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Platonic Form
Ideally, an ∞-category is a mathematical object that assembles:

objects,
1-morphisms between objects,
for every n ≥ 2, a notion of n-morphisms between
n − 1-morphisms;
for every n ≥ 1, (weak) composition laws of n-morphisms only
well-defined up to the data of higher morphisms.
Associativity of compositions up to homotopy:

Proto-Example (Fundamental ∞-groupoid) X a CW-complex.
Objects = points,
1-morphisms=paths,
2-morphisms=homotopy of paths ( 2-cells);
3-morphisms= homotopies between homotopies of paths
(3-cells)
...



Models:
Problem: No direct definition of higher categories simultaneously
operational and close to this platonic form (infinite axioms!).

First Breakthrough : Avoid the problem by modeling the pla-
tonic form of ∞-categories using ”exaggerated” templates/models
that contain more structure than what the platonic form requires.

Formally: Find a model category whose objects serve as models
for ∞-categories (Quasi-categories, Segal Categories, Simplicial
Categories, etc).

Modeling is a common practice:
Homotopy Theory of Spaces (Homotopy Types)  Modeled
by topological spaces, simplicial sets, categories, etc
Homotopy Theory of homotopy-commutative algebras over Q:
 Modeled by simplicial algebras, diff. graded algebras.
Derived and Higher Stacks (Modeled by simplicial
presheaves);



Models: why important?

Question: What is the fundamental role of models and why are
there are so many for the same theory?

Second Breakthrough: Every model category has an associated
∞-category which captures all the important information of the
model structure (Dwyer-Kan Localization)

Models play a double role: (operational) Need ambient model to
shape ∞-categories; (fundamental) Every other model incarnates
as an object of this ambient model.

Consequence: Plenty of examples of wannabe ∞-categories:
∃ ∞-category of spaces S: Model structure on topological
spaces/simplicial sets;
∞-category of derived affine schemes and derived stacks;
∞-category of chain complexes up to quasi-iso..



Models: drawbacks

Question: If we already have the explicit models, why do we care
about their associated ∞-categories?

Answer:
Not all ∞-categories have a practical model presentation
(Typical Examples: ∞-categories of algebra-objects in a
⊗−∞-category: ring spectra);
There is no sufficiently refined notion of functor to relate
different models. The relevant notion is that of ∞-functor
between the ∞-categories associated to the models.
Models for diagrams are not in general given by diagrams of
models.



Modeling with Simplicial Sets: Notations
Category ∆: objects = finite ordered sets [n] = {0 < 1 < ... < n};
morphisms = order-preserving maps; SSets := Fun(∆op, Sets).

... S3

∂0
//

∂1 //

∂2 //

∂3 //

S2

ε2oo

ε1oo

ε0oo
∂0
//

∂1 //

∂2 //

S1

ε1oo

ε0oo ∂0
//

∂1 //

S0
ε0oo

∆[n]:= Yoneda ([n]); Sn = Hom(∆[n], S); ∆[2] :=
2

0 1

∂1

∂2

∂0

Λj
n :=∆[n] - the jth face and the interior ; Λ1

2 =
2

0 1
∂2

∂0

S simplicial set  |S| its topological realization; Equivalences of
simplicial sets := weak-homotopy equivalences (π•(| − |)-eq.)



Modeling with Simplicial Sets

Modeling usual categories: C usual category  simplicial set
N(C) (Nerve) with

{n-simplexes} := {strings X0
f0 // X1

f1 // ....
fn−1 // Xn }

Boundary maps ∂i encode composition law. Degeneracy maps εi
encode identity maps.

{Functors C→ D} ' {Simplicial Maps N(C)→ N(D)}
X ' N(C) ↔ ∀n ≥ 2, ∀0<i<n, ∀ u : Λi

n → X

Λi
n

u //
� _

��

X

∆[n]
∃! factorization

>>



Modeling with Simplicial Sets

Generating compositions: Take diagram shapes

Λ1
2 =

2

0 1
∂2

∂0 ⊆ ∆[2] :=
2

0 1

∂1

∂2

∂0

Λ1
2 → N(C)↔ string of morphisms X f // Y g // Z in C

Λ1
2

//
� _

��

N(C)

∆[2]
∃! extension

<<
↔

Z

X Y

∃! g◦f :=∂1

f

g

∃! extension ↔ ∃! compositions ↔ shaded faces



Modeling with Simplicial Sets

Processing Associativity:

X f // Y g // Z h //W in C↔ Λ1
2

(g ,f )// N(C) + Λ1
2

(h,g)// N(C)

Generate Compositions: ∆[2]
(g ,f ) // N(C) + ∆[2]

(h,g) // N(C)
Glue

W

X Z

Y
f

g◦f

h

h◦g

g

 

W Λ1
3 NC

X Z

Y

(h◦g)◦f

f

g◦f

h

h◦g

g

(h ◦ g) ◦ f = h ◦ (g ◦ f ) ↔ Filling back face ↔ Extend along Λ1
3 ⊆ ∆[3]



Modeling with Simplicial Sets

Groupoids:X ' N(C groupoid )↔ ∀n ≥ 2, ∀0≤i≤n, ∀ u : Λi
n → X

Λi
n

u //
� _

��

X

∆[n]
∃! factorization

>>

Λ0
2 =

2

0 1
∂2

∂1 ⊆ ∆[2] :=
2

0 1

∂1

∂2

∂0

Λ0
2 → N(C)

X

X Yf

IdX  ∃ Ext.
X

X Y

IdX

f

f −1

Summary: Allowing lifting property for extremes i = 0, n gives
inverses. For terms in the middle 0<i<n gives compositions.



