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Results in this talk: collaboration with E. Mann (Université d’
Angers).

Motivated by original ideas and suggestions of Manin and Toén

Recall: GW theory
X smooth proj. algebraic variety /C. I1,...,I'n € X subvarieties

~
GW-Numbers I4(X,l1,...,n):= Number of rational curves of a
given genus g and degree d in X, which are incident to each I',...,
I

(geometric definition)

(Kontsevich, Manin, Behrend, Fantechi, etc) - cohomological def-
inition ~~ Iy(X,I1,...,[,) = obtained as intersection numbers for
a good intersection product on the cohomology of a "nice” (ie.
smooth and proper) moduli space of rational curves
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n marked points. f : (C,xy,...,x,) — X is stable = for each
irreducible component C; C C, if £([Cj]) =0 in H(X,Z) then G
contains at least 3 special (g = 0) (resp. 1 if g > 0) points (nodes
or marked points).

Mg.n(X, d):= moduli space of stable maps f : (C,x1,...,x5) = X
with £ ([C]) = d in H2(X,Z) (moduli of parametrizations).
Remark: ﬁg_n(X, d) is a compactification of the moduli of ratio-
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Nice Moduli of Rational Curves ~~ Moduli of stable maps

Definition: (C, x1, ..., x,) nodal algebraic curve of genus g with

n marked points.f : (C,xi,...,xn) — X is stable = for each
irreducible component C; C C, if £([Cj]) =0 in H(X,Z) then G
contains at least 3 special (g = 0) (resp. 1 if g > 0) points (nodes
or marked points).

Mg.n(X, d):= moduli space of stable maps f : (C,x1,...,x5) = X
with £.([C]) = d in H2(X,Z) (moduli of parametrizations).

Remark: ﬁg_n(X, d) is a compactification of the moduli of ratio-
nal curves on X.

Mg.n(X, d)

” N

ﬁg,n:: moduli of stable curves of genus g with n marked points. X"
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Compatibility with Gluings

(Kontsevich, Manin, Kapranov, Getzler) The gluing operations
(gluing + stabilization)

Mgl," X Mgz,m - Mg1+g2,n+m*2

make M := {Myg »}z.n @ modular operad in algebraic stacks .~~

{H.(Mg,n)}g,n operad in vector spaces

(Kontsevich-Manin) Properties manifested by the corrected inter-
section products Iy p 4 : H*(X)®" — H*(Mg,n) <

H*(X) is a H,(MM)-algebra.
(Givental-Lee) 3 K-theoretic intersection product ~» modify the
structure sheaf ~ virtual structure sheaf ~~

K(X)®" = K(Mg,n)
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Remark

H*(geo. object X) C HP*(its derived category D(X))
K(X):= K( D(X))

Problem: Link GW < Derived Categories

e D(X)~D(Y)= GW(X)= GW(Y)?
e D(X) = C & D semi-orthogonal decomposition = GW(X)
decomposes? (Ex: Conjectures type Dubrovin)

Hypothesis (Manin-Toén) - GW-invariants are already present
at the level of derived categories before passing to K-theory and
cohomology.
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% evxlwx
X

Idea Lift the K-theoretic and cohomological operations I , 4 ~~ to

functors

lg.nd: D(X)® — D(Mg,,) lg.n.d == Stb.(ev*(—) @ Virtual object)
—_——

?

Mg.n

(Kontsevich, Kapranov, Toén-Vezzosi, Lurie, etc)

’ Derived Algebraic Geometry=- Virtual Objects ‘

e (Kapranov-Fontanine, Schurg-Toén-Vezzosi) 3 derived space RMj.»(X, d)
with truncation t : Mg (X, d) — RM,. (X, d)

e derived structure sheaf O of Rﬁﬁg.n(X, d) ~ virtual structure sheaf
(£)7H(0) = X(-1)'m(0) € G(Mg.n(X, d)).
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Rﬁg.n(x7 d)

Stb ev XX

Mg, n Xn

Theorem (Mann, R.)

