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Introduction - GW-invariants
Results in this talk: collaboration with E. Mann (Université d’
Angers).

Motivated by original ideas and suggestions of Manin and Toën

Recall: GW theory
X smooth proj. algebraic variety /C. Γ1, ..., Γn ⊆ X subvarieties
 
GW-Numbers Id (X , Γ1, ..., Γn):= Number of rational curves of a
given genus g and degree d in X , which are incident to each Γ1,...,
Γn.
(geometric definition)

(Kontsevich, Manin, Behrend, Fantechi, etc) - cohomological def-
inition  Id (X , Γ1, ..., Γn) = obtained as intersection numbers for
a good intersection product on the cohomology of a ”nice” (ie.
smooth and proper) moduli space of rational curves
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Angers).

Motivated by original ideas and suggestions of Manin and Toën
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Nice Moduli of Rational Curves  Moduli of stable maps
Definition: (C , x1, ..., xn) nodal algebraic curve of genus g with
n marked points.

f : (C , x1, ..., xn) → X is stable = for each
irreducible component Ci ⊆ C , if f∗([Ci ]) = 0 in H2(X ,Z) then Ci
contains at least 3 special (g = 0) (resp. 1 if g > 0) points (nodes
or marked points).

Mg .n(X , d):= moduli space of stable maps f : (C , x1, ..., xn)→ X
with f∗([C ]) = d in H2(X ,Z) (moduli of parametrizations).

Remark: Mg .n(X , d) is a compactification of the moduli of ratio-
nal curves on X.

Mg .n(X , d)
Stb

tt

Mg ,n:= moduli of stable curves of genus g with n marked points.
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Introduction: GW invariants



Fundamental Class and Intersection Product

Remark In general, the stack Mg .n(X , d) is not smooth  cap
product with fundamental class does not give the correct counting.

(Kontsevich-Manin, Beherend-Fantechi) Ad-hoc correction of the
fundamental class of Mg .n(X , d)  virtual fundamental class
[Mg .n(X , d)]vir

(Kontsevich-Manin) the modified intersection products

Ig,n,d : H∗(X )⊗n → H∗(Mg,n) := Stb∗(ev∗(−) ∩ [Mg.n(X , d)]vir )

are compatible with the gluings of curves

Mg1,n ×Mg2,m →Mg1+g2,n+m−2

and does the correct counting
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Compatibility with Gluings

(Kontsevich, Manin, Kapranov, Getzler) The gluing operations
(gluing + stabilization)

Mg1,n ×Mg2,m →Mg1+g2,n+m−2

make M := {Mg ,n}g ,n a modular operad in algebraic stacks . 
{H∗(Mg ,n)}g ,n operad in vector spaces

(Kontsevich-Manin) Properties manifested by the corrected inter-
section products Ig ,n,d : H∗(X )⊗n → H∗(Mg ,n) ⇔

H∗(X ) is a H∗(M)-algebra.

(Givental-Lee) ∃ K-theoretic intersection product  modify the
structure sheaf  virtual structure sheaf  

K (X )⊗n → K (Mg ,n)
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GW-invariants and Derived Categories

Remark

H∗(geo. object X ) ⊆ HP∗(its derived category D(X))

K(X):= K( D(X))

Problem: Link GW ↔ Derived Categories

D(X ) ' D(Y )⇒ GW (X ) = GW (Y )?
D(X ) = C ⊕ D semi-orthogonal decomposition ⇒ GW (X )
decomposes? (Ex: Conjectures type Dubrovin)

Hypothesis (Manin-Toën) - GW-invariants are already present
at the level of derived categories before passing to K-theory and
cohomology.

Introduction: GW invariants
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Hypothesis (Manin-Toën) - GW-invariants are already present
at the level of derived categories before passing to K-theory and
cohomology.

Introduction: GW invariants



GW-invariants and Derived Categories
Remark

H∗(geo. object X ) ⊆ HP∗(its derived category D(X))

K(X):= K( D(X))

Problem: Link GW ↔ Derived Categories

D(X ) ' D(Y )⇒ GW (X ) = GW (Y )?

