K-theoretic Gromov-Witten invariants and derived algebraic geometry

Marco Robalo (IMJ-PRG, UPMC)

Results in this talk: collaboration with E. Mann (Université d' Angers).

Results in this talk: collaboration with E. Mann (Université d' Angers).

Motivated by original ideas and suggestions of Manin and Toën

Results in this talk: collaboration with E. Mann (Université d' Angers).

Motivated by original ideas and suggestions of Manin and Toën

Recall: GW theory

Results in this talk: collaboration with E. Mann (Université d' Angers).

Motivated by original ideas and suggestions of Manin and Toën

Recall: GW theory X smooth proj. algebraic variety $/\mathbb{C}$. $\Gamma_1, ..., \Gamma_n \subseteq X$ subvarieties \rightsquigarrow

Results in this talk: collaboration with E. Mann (Université d' Angers).

Motivated by original ideas and suggestions of Manin and Toën

Recall: GW theory X smooth proj. algebraic variety $/\mathbb{C}$. $\Gamma_1, ..., \Gamma_n \subseteq X$ subvarieties $\xrightarrow{}$ GW-Numbers $I_d(X, \Gamma_1, ..., \Gamma_n)$

Results in this talk: collaboration with E. Mann (Université d' Angers).

Motivated by original ideas and suggestions of Manin and Toën

```
Recall: GW theory

X smooth proj. algebraic variety /\mathbb{C}. \Gamma_1, ..., \Gamma_n \subseteq X subvarieties

\rightsquigarrow

GW-Numbers I_d(X, \Gamma_1, ..., \Gamma_n):= Number of rational curves of a

given genus g and degree d in X, which are incident to each \Gamma_1, ..., \Gamma_n.
```

(geometric definition)

Results in this talk: collaboration with E. Mann (Université d' Angers).

Motivated by original ideas and suggestions of Manin and Toën

```
Recall: GW theory

X smooth proj. algebraic variety /\mathbb{C}. \Gamma_1, ..., \Gamma_n \subseteq X subvarieties

\xrightarrow{}
```

GW-Numbers $I_d(X, \Gamma_1, ..., \Gamma_n)$:= Number of rational curves of a given genus g and degree d in X, which are incident to each $\Gamma_1, ..., \Gamma_n$. (geometric definition)

(Kontsevich, Manin, Behrend, Fantechi, etc) - cohomological definition \rightsquigarrow

Results in this talk: collaboration with E. Mann (Université d' Angers).

Motivated by original ideas and suggestions of Manin and Toën

Recall: GW theory

X smooth proj. algebraic variety $/\mathbb{C}$. $\Gamma_1, ..., \Gamma_n \subseteq X$ subvarieties \rightsquigarrow

GW-Numbers $I_d(X, \Gamma_1, ..., \Gamma_n)$:= Number of rational curves of a given genus g and degree d in X, which are incident to each $\Gamma_1, ..., \Gamma_n$. (geometric definition)

(Kontsevich, Manin, Behrend, Fantechi, etc) - cohomological definition $\rightsquigarrow I_d(X, \Gamma_1, ..., \Gamma_n)$ = obtained as intersection numbers for a good intersection product on the cohomology of a "nice" (ie. smooth and proper) moduli space of rational curves

Definition: $(C, x_1, ..., x_n)$ nodal algebraic curve of genus g with n marked points.

Definition: $(C, x_1, ..., x_n)$ nodal algebraic curve of genus g with n marked points. $f : (C, x_1, ..., x_n) \rightarrow X$ is stable =

Definition: $(C, x_1, ..., x_n)$ nodal algebraic curve of genus g with n marked points. $f : (C, x_1, ..., x_n) \to X$ is stable = for each irreducible component $C_i \subseteq C$, if $f_*([C_i]) = 0$ in $H_2(X, \mathbb{Z})$ then C_i contains at least 3 special (g = 0) (resp. 1 if g > 0) points (nodes or marked points).

Definition: $(C, x_1, ..., x_n)$ nodal algebraic curve of genus g with n marked points. $f : (C, x_1, ..., x_n) \to X$ is stable = for each irreducible component $C_i \subseteq C$, if $f_*([C_i]) = 0$ in $H_2(X, \mathbb{Z})$ then C_i contains at least 3 special (g = 0) (resp. 1 if g > 0) points (nodes or marked points).

 $\overline{\mathbb{M}}_{g.n}(X, d) :=$ moduli space of stable maps $f : (C, x_1, ..., x_n) \to X$ with $f_*([C]) = d$ in $H_2(X, \mathbb{Z})$

Definition: $(C, x_1, ..., x_n)$ nodal algebraic curve of genus g with n marked points. $f : (C, x_1, ..., x_n) \to X$ is stable = for each irreducible component $C_i \subseteq C$, if $f_*([C_i]) = 0$ in $H_2(X, \mathbb{Z})$ then C_i contains at least 3 special (g = 0) (resp. 1 if g > 0) points (nodes or marked points).

 $\overline{\mathcal{M}}_{g.n}(X, d) :=$ moduli space of stable maps $f : (C, x_1, ..., x_n) \to X$ with $f_*([C]) = d$ in $H_2(X, \mathbb{Z})$ (moduli of parametrizations).

Definition: $(C, x_1, ..., x_n)$ nodal algebraic curve of genus g with n marked points. $f : (C, x_1, ..., x_n) \to X$ is stable = for each irreducible component $C_i \subseteq C$, if $f_*([C_i]) = 0$ in $H_2(X, \mathbb{Z})$ then C_i contains at least 3 special (g = 0) (resp. 1 if g > 0) points (nodes or marked points).

 $\overline{\mathcal{M}}_{g.n}(X, d) :=$ moduli space of stable maps $f : (C, x_1, ..., x_n) \to X$ with $f_*([C]) = d$ in $H_2(X, \mathbb{Z})$ (moduli of parametrizations).