X proj. algebraic variety /C. g=0. Then, D(X) admits categorical
GWe-intersection products

IO,n,d : D(X)®” — D(Mom)
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Rﬁg.n(x7 d)

Stb ev XX

Mg, n Xn

Theorem (Mann, R.)

X proj. algebraic variety /C. g=0. Then, D(X) admits categorical
GWe-intersection products

IO,n,d : D(X)®” — D(Mom)

which endow D(X) with the structure of a D(M)-algebra, via

lo.ng = RStb,(Rev*(—))

Virtual info C Rev*(—)
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GWe-invariants and Derived Categories

Passing to K-theory we recover the formalism of Givental-Lee of
K-theoretic GW-products

K(X)®" — K(Mo,n)
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In Progress

@ Comparison with the cohomological invariants of
Kontsevich-Manin et Behrend-Fantechi (Key step:
Grothendieck-Riemann-Roch for quasi-smooth derived stacks

@ higher genus (brane actions for modular co-operads)
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Technical Problem: How to construct categorical GW-products
(easy) and how to show coherence under gluings of curves (hard)?

Remark |: Correspondences and pullback-pushforwards.

C 1-category +— C" new 2-category

@ objets C°" = objets of C
@ l-morphisms in C°", X ~» Y = diagrams

Z
N
X Y
with p and g morphisms in C

@ compositions of 1-morphisms= fiber products in C.
@ 2-morphisms= 1-morphisms of diagrams.
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Universal Property: C 1-category, S 2-category
F : C°° — S functor , verifying conditions
@ For each 1-morphism f : X — Y in C, F(f) has an adjoint
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X—2.vy
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equivalence (base-change)
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Universal Property: C 1-category, S 2-category

F : C°° — S functor , verifying conditions

@ For each 1-morphism f : X — Y in C, F(f) has an adjoint
F(f)sin S.
o for each cartesian square in C

X—2.vy

g

z-w
the natural morphism F(p) o F(q)« — F(g)« o F(f) is an
equivalence (base-change)

3 I 2-functor F : C®" — S given by pullback-pushforward along
the correspondence

Brane Actions and Correspondences

p
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Attention: Work with (0o, 2)-categories (Gaitsgory-Rozenblyum)

Brane Actions and Correspondences
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Example:

D : C = (Derived Artin Stacks)® — S = dg — categories ~~

D : (Derived Artin Stacks)“" — S = dg — categories

Attention: Work with (0o, 2)-categories (Gaitsgory-Rozenblyum)

Conclusion: We are reduced to show a theorem for correspon-
dances in stacks
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X proj. algebraic variety /C. g=0.
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Theorem (Mann, R.)

X proj. algebraic variety /C. g=0.The correspondances in derived
stacks

RM,.(X, d)
% wx&A
Mg, X"

seen as 1-morphisms in correspondences

lo,n,g : X®" ~» Mo p
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X proj. algebraic variety /C. g=0.The correspondances in derived
stacks

Rﬁg,,,(x,d)
M Xxn
seen as 1-morphisms in correspondences
/0,,,7(/ P X®n s Mom

endow X with the structure of a M-algebra in the category of
correspondences
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stacks

Rﬁg,,,(x,d)
M Xxn
seen as 1-morphisms in correspondences
/0,,,7(/ P X®n s Mom

endow X with the structure of a M-algebra in the category of
correspondences ( lax associative action)
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Theorem (Mann, R.)