D(X ) = C ⊕ D semi-orthogonal decomposition ⇒ GW (X )
decomposes? (Ex: Conjectures type Dubrovin)

Hypothesis (Manin-Toën) - GW-invariants are already present
at the level of derived categories before passing to K-theory and
cohomology.

Introduction: GW invariants



GW-invariants and Derived Categories
Remark

H∗(geo. object X ) ⊆ HP∗(its derived category D(X))

K(X):= K( D(X))

Problem: Link GW ↔ Derived Categories

D(X ) ' D(Y )⇒ GW (X ) = GW (Y )?
D(X ) = C ⊕ D semi-orthogonal decomposition ⇒ GW (X )
decomposes? (Ex: Conjectures type Dubrovin)
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GW-invariants and Derived Categories

Mg .n(X , d)

Stbyy
ev x1,...,xn

$$
Mg ,n Xn

Idea

Lift the K-theoretic and cohomological operations Ig ,n,d  to
functors
Ig,n,d : D(X )⊗n → D(Mg,n) Ig,n,d := Stb∗(ev∗(−)⊗ Virtual object︸ ︷︷ ︸

?

)

(Kontsevich, Kapranov, Toën-Vezzosi, Lurie, etc)

Derived Algebraic Geometry⇒ Virtual Objects

• (Kapranov-Fontanine, Schurg-Toën-Vezzosi) ∃ derived space RMg.n(X , d)
with truncation t : Mg.n(X , d) ↪→ RMg.n(X , d)
• derived structure sheaf O of RMg.n(X , d)  virtual structure sheaf
(t∗)−1(O) = Σ(−1)iπi (O) ∈ G(Mg.n(X , d)).
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• (Kapranov-Fontanine, Schurg-Toën-Vezzosi) ∃ derived space RMg.n(X , d)
with truncation t : Mg.n(X , d) ↪→ RMg.n(X , d)
• derived structure sheaf O of RMg.n(X , d)  virtual structure sheaf
(t∗)−1(O) = Σ(−1)iπi (O) ∈ G(Mg.n(X , d)).

Introduction: GW invariants



GW-invariants and Derived Categories

Mg .n(X , d)

Stbyy
ev x1,...,xn

$$
Mg ,n Xn

Idea Lift the K-theoretic and cohomological operations Ig ,n,d  to
functors
Ig,n,d : D(X )⊗n → D(Mg,n) Ig,n,d := Stb∗(ev∗(−)⊗ Virtual object︸ ︷︷ ︸

?

)

(Kontsevich, Kapranov, Toën-Vezzosi, Lurie, etc)
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GW-invariants and Derived Categories

RMg .n(X , d)

Stbyy
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Mg ,n Xn

Theorem (Mann, R.)
X proj. algebraic variety /C. g=0. Then, D(X ) admits categorical
GW-intersection products

I0,n,d : D(X )⊗n → D(M0,n)

which endow D(X ) with the structure of a D(M)-algebra, via

I0,n,d := RStb∗(Rev∗(−))

Virtual info ⊆ Rev∗(−)
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GW-invariants and Derived Categories

Corollary

Passing to K-theory we recover the formalism of Givental-Lee of
K-theoretic GW-products

K (X )⊗n → K (M0,n)
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In Progress

Comparison with the cohomological invariants of
Kontsevich-Manin et Behrend-Fantechi (Key step:
Grothendieck-Riemann-Roch for quasi-smooth derived stacks
higher genus (brane actions for modular ∞-operads)

Introduction: GW invariants



In Progress

Comparison with the cohomological invariants of
Kontsevich-Manin et Behrend-Fantechi (Key step:

Grothendieck-Riemann-Roch for quasi-smooth derived stacks
higher genus (brane actions for modular ∞-operads)

Introduction: GW invariants



In Progress

Comparison with the cohomological invariants of
Kontsevich-Manin et Behrend-Fantechi (Key step:
Grothendieck-Riemann-Roch for quasi-smooth derived stacks

higher genus (brane actions for modular ∞-operads)

Introduction: GW invariants



In Progress

Comparison with the cohomological invariants of
Kontsevich-Manin et Behrend-Fantechi (Key step:
Grothendieck-Riemann-Roch for quasi-smooth derived stacks
higher genus (brane actions for modular ∞-operads)

Introduction: GW invariants



Brane Actions and Correspondences
Technical Problem: How to construct categorical GW-products
(easy) and how to show coherence under gluings of curves (hard)?