Remark: $\overline{\mathcal{M}}_{g.n}(X, d)$ is a compactification of the moduli of rational curves on X.

Definition: $(C, x_1, ..., x_n)$ nodal algebraic curve of genus g with n marked points. $f : (C, x_1, ..., x_n) \to X$ is stable = for each irreducible component $C_i \subseteq C$, if $f_*([C_i]) = 0$ in $H_2(X, \mathbb{Z})$ then C_i contains at least 3 special (g = 0) (resp. 1 if g > 0) points (nodes or marked points).

 $\overline{\mathcal{M}}_{g.n}(X, d) :=$ moduli space of stable maps $f : (C, x_1, ..., x_n) \to X$ with $f_*([C]) = d$ in $H_2(X, \mathbb{Z})$ (moduli of parametrizations).

Remark: $\overline{\mathcal{M}}_{g.n}(X, d)$ is a compactification of the moduli of rational curves on X.

Definition: $(C, x_1, ..., x_n)$ nodal algebraic curve of genus g with n marked points. $f : (C, x_1, ..., x_n) \to X$ is stable = for each irreducible component $C_i \subseteq C$, if $f_*([C_i]) = 0$ in $H_2(X, \mathbb{Z})$ then C_i contains at least 3 special (g = 0) (resp. 1 if g > 0) points (nodes or marked points).

 $\overline{\mathcal{M}}_{g.n}(X, d) :=$ moduli space of stable maps $f : (C, x_1, ..., x_n) \to X$ with $f_*([C]) = d$ in $H_2(X, \mathbb{Z})$ (moduli of parametrizations).

Remark: $\overline{\mathcal{M}}_{g.n}(X, d)$ is a compactification of the moduli of rational curves on X.

$$\overline{\mathcal{M}}_{g.n}(X,d)$$

 $\overline{\mathcal{M}}_{g,n}$:= moduli of stable curves of genus g with n marked points.

Definition: $(C, x_1, ..., x_n)$ nodal algebraic curve of genus g with n marked points. $f : (C, x_1, ..., x_n) \rightarrow X$ is stable = for each irreducible component $C_i \subseteq C$, if $f_*([C_i]) = 0$ in $H_2(X, \mathbb{Z})$ then C_i contains at least 3 special (g = 0) (resp. 1 if g > 0) points (nodes or marked points).

 $\overline{\mathcal{M}}_{g.n}(X, d) :=$ moduli space of stable maps $f : (C, x_1, ..., x_n) \to X$ with $f_*([C]) = d$ in $H_2(X, \mathbb{Z})$ (moduli of parametrizations).

Remark: $\overline{\mathcal{M}}_{g.n}(X, d)$ is a compactification of the moduli of rational curves on X.

 $\overline{\mathcal{M}}_{g,n} :=$ moduli of stable curves of genus g with n marked points. X^n

Introduction: GW invariants

Remark In general, the stack $\overline{\mathcal{M}}_{g.n}(X, d)$ is not smooth \rightsquigarrow cap product with fundamental class does not give the correct counting.

Remark In general, the stack $\overline{\mathcal{M}}_{g.n}(X, d)$ is not smooth \rightsquigarrow cap product with fundamental class does not give the correct counting.

(Kontsevich-Manin, Beherend-Fantechi) Ad-hoc correction of the fundamental class of $\overline{\mathcal{M}}_{g.n}(X, d) \rightsquigarrow$ virtual fundamental class $[\overline{\mathcal{M}}_{g.n}(X, d)]^{vir}$

Remark In general, the stack $\overline{\mathcal{M}}_{g.n}(X, d)$ is not smooth \rightsquigarrow cap product with fundamental class does not give the correct counting.

(Kontsevich-Manin, Beherend-Fantechi) Ad-hoc correction of the fundamental class of $\overline{\mathcal{M}}_{g.n}(X, d) \rightsquigarrow$ virtual fundamental class $[\overline{\mathcal{M}}_{g.n}(X, d)]^{vir}$

(Kontsevich-Manin)

Remark In general, the stack $\overline{\mathcal{M}}_{g.n}(X, d)$ is not smooth \rightsquigarrow cap product with fundamental class does not give the correct counting.

(Kontsevich-Manin, Beherend-Fantechi) Ad-hoc correction of the fundamental class of $\overline{\mathcal{M}}_{g.n}(X, d) \rightsquigarrow$ virtual fundamental class $[\overline{\mathcal{M}}_{g.n}(X, d)]^{vir}$

(Kontsevich-Manin) the modified intersection products

$$H_{g,n,d}: H^*(X)^{\otimes^n} o H^*(\overline{\mathcal{M}}_{g,n}) := Stb_*(ev^*(-) \cap [\overline{\mathcal{M}}_{g.n}(X,d)]^{vir})$$

Remark In general, the stack $\overline{\mathcal{M}}_{g.n}(X, d)$ is not smooth \rightsquigarrow cap product with fundamental class does not give the correct counting.

(Kontsevich-Manin, Beherend-Fantechi) Ad-hoc correction of the fundamental class of $\overline{\mathcal{M}}_{g.n}(X, d) \rightsquigarrow$ virtual fundamental class $[\overline{\mathcal{M}}_{g.n}(X, d)]^{vir}$

(Kontsevich-Manin) the modified intersection products

$$H_{g,n,d}: H^*(X)^{\otimes^n} o H^*(\overline{\mathbb{M}}_{g,n}) := Stb_*(ev^*(-) \cap [\overline{\mathbb{M}}_{g.n}(X,d)]^{vir})$$

are compatible with the gluings of curves

$$\overline{\mathcal{M}}_{g_1,n} \times \overline{\mathcal{M}}_{g_2,m} \to \overline{\mathcal{M}}_{g_1+g_2,n+m-2}$$

Remark In general, the stack $\overline{\mathcal{M}}_{g.n}(X, d)$ is not smooth \rightsquigarrow cap product with fundamental class does not give the correct counting.