X proj. algebraic variety /C. g=0.The correspondances in derived
stacks

RN n(X, d)
M Xxn
seen as 1-morphisms in correspondences
/0,,,7(/ P X®n s Mom

endow X with the structure of a M-algebra in the category of
correspondences ( lax associative action)

Compose with D : (derived Artin Stacks)“" — S = dg — categories
to get the categorical action.
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Key idea ~~ Brane actions for co-operads (discovered by Toén)
Description of the phenomenom: O top. operad ~» O(2) = esp.
of binary operations carries a structure of O-algebra in the cate-
gory of cobordisms:

Example: E; little disks operad ~» E(2) = esp. of binary opera-
tions ~ S circle. The circle S! is an Ey-algebra in cobordisms:

o€ Ex(n)—1],S*~ St

Brane Actions generalize this situation for general operads verify-
ing a coherence condition ~» cobordismes C co-correspondances
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o € O(n) be a n-ary operation.
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Definition (J.Lurie)

Let O be a monochromatic oco-operad with O(0) ~ O(1) ~ *. Let
o € O(n) be a n-ary operation. The space of extensions of o -
Ext(o) - is the homotopy fiber product

{U} X 0(n) O(n T 1)
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Definition (J.Lurie)

Let O be a monochromatic oco-operad with O(0) ~ O(1) ~ *. Let
o € O(n) be a n-ary operation. The space of extensions of o -
Ext(o) - is the homotopy fiber product

{U} X 0(n) O(n T 1)
where the map O(n+ 1) — O(n) forgets the last entry.
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Definition (J.Lurie)

Let O be a monochromatic oco-operad with O(0) ~ O(1) ~ *. Let
o € O(n) be a n-ary operation. The space of extensions of o -
Ext(o) - is the homotopy fiber product

{U} X 0(n) O(n T 1)

where the map O(n+ 1) — O(n) forgets the last entry. We say
that O is coherent if for each pair of composable operations o, T,
the natural square

Ext(ld) —— Ext(o)

l l

Ext(t) —— Ext(o o T)

is homotopy-cocartesian.
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Theorem (Toen)

Let O be a coherent co-operad in a co-topos T.Then, O(2)
= Ext(Id),seen as an object in T<°~°", carries an action of O
with multiplication given by the co-correspondences

o € O(n) — [] Ext(Id) — Ext(c) + Ext(Id)
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Theorem (Toen)

Let O be a coherent co-operad in a co-topos T.Then, O(2)
= Ext(Id),seen as an object in T<°~°", carries an action of O
with multiplication given by the co-correspondences

o € O(n) — [] Ext(Id) — Ext(c) + Ext(Id)

Remark: In general if the operad is not coherent we still get a lax
action.
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We apply this to:

(Costello) My ,, 3:= stack of pre-stable curves C of genus 0 with n
marked points + the data of an index 3; € Hp(X,Z) attached to
each irreducible component C; C C, such that:

Zﬁ,- = (3; and if B; = 0 then C; is stable
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We apply this to:
(Costello) My ,, 3:= stack of pre-stable curves C of genus 0 with n

marked points + the data of an index 3; € Hp(X,Z) attached to
each irreducible component C; C C, such that:

Zﬁ,- = (3; and if B; = 0 then C; is stable

® Mo ny1,8 — Mo s is the universal curve.

@ The collection O(n) := Mg 41,3 forms a graded operad in

derived stacks with 0(2)0 = E)ﬁo’lo = ﬂog, = %. Attention:
Not coherent.
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We apply this to:
(Costello) My ,, 3:= stack of pre-stable curves C of genus 0 with n

marked points + the data of an index 3; € Hp(X,Z) attached to
each irreducible component C; C C, such that:

Zﬁ,- = (3; and if B; = 0 then C; is stable

® Mo ny1,8 — Mo s is the universal curve.

@ The collection O(n) := Mg p+1,5 forms a graded operad in
derived stacks with 0(2)0 = E)ﬁo’lo = M073 = %. Attention:
Not coherent.

