.s 0 0 H6(−,Q) 0 H8(−,Q)
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Therefore, for E4 = E5, we find

0 0 0 0 0 0 H6(−,Q) 0 H8(−,Q)

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 H6(−,Q) 0 H8(−,Q)

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 H6(−,Q) 0 H8(−,Q)

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 H6(−,Q) 0 H8(−,Q)

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 H6(−,Q) 0 H8(−,Q)

0 0 0 0 0 0 0 0 0

Q 0 0 0 0 0 H6(−,Q) 0 H8(−,Q)

We see that for Hp(−,Q) = 0 for p ≥ 3 and that H3(−,Q) = Q. Finally, to compute

the graded ring structure H∗(K(Z, 3),Q) we see that

d3(u.s) = d3(u).s+ (−1)2+0.u.d3(s) = s.s+ 0 = s2

that has to be zero because as we just saw, H6(−,Q) = E6,0
3 = 0. It follows that

H∗(K(Z, 3),Q) is the graded exterior algebra with a generator in degree 3.
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Remark 3.5. More generally, the argument in the previous example can be used
by induction to show that the cohomology ring of H∗(K(Z, n),Q) is the free graded
algebra with a generator in degree n (see Here, Prop. 5.21).

4. Spectral sequence of the geometric realization of a simplicial
object

This section is a quick summary of the results in [Lur17, Section 1.2.4].

Let us consider a simplicial object X : ∆op → C with C a stable ∞-category with a
t-structure. Let us assume that |X| := colim

∆op
X- its geometric realization exists in C.

We will construct a spectral sequence converging to the homotopy groups πn|X|.

Let us denote by ∆op
≤n ⊆ ∆op the full subcategory of ∆op spanned by those objects

[m] with m ≤ n. Let us denote by X≤n the restriction

∆op
≤n ⊆ ∆op → C

Then using the decomposition of ∆op given by the functor

N → SSets/∆op n 7→ ∆op
≤n

and [Lur09, 4.2.3.4, 4.2.3.9, 4.2.3.10], we obtain a new formula for the geometric
realization as a colimit

|X| ≃ colim
n

(
colim
∆op

≤n

X≤n

)
≃ colim

n

(
colim
∆op

≤0

X≤0 = X([0]) → colim
∆op

≤1

X≤1 → · · ·

)
Let us write

Dn := colim
∆op

≤n

X≤n

|X| ≃ colim
n

(D0 → D1 → D2 → · · · )

and therefore, we are in the situation of the Section 1 where we can produce a
spectral sequence that converges to the homotopy groups of the colimit

Ep,q
1 := πp+q(Dp/Dp−1) =⇒ πp+q|X|

https://pi.math.cornell.edu/~hatcher/AT/ATch5.pdf
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if we assume that the t-structure in C is compatible with filtered colimits.

We can provide a more explicit description of the object Dp/Dp−1, ie, of the cofiber
of

colim
∆op

≤p−1

X≤p−1 → colim
∆op

≤p

X≤p

Indeed, let us write LKE(n−1)→n(X≤n−1) for the left Kan extension of X≤n−1 along
the inclusion

∆op
≤n−1 ⊆ ∆op

≤

It follows from the definition of colimits as a left Kan extension that

colim
∆op

≤p−1

X≤p−1 ≃ colim
∆op

≤p

LKE(p−1)→p(X≤p−1)

It follows from the definitions that for each p we have a natural transformation of
functors

∆op
≤p → C LKEp−1→p(X≤p−1) → X≤p

which induces equivalences for

LKEn−1→n(X≤n−1)([m]) → X≤n([m]) ∀ m ≤ n− 1

Let us write Cn for the cofiber

LKEn−1→n(X≤n−1)([n]) //

��

X≤n([n])

��

0 // Cn

Since cofibers of diagrams are computed objectwise, the cofiber of LKEp−1→p(X≤p−1) →
X≤p is the functor ∆op

≤p → C given by Cp in level p and zero everywhere else. It
follows from [Lur17, 1.2.4.18] that the colimit of this functor ∆op