(Kontsevich-Manin, Beherend-Fantechi) Ad-hoc correction of the fundamental class of $\overline{\mathcal{M}}_{g.n}(X, d) \rightsquigarrow$ virtual fundamental class $[\overline{\mathcal{M}}_{g.n}(X, d)]^{vir}$

(Kontsevich-Manin) the modified intersection products

$$I_{g,n,d}: H^*(X)^{\otimes^n} o H^*(\overline{\mathcal{M}}_{g,n}) := Stb_*(ev^*(-) \cap [\overline{\mathcal{M}}_{g.n}(X,d)]^{\operatorname{vir}})$$

are compatible with the gluings of curves

$$\overline{\mathcal{M}}_{g_1,n} \times \overline{\mathcal{M}}_{g_2,m} \to \overline{\mathcal{M}}_{g_1+g_2,n+m-2}$$

and does the correct counting

Introduction: GW invariants

(Kontsevich, Manin, Kapranov, Getzler) The gluing operations (gluing + stabilization)

$$\overline{\mathcal{M}}_{g_1,n} imes \overline{\mathcal{M}}_{g_2,m} o \overline{\mathcal{M}}_{g_1+g_2,n+m-2}$$

make $\overline{\mathcal{M}} := \{\overline{\mathcal{M}}_{g,n}\}_{g,n}$ a modular operad in algebraic stacks .

(Kontsevich, Manin, Kapranov, Getzler) The gluing operations (gluing + stabilization)

$$\overline{\mathfrak{M}}_{g_1,n} imes \overline{\mathfrak{M}}_{g_2,m} o \overline{\mathfrak{M}}_{g_1+g_2,n+m-2}$$

make $\overline{\mathcal{M}} := \{\overline{\mathcal{M}}_{g,n}\}_{g,n}$ a modular operad in algebraic stacks . $\rightsquigarrow \{H_*(\overline{\mathcal{M}}_{g,n})\}_{g,n}$ operad in vector spaces

(Kontsevich, Manin, Kapranov, Getzler) The gluing operations (gluing + stabilization)

$$\overline{\mathfrak{M}}_{g_1,n} imes \overline{\mathfrak{M}}_{g_2,m} o \overline{\mathfrak{M}}_{g_1+g_2,n+m-2}$$

make $\overline{\mathcal{M}} := \{\overline{\mathcal{M}}_{g,n}\}_{g,n}$ a modular operad in algebraic stacks . $\rightsquigarrow \{H_*(\overline{\mathcal{M}}_{g,n})\}_{g,n}$ operad in vector spaces

(Kontsevich-Manin) Properties manifested by the corrected intersection products $I_{g,n,d}: H^*(X)^{\otimes_n} \to H^*(\overline{\mathcal{M}}_{g,n}) \Leftrightarrow$

 $H^*(X)$ is a $H_*(\overline{\mathcal{M}})$ -algebra.

(Kontsevich, Manin, Kapranov, Getzler) The gluing operations (gluing + stabilization)

$$\overline{\mathfrak{M}}_{g_1,n} imes \overline{\mathfrak{M}}_{g_2,m} o \overline{\mathfrak{M}}_{g_1+g_2,n+m-2}$$

make $\overline{\mathcal{M}} := \{\overline{\mathcal{M}}_{g,n}\}_{g,n}$ a modular operad in algebraic stacks . $\rightsquigarrow \{H_*(\overline{\mathcal{M}}_{g,n})\}_{g,n}$ operad in vector spaces

(Kontsevich-Manin) Properties manifested by the corrected intersection products $I_{g,n,d}: H^*(X)^{\otimes_n} \to H^*(\overline{\mathcal{M}}_{g,n}) \Leftrightarrow$

 $H^*(X)$ is a $H_*(\overline{\mathcal{M}})$ -algebra.

(Givental-Lee) \exists K-theoretic intersection product \rightsquigarrow modify the structure sheaf \rightsquigarrow virtual structure sheaf \rightsquigarrow

$$K(X)^{\otimes_n} \to K(\overline{\mathfrak{M}}_{g,n})$$

Remark

 $H^*(\text{geo. object } X) \subseteq HP^*(\text{its derived category } D(X))$

Remark

 $H^*(\text{geo. object } X) \subseteq HP^*(\text{its derived category } D(X))$

 $\mathsf{K}(\mathsf{X}){:=}\;\mathsf{K}(\;\mathsf{D}(\mathsf{X}))$

Remark

 $H^*(\text{geo. object } X) \subseteq HP^*(\text{its derived category } D(X))$

K(X) := K(D(X))

Problem: Link GW \leftrightarrow Derived Categories

Remark

 $H^*(\text{geo. object } X) \subseteq HP^*(\text{its derived category } D(X))$

K(X) := K(D(X))

Problem: Link GW \leftrightarrow Derived Categories

• $D(X) \simeq D(Y) \Rightarrow GW(X) = GW(Y)$?

Remark

 $H^*(\text{geo. object } X) \subseteq HP^*(\text{its derived category } D(X))$

K(X) := K(D(X))

Problem: Link GW \leftrightarrow Derived Categories

- $D(X) \simeq D(Y) \Rightarrow GW(X) = GW(Y)$?
- D(X) = C ⊕ D semi-orthogonal decomposition ⇒ GW(X) decomposes? (Ex: Conjectures type Dubrovin)
Remark

 $H^*(\text{geo. object } X) \subseteq HP^*(\text{its derived category } D(X))$

K(X) := K(D(X))

Problem: Link GW \leftrightarrow Derived Categories

- $D(X) \simeq D(Y) \Rightarrow GW(X) = GW(Y)$?
- D(X) = C ⊕ D semi-orthogonal decomposition ⇒ GW(X) decomposes? (Ex: Conjectures type Dubrovin)

Hypothesis (Manin-Toën) -

Remark

 $H^*(\text{geo. object } X) \subseteq HP^*(\text{its derived category } D(X))$

K(X) := K(D(X))

Problem: Link GW \leftrightarrow Derived Categories

- $D(X) \simeq D(Y) \Rightarrow GW(X) = GW(Y)$?
- D(X) = C ⊕ D semi-orthogonal decomposition ⇒ GW(X) decomposes? (Ex: Conjectures type Dubrovin)

Hypothesis (Manin-Toën) - GW-invariants are already present at the level of derived categories before passing to K-theory and cohomology.