(Graded) Brane actions ~~
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We apply this to:
(Costello) My ,, 3:= stack of pre-stable curves C of genus 0 with n

marked points + the data of an index 3; € Hp(X,Z) attached to
each irreducible component C; C C, such that:

Zﬁ,- = (3; and if B; = 0 then C; is stable

® Mo ny1,8 — Mo s is the universal curve.
@ The collection O(n) := Mg 41,3 forms a graded operad in
derived stacks with 0(2)0 = E)ﬁo’lo = M073 = %. Attention:
Not coherent.
(Graded) Brane actions ~~

O acts on * via

C € O(n) = Mo ny1,8 = L first points * — C < * (last point)
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X proj. algebraic variety
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X proj. algebraic variety ~» 9t p g acts on Hom(x, X) = X
Globally, the operations are given by the maps

RHom oy, . - (Mo,n+1,8, X X Mo,n )

/ \

X1 x Mo.n s X

Remark: RMg (X, ) C RHom oy, . . (Mo,n+1,8, X x Mo n8)
(open).
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X proj. algebraic variety ~» 9t p g acts on Hom(x, X) = X
Globally, the operations are given by the maps

RHom oy, . - (Mo,n+1,8, X X Mo,n )

/ \

X1 x Mo.n s X

Remark: RMo.q(X, 8) C RHomyon,  (Mo,ni1,8, X X Mo n5)
(open).
The action is compatibility with the stability conditions
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X proj. algebraic variety ~» 9t p g acts on Hom(x, X) = X
Globally, the operations are given by the maps

RHom oy, . - (Mo,n+1,8, X X Mo,n )

/ \

X1 x Mo.n s X

Remark: RMg (X, ) C RHom oy, . . (Mo,n+1,8, X x Mo n8)
(open).

The action is compatibility with the stability conditions i.e, 3
sub-action given by

Me.n(X, B)

X1 X Mo n g X
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Same time:
3 map of operads [[; 9o ns — Mo,, = Stabilisation

Working in correspondences this map can also be seen as a map of
operads in the inverse direction Mg , ~ ]_[5 Mo, np via

L Mo,np

Mo,n L5 Mo,n,s

only lax associative!
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Same time:
3 map of operads [[; 9o ns — Mo,, = Stabilisation

Working in correspondences this map can also be seen as a map of
operads in the inverse direction Mg , ~ ]_[5 Mo, np via

L Mo,np

Mo,n L5 Mo,n,s

only lax associative!

Corollary: Via composition with this map, Mg, acts on X via the
correspondence of stable maps (only lax associative!).
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Lax associativity:
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Lax associativity: explained by the fact the gluing morphisms

Mo.n,p X Mo,mp — Mo.ntm—2,6+5 X3t (Mo,n x Mo,m) (1)

MO,n+m—2
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Mo.n,p X Mo,mp — Mo.ntm—2,6+5 X3t (Mo,n x Mo,m) (1)
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are not equivalences

In fact: L.H.S is the first level of an derived h-hypercover (Halpern-
Leistner- Preygel) of the R.H.S., where level k is given by

Brane Actions and Correspondences



Brane Actions and Correspondences

Lax associativity: explained by the fact the gluing morphisms

Mo.n,p X Mo,mp — Mo.ntm—2,6+5 X3t (Mo,n x Mo,m) (1)

MO,n+m—2

are not equivalences

In fact: L.H.S is the first level of an derived h-hypercover (Halpern-
Leistner- Preygel) of the R.H.S., where level k is given by

RMo,n(X, Bo) xx RMo2(X, 1) X x .... xx RMo2(X, Bi) X xRMo,m(X, Biy1)
k

which covers curves obtained as gluings of k trees of P! in the
middle.
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Lax associativity: explained by the fact the gluing morphisms

Mo.n,p X Mo,mp — Mo.ntm—2,6+5 X3t (Mo,n x Mo,m) (1)

MO,n+m—2

are not equivalences

In fact: L.H.S is the first level of an derived h-hypercover (Halpern-
Leistner- Preygel) of the R.H.S., where level k is given by

RMo,n(X, Bo) xx RMo2(X, 1) X x .... xx RMo2(X, Bi) X xRMo,m(X, Biy1)
k

which covers curves obtained as gluings of k trees of P! in the
middle.
~» Givental-Lee Metric in Quantum K-theory
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Thank you for your attention.
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