Remark I: Correspondences and pullback-pushforwards.

C 1-category 7→ C corr new 2-category

objets C corr = objets of C
1-morphisms in C corr , X  Y = diagrams

Z
p

��

q

��
X Y

with p and q morphisms in C
compositions of 1-morphisms= fiber products in C .
2-morphisms= 1-morphisms of diagrams.
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Brane Actions and Correspondances
Universal Property: C 1-category,

S 2-category

F : Cop → S functor , verifying conditions

For each 1-morphism f : X → Y in C , F (f ) has an adjoint
F (f )∗ in S.
for each cartesian square in C

X g //

f
��

Y
p
��

Z q //W
the natural morphism F (p) ◦ F (q)∗ → F (g)∗ ◦ F (f ) is an
equivalence (base-change)

=⇒

∃ ! 2-functor F : C corr → S given by pullback-pushforward along
the correspondence
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Brane Actions and Correspondences

Example:

D : C = (Derived Artin Stacks)op → S = dg − categories  

D : (Derived Artin Stacks)corr → S = dg − categories

Attention: Work with (∞, 2)-categories (Gaitsgory-Rozenblyum)

Conclusion: We are reduced to show a theorem for correspon-
dances in stacks

Brane Actions and Correspondences



Brane Actions and Correspondences

Example:

D : C = (Derived Artin Stacks)op → S = dg − categories  

D : (Derived Artin Stacks)corr → S = dg − categories

Attention: Work with (∞, 2)-categories (Gaitsgory-Rozenblyum)

Conclusion: We are reduced to show a theorem for correspon-
dances in stacks

Brane Actions and Correspondences



Brane Actions and Correspondences

Example:

D : C = (Derived Artin Stacks)op → S = dg − categories  

D : (Derived Artin Stacks)corr → S = dg − categories

Attention: Work with (∞, 2)-categories (Gaitsgory-Rozenblyum)

Conclusion: We are reduced to show a theorem for correspon-
dances in stacks

Brane Actions and Correspondences



Brane Actions and Correspondences

Example:

D : C = (Derived Artin Stacks)op → S = dg − categories  

D : (Derived Artin Stacks)corr → S = dg − categories

Attention: Work with (∞, 2)-categories (Gaitsgory-Rozenblyum)

Conclusion: We are reduced to show a theorem for correspon-
dances in stacks

Brane Actions and Correspondences



Brane Actions and Correspondances

Theorem (Mann, R.)

X proj. algebraic variety /C. g=0.The correspondances in derived
stacks

RMg .n(X , d)

Stbyy
ev x1,...,xn

%%
Mg ,n Xn

seen as 1-morphisms in correspondences

I0,n,d : X⊗n  M0,n

endow X with the structure of a M-algebra in the category of
correspondences ( lax associative action)

Compose with D : (derived Artin Stacks)corr → S = dg−categories
to get the categorical action.
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Action de Membranes et Correspondances

Key idea

 Brane actions for ∞-operads (discovered by Toën)
Description of the phenomenom: O top. operad  O(2) = esp.
of binary operations carries a structure of O-algebra in the cate-
gory of cobordisms:
Example: E2 little disks operad  E2(2) = esp. of binary opera-
tions ' S1 circle. The circle S1 is an E2-algebra in cobordisms:

σ ∈ E2(n) 7→
∐

n S1  S1

Brane Actions generalize this situation for general operads verify-
ing a coherence condition  cobordismes ⊆ co-correspondances
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Description of the phenomenom: O top. operad  O(2) = esp.
of binary operations carries a structure of O-algebra in the cate-
gory of cobordisms:
Example: E2 little disks operad  E2(2) = esp. of binary opera-
tions ' S1 circle. The circle S1 is an E2-algebra in cobordisms:

σ ∈ E2(n) 7→
∐

n S1  S1

Brane Actions generalize this situation for general operads verify-
ing a coherence condition  cobordismes ⊆ co-correspondances

Brane Actions and Correspondences



Action des Membranes et Correspondances

Definition (J.Lurie)

Let O be a monochromatic ∞-operad with O(0) ' O(1) ' ∗. Let
σ ∈ O(n) be a n-ary operation. The space of extensions of σ -
Ext(σ) - is the homotopy fiber product

{σ} ×O(n) O(n + 1)

where the map O(n + 1)→ O(n) forgets the last entry. We say
that O is coherent if for each pair of composable operations σ, τ ,
the natural square

Ext(Id) //

��

Ext(σ)

��
Ext(τ) // Ext(σ ◦ τ)

is homotopy-cocartesian.
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Brane Actions and Correspondences

Theorem (Toen)

Let O be a coherent ∞-operad in a ∞-topos T .Then, O(2)
= Ext(Id),seen as an object in T co−corr , carries an action of O
with multiplication given by the co-correspondences

σ ∈ O(n) 7→
∐
n

Ext(Id)→ Ext(σ)← Ext(Id)

Remark: In general if the operad is not coherent we still get a lax
action.
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Brane actions and Correspondences
We apply this to:

(Costello) M0,n,β:= stack of pre-stable curves C of genus 0 with n
marked points + the data of an index βi ∈ H2(X ,Z) attached to
each irreducible component Ci ⊆ C , such that:∑

i
βi = β; and if βi = 0 then Ci is stable

M0,n+1,β →M0,n,β is the universal curve.
The collection O(n) := M0,n+1,β forms a graded operad in
derived stacks with O(2)0 = M0,3,0 = M0,3 = ∗. Attention:
Not coherent.

(Graded) Brane actions  

O acts on ∗ via

C ∈ O(n) = M0,n+1,β 7→
∐

n first points ∗ → C ← ∗ (last point)
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Brane Actions and Correspondences
X proj. algebraic variety

 M0,n,β acts on Hom(∗,X ) = X
Globally, the operations are given by the maps

RHom/M0,n,β (M0,n+1,β,X ×M0,n,β)

))
tt

Xn−1 ×M0,n,β X

Remark: RM0.n(X , β) ⊆ RHom/M0,n,β (M0,n+1,β,X ×M0,n,β)
(open).

The action is compatibility with the stability conditions i.e, ∃
sub-action given by

Mg .n(X , β)

$$ww
Xn−1 ×M0,n,β X
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Action de Membranes et Correspondances

Same time:

∃ map of operads
∐
βM0,n,β →M0,n = Stabilisation

Working in correspondences this map can also be seen as a map of
operads in the inverse direction M0,n  

∐
βM0,n,β via

∐
βM0,n,β

Stbzz
M0,n

∐
βM0,n,β

only lax associative!

Corollary: Via composition with this map, M0,n acts on X via the
correspondence of stable maps (only lax associative!).
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Brane Actions and Correspondences
Lax associativity:

explained by the fact the gluing morphisms

M0,n,β ×M0,m,β′ →M0,n+m−2,β+β′ ×M0,n+m−2
(M0,n×M0,m) (1)

are not equivalences

In fact: L.H.S is the first level of an derived h-hypercover (Halpern-
Leistner- Preygel) of the R.H.S., where level k is given by

RM0,n(X , β0)×X RM0,2(X , β1)×X ....×X RM0,2(X , βi )︸ ︷︷ ︸
k

×XRM0,m(X , βi+1)

which covers curves obtained as gluings of k trees of P1 in the
middle.
 Givental-Lee Metric in Quantum K-theory
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Thank you for your attention.
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