Idea

Introduction: GW invariants

Idea Lift the K-theoretic and cohomological operations $I_{g,n,d} \rightsquigarrow$ to functors

Idea Lift the K-theoretic and cohomological operations $I_{g,n,d} \rightsquigarrow$ to functors

$$I_{g,n,d}: D(X)^{\otimes_n} \to D(\overline{\mathcal{M}}_{g,n})$$
 $I_{g,n,d}:= Stb_*(ev^*(-) \otimes \underbrace{\operatorname{Virtual object}}_?)$

Idea Lift the K-theoretic and cohomological operations $I_{g,n,d} \rightsquigarrow$ to functors

$$I_{g,n,d}: D(X)^{\otimes_n} \to D(\overline{\mathcal{M}}_{g,n}) \qquad I_{g,n,d}:=Stb_*(ev^*(-)\otimes \underbrace{\mathsf{Virtual object}}_?)$$

(Kontsevich, Kapranov, Toën-Vezzosi, Lurie, etc)

Idea Lift the K-theoretic and cohomological operations $I_{g,n,d} \rightsquigarrow$ to functors

$$I_{g,n,d}: D(X)^{\otimes_n} \to D(\overline{\mathcal{M}}_{g,n})$$
 $I_{g,n,d}:= Stb_*(ev^*(-) \otimes \underbrace{\mathsf{Virtual object}}_?)$

(Kontsevich, Kapranov, Toën-Vezzosi, Lurie, etc)

Derived Algebraic Geometry⇒ Virtual Objects

Idea Lift the K-theoretic and cohomological operations $I_{g,n,d} \rightsquigarrow$ to functors

$$I_{g,n,d}: D(X)^{\otimes_n} \to D(\overline{\mathcal{M}}_{g,n}) \qquad I_{g,n,d}:= Stb_*(ev^*(-) \otimes \underbrace{\mathsf{Virtual object}}_?$$

(Kontsevich, Kapranov, Toën-Vezzosi, Lurie, etc)

Derived Algebraic Geometry⇒ Virtual Objects

• (Kapranov-Fontanine, Schurg-Toën-Vezzosi) \exists derived space $\mathbb{R}\overline{\mathcal{M}}_{g.n}(X,d)$ with truncation $t: \overline{\mathcal{M}}_{g.n}(X,d) \hookrightarrow \mathbb{R}\overline{\mathcal{M}}_{g.n}(X,d)$

Idea Lift the K-theoretic and cohomological operations $I_{g,n,d} \rightsquigarrow$ to functors

$$I_{g,n,d}: D(X)^{\otimes_n} \to D(\overline{\mathcal{M}}_{g,n})$$
 $I_{g,n,d}:= Stb_*(ev^*(-) \otimes \underbrace{\operatorname{Virtual object}}_?)$

(Kontsevich, Kapranov, Toën-Vezzosi, Lurie, etc)

Derived Algebraic Geometry⇒ Virtual Objects

• (Kapranov-Fontanine, Schurg-Toën-Vezzosi) \exists derived space $\mathbb{R}\overline{\mathcal{M}}_{g.n}(X,d)$ with truncation $t: \overline{\mathcal{M}}_{g.n}(X,d) \hookrightarrow \mathbb{R}\overline{\mathcal{M}}_{g.n}(X,d)$

• derived structure sheaf \mathbb{O} of $\mathbb{R}\overline{\mathcal{M}}_{g.n}(X, d) \rightsquigarrow$ virtual structure sheaf $(t_*)^{-1}(\mathbb{O}) = \Sigma(-1)^i \pi_i(\mathbb{O}) \in G(\overline{\mathcal{M}}_{g.n}(X, d)).$

Theorem (Mann, R.)

X proj. algebraic variety / \mathbb{C} . g=0. Then, D(X) admits categorical GW-intersection products

$$I_{0,n,d}: D(X)^{\otimes_n} \to D(\overline{\mathfrak{M}}_{0,n})$$

Introduction: GW invariants

Theorem (Mann, R.)

X proj. algebraic variety / \mathbb{C} . g=0. Then, D(X) admits categorical GW-intersection products

$$I_{0,n,d}: D(X)^{\otimes_n} \to D(\overline{\mathfrak{M}}_{0,n})$$

which endow D(X) with the structure of a $D(\overline{\mathcal{M}})$ -algebra, via

$$I_{0,n,d} := \mathbb{R}Stb_*(\mathbb{R}ev^*(-))$$

Virtual info $\subseteq \mathbb{R}ev^*(-)$

Corollary

Introduction: GW invariants

Corollary

Passing to K-theory we recover the formalism of Givental-Lee of K-theoretic GW-products

 $K(X)^{\otimes_n} \to K(\overline{\mathfrak{M}}_{0,n})$

In Progress

Introduction: GW invariants

 Comparison with the cohomological invariants of Kontsevich-Manin et Behrend-Fantechi (Key step: Comparison with the cohomological invariants of Kontsevich-Manin et Behrend-Fantechi (Key step: Grothendieck-Riemann-Roch for quasi-smooth derived stacks

- Comparison with the cohomological invariants of Kontsevich-Manin et Behrend-Fantechi (Key step: Grothendieck-Riemann-Roch for quasi-smooth derived stacks
- higher genus (brane actions for modular ∞ -operads)

Technical Problem: How to construct categorical GW-products (easy) and how to show coherence under gluings of curves (hard)?