≤p → C is given by
Cp[p]. Therefore, we find

Dp/Dp−1 ≃ Cp[p]

As in the Remark 1.8, the first page is given by applying πq to the sequence of
boundary maps

· · · → Cp[p][−p] · · · → C2[2][−2] → C1[1][−1] → D0 = X0
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Ep,q
1 = πq(Cp)

If we now assume that the simplicial object X takes values in C≥0 we can drop
assumption that the t-structure is compatible with filtered colimits and still get a
stronger notion of convergence for the spectral sequence. Indeed, in this case since
C≥0 ⊆ C is stable under all colimits, we find that all Dp, Cp and |X| are C≥0. It
follows that the first page of the spectral sequence Ep,q

1 is concentrated in the first
quadrant (p, q ≥ 0) and so are all the higher pages. In particular, we also see that
since Cp is in C≥0, Cp[p] ≃ Dp/Dp−1 is in C≥p. It follows from the long exact sequence
of homotopy groups associated to the cofiber-sequence

Dp−1

��

// Dp

��

0 // Cp[p]

that

· · · · · · // πp(Cp[p])

ss

πp−1Dp−1
// πp−1Dp

// πp−1(Cp[p]) = 0

ss

πp−2Dp−1
// πp−2Dp

// πp−2(Cp[p]) = 0 · · ·

showing that

πp−1Dp−1 → πp−1Dp

is surjective and that

πp−2Dp−1 → πp−2Dp

is an isomorphism. By induction, this shows that

πn(Dn+1) ≃ πn(Dn+2) ≃ πn(Dn+3) ≃ · · · ≃ πn(|X|)

We are therefore in the context of the Remark 1.9.
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Remark 4.1. We can get reasonable connectivity estimates for Cp even without the
hypothesis of a t-structure on C. This is what is done in [Lur17, 1.2.4.7]. Indeed,
one can show that X([n]) is a split direct sum Ln ⊕ Cn using the usual Dold-Kan
construction for additive idempotent complete categories. If we assume then that C
has a t-structure and that X([n]) ∈ C≥0, it follows that Cn also is connective.

Remark 4.2. The complex πq(Cp) is the normalized chain complex associated to
the simplicial object πq(X).

5. Descent Spectral Sequence

Proposition 5.1. Let X be a topological space and {Ui}i∈I be an open cover. Let
f :

∐
i∈I Ui → X be the canonical map and N•(f) its nerve. Then the canonical

map

colim∆op N•(f) → X

is an equivalence in S.

Proof. See for instance Dugger Notes for the cech cover - Theorem 1.1 □

Remark 5.2. As a consequence of the previous proposition and of the discussion
in the previous section, one can compute the cohomology of a space X by means of
a spectral sequence. Namely, we have

C∗(X, k) ≃ limN(∆op) C
∗(N•(f), k)

and the first page of the spectral sequence is given by the normalized Dold-Kan
complex of the co-simplicial abelian group πq(C

∗(N•(f), k)).

Proposition 5.3 (Leray). Let X be a topological space and {Ui}i∈I be a cover. Let
C denote the category whose objects are the opens in the cover and their intersections
and whose morphisms are given by inclusions and let N(C) denote its nerve as a
simplicial set. Then if {Ui}i∈I is a good cover, ie, all intersections are either empty
or contractible, then N(C) is homotopy equivalent to X, ie, if W denotes the class
of all morphisms in N(C) then N(C)[W−1] ≃ X.

Proof. Use Lemma 5.4.5.10 together with the fact that {Ui} is cofinal in Disk(X).
The fact that the colimit of Disk(X) gives X follows from Proposition A.3.2 and
A.3.1. Notice that the Dugger - Corollary 3.5 is the same as Lemma A.3.3. □

https://arxiv.org/abs/math/0111287
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://arxiv.org/pdf/math/0111287.pdf
https://www.math.ias.edu/~lurie/papers/HA.pdf
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This section is a quick survey of the discussion in [PY16, §8] presenting the Leray
spectral sequence to compute global sections of a sheaf using the discussion of the
previous section.
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