Remark I: Correspondences and pullback-pushforwards.

C 1-category $\mapsto C^{corr}$ new 2-category

Technical Problem: How to construct categorical GW-products (easy) and how to show coherence under gluings of curves (hard)?

Remark I: Correspondences and pullback-pushforwards.

C 1-category $\mapsto C^{corr}$ new 2-category

• objets C^{corr} = objets of C

Technical Problem: How to construct categorical GW-products (easy) and how to show coherence under gluings of curves (hard)?

Remark I: Correspondences and pullback-pushforwards.

C 1-category \mapsto C^{corr} new 2-category

- objets C^{corr} = objets of C
- 1-morphisms in C^{corr} , $X \rightsquigarrow Y = diagrams$

with p and q morphisms in C

Technical Problem: How to construct categorical GW-products (easy) and how to show coherence under gluings of curves (hard)?

Remark I: Correspondences and pullback-pushforwards.

C 1-category \mapsto C^{corr} new 2-category

- objets C^{corr} = objets of C
- 1-morphisms in C^{corr} , $X \rightsquigarrow Y = diagrams$

with p and q morphisms in C

- compositions of 1-morphisms= fiber products in C.
- 2-morphisms= 1-morphisms of diagrams.

Universal Property: C 1-category,

Universal Property: C 1-category, S 2-category

Universal Property: C 1-category, S 2-category

 $F: C^{op} \rightarrow S$ functor

Universal Property: C 1-category, S 2-category

 $F: C^{op} \rightarrow S$ functor , verifying conditions

Universal Property: C 1-category, S 2-category

 $F: C^{op} \rightarrow S$ functor , verifying conditions

• For each 1-morphism $f : X \to Y$ in C, F(f) has an adjoint $F(f)_*$ in S.

Universal Property: C 1-category, S 2-category

 $F: C^{op} \rightarrow S$ functor , verifying conditions

- For each 1-morphism $f : X \to Y$ in C, F(f) has an adjoint $F(f)_*$ in S.
- for each cartesian square in C

the natural morphism $F(p) \circ F(q)_* \to F(g)_* \circ F(f)$ is an equivalence (base-change)

Universal Property: C 1-category, S 2-category

 $F: C^{op} \rightarrow S$ functor , verifying conditions

- For each 1-morphism $f : X \to Y$ in C, F(f) has an adjoint $F(f)_*$ in S.
- for each cartesian square in C

the natural morphism $F(p) \circ F(q)_* \to F(g)_* \circ F(f)$ is an equivalence (base-change)

Universal Property: C 1-category, S 2-category

 $F: C^{op} \rightarrow S$ functor , verifying conditions

- For each 1-morphism $f : X \to Y$ in C, F(f) has an adjoint $F(f)_*$ in S.
- for each cartesian square in C

the natural morphism $F(p) \circ F(q)_* \to F(g)_* \circ F(f)$ is an equivalence (base-change)

 $\exists \ ! \ 2-functor \ \overline{F} : C^{corr} \rightarrow S \ \text{given by pullback-pushforward along} \\ \text{the correspondence}$

Brane Actions and Correspondences

$$D: \mathit{C} = (\mathsf{Derived} \; \mathsf{Artin} \; \mathsf{Stacks})^{\mathsf{op}} o \mathit{S} = \mathit{dg} - \mathit{categories} \rightsquigarrow$$

$$D: C = (\text{Derived Artin Stacks})^{op} \rightarrow S = dg - categories \rightsquigarrow$$

 \overline{D} : (Derived Artin Stacks)^{corr} \rightarrow S = dg - categories

$$D: \mathit{C} = (\mathsf{Derived} \; \mathsf{Artin} \; \mathsf{Stacks})^{\mathit{op}} o \mathit{S} = \mathit{dg} - \mathit{categories} \rightsquigarrow$$

 \overline{D} : (Derived Artin Stacks)^{corr} $\rightarrow S = dg - categories$

Attention: Work with $(\infty, 2)$ -categories (Gaitsgory-Rozenblyum)

 $D: C = (\text{Derived Artin Stacks})^{op} \rightarrow S = dg - categories \rightsquigarrow$

 \overline{D} : (Derived Artin Stacks)^{corr} $\rightarrow S = dg - categories$

Attention: Work with $(\infty, 2)$ -categories (Gaitsgory-Rozenblyum)

Conclusion: We are reduced to show a theorem for correspondances in stacks

Theorem (Mann, R.)

Theorem (Mann, R.)

X proj. algebraic variety \mathbb{C} . g=0.
Theorem (Mann, R.)

X proj. algebraic variety / \mathbb{C} . g=0. The correspondances in derived stacks

seen as 1-morphisms in correspondences

$$I_{0,n,d}: X^{\otimes_n} \rightsquigarrow \overline{\mathcal{M}}_{0,n}$$

Theorem (Mann, R.)

X proj. algebraic variety / \mathbb{C} . g=0. The correspondances in derived stacks

seen as 1-morphisms in correspondences

$$I_{0,n,d}: X^{\otimes_n} \rightsquigarrow \overline{\mathfrak{M}}_{0,n}$$

endow X with the structure of a $\overline{\mathcal{M}}\text{-algebra}$ in the category of correspondences

Theorem (Mann, R.)

X proj. algebraic variety / \mathbb{C} . g=0. The correspondances in derived stacks

seen as 1-morphisms in correspondences

$$I_{0,n,d}: X^{\otimes_n} \rightsquigarrow \overline{\mathfrak{M}}_{0,n}$$

endow X with the structure of a \overline{M} -algebra in the category of correspondences (lax associative action)

Theorem (Mann, R.)

X proj. algebraic variety / \mathbb{C} . g=0. The correspondances in derived stacks

seen as 1-morphisms in correspondences

$$I_{0,n,d}: X^{\otimes_n} \rightsquigarrow \overline{\mathfrak{M}}_{0,n}$$

endow X with the structure of a \overline{M} -algebra in the category of correspondences (lax associative action)

Compose with \overline{D} : (derived Artin Stacks)^{corr} $\rightarrow S = dg - categories$ to get the categorical action.

Key idea

Key idea \rightsquigarrow Brane actions for ∞ -operads (discovered by Toën)

Key idea \rightsquigarrow Brane actions for ∞ -operads (discovered by Toën) Description of the phenomenom: *O* top. operad

Key idea \rightsquigarrow Brane actions for ∞ -operads (discovered by Toën) Description of the phenomenom: O top. operad $\rightsquigarrow O(2) = esp.$ of binary operations carries a structure of O-algebra in the category of cobordisms:

Key idea \rightsquigarrow Brane actions for ∞ -operads (discovered by Toën) Description of the phenomenom: O top. operad $\rightsquigarrow O(2) = esp.$ of binary operations carries a structure of O-algebra in the category of cobordisms:

Example: E_2 little disks operad

Key idea \rightsquigarrow Brane actions for ∞ -operads (discovered by Toën) Description of the phenomenom: O top. operad $\rightsquigarrow O(2) = esp.$ of binary operations carries a structure of O-algebra in the category of cobordisms:

Example: E_2 little disks operad $\rightsquigarrow E_2(2) = \text{esp. of binary opera-tions} \simeq S^1$ circle.

Key idea \rightsquigarrow Brane actions for ∞ -operads (discovered by Toën) Description of the phenomenom: O top. operad $\rightsquigarrow O(2) = esp.$ of binary operations carries a structure of O-algebra in the category of cobordisms:

Example: E_2 little disks operad $\rightsquigarrow E_2(2) = \text{esp. of binary opera-tions} \simeq S^1$ circle. The circle S^1 is an E_2 -algebra in cobordisms:

 $\sigma \in E_2(n) \mapsto \coprod_n S^1 \rightsquigarrow S^1$

Key idea \rightsquigarrow Brane actions for ∞ -operads (discovered by Toën) Description of the phenomenom: O top. operad $\rightsquigarrow O(2) = esp.$ of binary operations carries a structure of O-algebra in the category of cobordisms:

Example: E_2 little disks operad $\rightsquigarrow E_2(2) = \text{esp. of binary opera-tions} \simeq S^1$ circle. The circle S^1 is an E_2 -algebra in cobordisms:

$$\sigma \in E_2(n) \mapsto \coprod_n S^1 \rightsquigarrow S^1$$

Key idea \rightsquigarrow Brane actions for ∞ -operads (discovered by Toën) Description of the phenomenom: O top. operad $\rightsquigarrow O(2) = esp.$ of binary operations carries a structure of O-algebra in the category of cobordisms:

Example: E_2 little disks operad $\rightsquigarrow E_2(2) = \text{esp. of binary opera-tions} \simeq S^1$ circle. The circle S^1 is an E_2 -algebra in cobordisms:

$$\sigma \in E_2(n) \mapsto \coprod_n S^1 \rightsquigarrow S^1$$

Brane Actions generalize this situation for general operads verifying a coherence condition

Key idea \rightsquigarrow Brane actions for ∞ -operads (discovered by Toën) Description of the phenomenom: O top. operad $\rightsquigarrow O(2) = esp.$ of binary operations carries a structure of O-algebra in the category of cobordisms:

Example: E_2 little disks operad $\rightsquigarrow E_2(2) = \text{esp. of binary opera-tions} \simeq S^1$ circle. The circle S^1 is an E_2 -algebra in cobordisms:

$$\sigma \in E_2(n) \mapsto \coprod_n S^1 \rightsquigarrow S^1$$

Brane Actions generalize this situation for general operads verifying a coherence condition \rightsquigarrow cobordismes \subseteq co-correspondances

Definition (J.Lurie)

Brane Actions and Correspondences

Definition (J.Lurie)

Let O be a monochromatic ∞ -operad with $O(0) \simeq O(1) \simeq *$.

Definition (J.Lurie)

Let O be a monochromatic ∞ -operad with $O(0) \simeq O(1) \simeq *$. Let $\sigma \in O(n)$ be a n-ary operation.

Definition (J.Lurie)

Let *O* be a monochromatic ∞ -operad with $O(0) \simeq O(1) \simeq *$. Let $\sigma \in O(n)$ be a n-ary operation. The space of extensions of σ - $Ext(\sigma)$ - is the homotopy fiber product

 $\{\sigma\} \times_{O(n)} O(n+1)$

Definition (J.Lurie)

Let *O* be a monochromatic ∞ -operad with $O(0) \simeq O(1) \simeq *$. Let $\sigma \in O(n)$ be a n-ary operation. The space of extensions of σ -*Ext*(σ) - is the homotopy fiber product

$$\{\sigma\} \times_{O(n)} O(n+1)$$

where the map $O(n+1) \rightarrow O(n)$ forgets the last entry.

Definition (J.Lurie)

Let *O* be a monochromatic ∞ -operad with $O(0) \simeq O(1) \simeq *$. Let $\sigma \in O(n)$ be a n-ary operation. The space of extensions of σ - $Ext(\sigma)$ - is the homotopy fiber product

$$\{\sigma\} \times_{O(n)} O(n+1)$$

where the map $O(n+1) \rightarrow O(n)$ forgets the last entry. We say that O is coherent

Definition (J.Lurie)

Let *O* be a monochromatic ∞ -operad with $O(0) \simeq O(1) \simeq *$. Let $\sigma \in O(n)$ be a n-ary operation. The space of extensions of σ -*Ext*(σ) - is the homotopy fiber product

$$\{\sigma\} \times_{O(n)} O(n+1)$$

where the map $O(n + 1) \rightarrow O(n)$ forgets the last entry. We say that O is coherent if for each pair of composable operations σ , τ , the natural square

is homotopy-cocartesian.

Brane Actions and Correspondences

Let O be a coherent ∞ -operad in a ∞ -topos T.

Let O be a coherent ∞ -operad in a ∞ -topos T.Then, O(2)

Let O be a coherent ∞ -operad in a ∞ -topos T.Then, O(2) = Ext(Id),

Let O be a coherent ∞ -operad in a ∞ -topos T.Then, O(2) = Ext(Id),seen as an object in $T^{co-corr}$, carries an action of O with multiplication given by the co-correspondences

Let O be a coherent ∞ -operad in a ∞ -topos T.Then, O(2) = Ext(Id),seen as an object in $T^{co-corr}$, carries an action of O with multiplication given by the co-correspondences

$$\sigma \in O(n) \mapsto \coprod_n Ext(Id) \to Ext(\sigma) \leftarrow Ext(Id)$$

Let O be a coherent ∞ -operad in a ∞ -topos T.Then, O(2) = Ext(Id),seen as an object in $T^{co-corr}$, carries an action of O with multiplication given by the co-correspondences

$$\sigma \in O(n) \mapsto \coprod_n Ext(Id) \to Ext(\sigma) \leftarrow Ext(Id)$$

Remark: In general if the operad is not coherent we still get a lax action.

We apply this to:

We apply this to:

(Costello) $\mathfrak{M}_{0,n,\beta} :=$

We apply this to:

(Costello) $\mathfrak{M}_{0,n,\beta}$:= stack of pre-stable curves *C* of genus 0 with *n* marked points + the data of an index $\beta_i \in H_2(X, \mathbb{Z})$ attached to each irreducible component $C_i \subseteq C$, such that:

$$\sum_{i} \beta_{i} = \beta$$
; and if $\beta_{i} = 0$ then C_{i} is stable

We apply this to:

(Costello) $\mathfrak{M}_{0,n,\beta}$:= stack of pre-stable curves *C* of genus 0 with *n* marked points + the data of an index $\beta_i \in H_2(X, \mathbb{Z})$ attached to each irreducible component $C_i \subseteq C$, such that:

$$\sum_{i} \beta_{i} = \beta; \text{ and } \text{ if } \beta_{i} = 0 \text{ then } C_{i} \text{ is stable}$$

• $\mathfrak{M}_{0,n+1,\beta} \to \mathfrak{M}_{0,n,\beta}$ is the universal curve.

We apply this to:

(Costello) $\mathfrak{M}_{0,n,\beta}$:= stack of pre-stable curves *C* of genus 0 with *n* marked points + the data of an index $\beta_i \in H_2(X, \mathbb{Z})$ attached to each irreducible component $C_i \subseteq C$, such that:

$$\sum_{i} \beta_{i} = \beta; \text{ and } \text{ if } \beta_{i} = 0 \text{ then } C_{i} \text{ is stable}$$

• $\mathfrak{M}_{0,n+1,\beta} \to \mathfrak{M}_{0,n,\beta}$ is the universal curve.

The collection O(n) := 𝔐_{0,n+1,β} forms a graded operad in derived stacks with O(2)₀ = 𝔐_{0,3,0} = M
_{0,3} = ∗. Attention: Not coherent.

We apply this to:

(Costello) $\mathfrak{M}_{0,n,\beta}$:= stack of pre-stable curves *C* of genus 0 with *n* marked points + the data of an index $\beta_i \in H_2(X, \mathbb{Z})$ attached to each irreducible component $C_i \subseteq C$, such that:

$$\sum_{i} \beta_{i} = \beta; \text{ and } \text{ if } \beta_{i} = 0 \text{ then } C_{i} \text{ is stable}$$

• $\mathfrak{M}_{0,n+1,\beta} \to \mathfrak{M}_{0,n,\beta}$ is the universal curve.

The collection O(n) := 𝔅_{0,n+1,β} forms a graded operad in derived stacks with O(2)₀ = 𝔅_{0,3,0} = 𝒮_{0,3} = ∗. Attention: Not coherent.

(Graded) Brane actions \rightsquigarrow

We apply this to:

(Costello) $\mathfrak{M}_{0,n,\beta}$:= stack of pre-stable curves *C* of genus 0 with *n* marked points + the data of an index $\beta_i \in H_2(X, \mathbb{Z})$ attached to each irreducible component $C_i \subseteq C$, such that:

$$\sum_{i} \beta_{i} = \beta; \text{ and } \text{ if } \beta_{i} = 0 \text{ then } C_{i} \text{ is stable}$$

• $\mathfrak{M}_{0,n+1,\beta} \to \mathfrak{M}_{0,n,\beta}$ is the universal curve.

The collection O(n) := 𝔅_{0,n+1,β} forms a graded operad in derived stacks with O(2)₀ = 𝔅_{0,3,0} = 𝒮_{0,3} = ∗. Attention: Not coherent.

(Graded) Brane actions \rightsquigarrow

O acts on * via

 ${\it C}\in {\it O}(n)=\mathfrak{M}_{0,n+1,\beta}\mapsto {\scriptstyle \coprod}_{n \text{ first points }}*\rightarrow {\it C} \leftarrow * \text{ (last point)}$

X proj. algebraic variety
X proj. algebraic variety $\rightsquigarrow \mathfrak{M}_{0,n,\beta}$ acts on $\underline{Hom}(*, X) = X$ Globally, the operations are given by the maps

X proj. algebraic variety $\rightsquigarrow \mathfrak{M}_{0,n,\beta}$ acts on $\underline{Hom}(*, X) = X$ Globally, the operations are given by the maps

X proj. algebraic variety $\rightsquigarrow \mathfrak{M}_{0,n,\beta}$ acts on $\underline{Hom}(*, X) = X$ Globally, the operations are given by the maps

(open).

The action is compatibility with the stability conditions

X proj. algebraic variety $\rightsquigarrow \mathfrak{M}_{0,n,\beta}$ acts on $\underline{Hom}(*,X) = X$ Globally, the operations are given by the maps

The action is compatibility with the stability conditions i.e, \exists sub-action given by

Brane Actions and Correspondences

Same time:

Same time:

 \exists map of operads $\coprod_{\beta} \mathfrak{M}_{0,n,\beta} \to \overline{\mathfrak{M}}_{0,n}$

Same time:

 \exists map of operads $\coprod_{\beta} \mathfrak{M}_{0,n,\beta} \to \overline{\mathfrak{M}}_{0,n} = \mathsf{Stabilisation}$

Same time:

$$\exists$$
 map of operads $\coprod_{\beta} \mathfrak{M}_{0,n,\beta} \to \overline{\mathfrak{M}}_{0,n} = \mathsf{Stabilisation}$

Working in correspondences this map can also be seen as a map of operads in the inverse direction $\overline{\mathcal{M}}_{0,n} \rightsquigarrow \coprod_{\beta} \mathfrak{M}_{0,n,\beta}$ via

only lax associative!

Same time:

$$\exists$$
 map of operads $\coprod_{\beta} \mathfrak{M}_{0,n,\beta} \rightarrow \overline{\mathfrak{M}}_{0,n} = \mathsf{Stabilisation}$

Working in correspondences this map can also be seen as a map of operads in the inverse direction $\overline{\mathfrak{M}}_{0,n} \rightsquigarrow \coprod_{\beta} \mathfrak{M}_{0,n,\beta}$ via

only lax associative!

Corollary: Via composition with this map, $\overline{\mathcal{M}}_{0,n}$ acts on X via the correspondence of stable maps (only lax associative!).

Lax associativity:

Lax associativity: explained by the fact the gluing morphisms

 $\mathfrak{M}_{0,n,\beta} \times \mathfrak{M}_{0,m,\beta'} \to \mathfrak{M}_{0,n+m-2,\beta+\beta'} \times_{\overline{\mathfrak{M}}_{0,n+m-2}} (\overline{\mathfrak{M}}_{0,n} \times \overline{\mathfrak{M}}_{0,m}) (1)$

Lax associativity: explained by the fact the gluing morphisms

 $\mathfrak{M}_{0,n,\beta} \times \mathfrak{M}_{0,m,\beta'} \to \mathfrak{M}_{0,n+m-2,\beta+\beta'} \times_{\overline{\mathfrak{M}}_{0,n+m-2}} (\overline{\mathfrak{M}}_{0,n} \times \overline{\mathfrak{M}}_{0,m}) (1)$ are not equivalences

Lax associativity: explained by the fact the gluing morphisms

$$\mathfrak{M}_{0,n,\beta} \times \mathfrak{M}_{0,m,\beta'} \to \mathfrak{M}_{0,n+m-2,\beta+\beta'} \times_{\overline{\mathfrak{M}}_{0,n+m-2}} (\overline{\mathfrak{M}}_{0,n} \times \overline{\mathfrak{M}}_{0,m})$$
(1)
are not equivalences

In fact:

Brane Actions and Correspondences

Lax associativity: explained by the fact the gluing morphisms

$$\mathfrak{M}_{0,n,\beta} \times \mathfrak{M}_{0,m,\beta'} \to \mathfrak{M}_{0,n+m-2,\beta+\beta'} \times_{\overline{\mathfrak{M}}_{0,n+m-2}} (\overline{\mathfrak{M}}_{0,n} \times \overline{\mathfrak{M}}_{0,m})$$
(1)
are not equivalences

In fact: L.H.S is the first level of an derived h-hypercover (Halpern-Leistner- Preygel) of the R.H.S., where level k is given by

Lax associativity: explained by the fact the gluing morphisms

$$\mathfrak{M}_{0,n,\beta} \times \mathfrak{M}_{0,m,\beta'} \to \mathfrak{M}_{0,n+m-2,\beta+\beta'} \times_{\overline{\mathfrak{M}}_{0,n+m-2}} (\overline{\mathfrak{M}}_{0,n} \times \overline{\mathfrak{M}}_{0,m})$$
(1)
are not equivalences

In fact: L.H.S is the first level of an derived h-hypercover (Halpern-Leistner- Preygel) of the R.H.S., where level k is given by

$$\mathbb{R}\overline{\mathbb{M}}_{0,n}(X,\beta_0) \times_X \underbrace{\mathbb{R}\overline{\mathbb{M}}_{0,2}(X,\beta_1) \times_X \dots \times_X \mathbb{R}\overline{\mathbb{M}}_{0,2}(X,\beta_i)}_k \times_X \mathbb{R}\overline{\mathbb{M}}_{0,m}(X,\beta_{i+1})$$

which covers curves obtained as gluings of k trees of \mathbb{P}^1 in the middle.

Lax associativity: explained by the fact the gluing morphisms

$$\mathfrak{M}_{0,n,\beta} \times \mathfrak{M}_{0,m,\beta'} \to \mathfrak{M}_{0,n+m-2,\beta+\beta'} \times_{\overline{\mathfrak{M}}_{0,n+m-2}} (\overline{\mathfrak{M}}_{0,n} \times \overline{\mathfrak{M}}_{0,m})$$
(1)
are not equivalences

In fact: L.H.S is the first level of an derived h-hypercover (Halpern-Leistner- Preygel) of the R.H.S., where level k is given by

$$\mathbb{R}\overline{\mathbb{M}}_{0,n}(X,\beta_0) \times_X \underbrace{\mathbb{R}\overline{\mathbb{M}}_{0,2}(X,\beta_1) \times_X \dots \times_X \mathbb{R}\overline{\mathbb{M}}_{0,2}(X,\beta_i)}_k \times_X \mathbb{R}\overline{\mathbb{M}}_{0,m}(X,\beta_{i+1})}_k$$

which covers curves obtained as gluings of k trees of \mathbb{P}^1 in the middle.

→ Givental-Lee Metric in Quantum K-theory

Brane Actions and Correspondences

Thank you for your attention.