Modeling with Simplicial Sets

Modeling spaces: T topological space  simplicial set Sing(T )
with n-simplexes given by continuous maps from the topological
n-simplex ∆n to T

X ' Sing(T ) → ∀n ≥ 2, ∀0≤ i≤ n, ∀ u : Λi
n → X ∃ factorization

not necessarily unique:

Λi
n //
� _

��

X

∆[n]

>>

Slogan: Kan-complexes are those simplicial sets where the direc-
tion of the arrows is irrelevant.



Modeling with Simplicial Sets

Modeling ∞-categories: A Quasi-category is a simplicial set
which shares simultaneously features of categories and spaces:

Definition
A Quasi-category is a simplicial set C with the following property:
∀n ≥ 2, ∀ 0<i<n, ∀ u : Λi

n → C

Λi
n //
� _

��

C

∆[n]
∃ factorization (not nec. unique!)

>>

Examples:
C category =⇒ N(C) quasi-category with uniquely-defined
compositions;
X Kan complex =⇒ X quasi-category;



Playing with Quasi-categories: Unveiling the definition

C quasi-category. How far can we go?

Generating ”Compositions”:

Λ1
2 =

2

0 1
∂2

∂0 ⊆ ∆[2] :=
2

0 1

∂1

∂2

∂0

Λ1
2 → C↔ string of 1-simplexes X f // Y g // Z in C

Λ1
2

//
� _

��

C

∆[2]
∃ extension

>> ↔
Z

X Y

∂1

f

g

Each 2-simplex in C ”makes a form of commutativity”. There can
be many!



Playing with Quasi-categories: Unveiling the definition
Control of non-uniqueness of ”compositions”:

u1 : ∆[2]→ C

Z

X Y

∂1

f

g u2 : ∆[2]→ C

Z

X Y

∂1

f

g

Z Λ1
3 C

Y Z

X

g

g

IdZ

∂1

∂1f

 

Z ∆[3] C

Y Z

X

∃

g

g

IdZ

∂1

∂1f

2-simplex ↔ homotopy of compositions ∂1 ∼ ∂1. Lifting Mechanism
provides compatibility between compositions.

More Generally: compatibility of n different compositions  n-simplexes.



Playing with Quasi-categories: Unveiling the definition

Processing ”Associativity”:

X f // Y g // Z h //W in C↔ Λ1
2

(g ,f ) // C + Λ1
2

(h,g) // C

Exhibit compositions: ∆[2]
(g ,f ) // C + ∆[2]

(h,g) // C

W

X Z

Y
f

u

h

v

g

 

W Λ2
3 C

X Z

Y

δ

f

u

h

v

g

δ ∼ ”h ◦ u”↔ Filling back face ↔ Extend along Λ1
3 ⊆ ∆[3]



Quasi-categories as ∞-categories: ∞-functors

Definition: An ∞-category is a Quasi-category. Objects=
0-simplexes. Morphisms = 1-simplexes.

Definition: An ∞-functor is a map of simplicial sets between
quasi-categories.

Explanation: Functors ↔ functions that preserve commutative
diagrams ↔ send n-simplexes to n-simplexes and preserve bound-
aries.

Prop.(∞-category of functors) C ∞-category, K simplicial set
(diagram shape):

Fun(K ,C) := Hom∆(K ,C) (internal-hom)

is a ∞-category.

Prop.(Products) C,D ∞-categories =⇒ C×D ∞-category.



Quasi-categories as ∞-categories: Homotopy Category
C ∞-category  truncation (forgets higher cells) produces usual
category hC (homotopy category):

Objects of hC: 0-simplexes of C;
Morphisms of hC:= homotopy classes of 1-morphisms:f , g are
equivalent iff there exists a 2-morphism u : ∆[2]→ C

Z

X Y

g

f

IdY rendering f homotopic to g

Compositions: Well-defined using the lifting property.
Definition: Subcategory of a quasi-category C is a sub-simplicial
set C′ obtained as a fiber product in simplicial sets

C′ //

��

C

��
N(D) // N(hC)) with D a subcategory of hC.



Quasi-categories as ∞-categories: Equivalences

Definition: A 1-morphisms f of C is said to be an equivalence if
its homotopy class [f ] in hC is an isomorphism, ie,∃

Z

X Y

IdX

f

∃ rendering f invertible up to a 2-cell

Definition: An ∞-category is an ∞-groupoid if all its 1-morphisms
are invertible.

Prop: An C ∞-category is an ∞-groupoid if and only if it is a
Kan-complex.

Example: T topological Space  (Proto-Example) Fundamental
∞-groupoid of T := Sing(T ).



Quasi-categories as ∞-categories: Mapping Spaces
C ∞-category. X ,Y objects  ∃ ”space” of morphisms X → Y ,

Definition: The mapping space between X and Y is the simplicial
set MapC(X ,Y ) defined as the fiber product

∆[0]
X

!!

Fun(∆[1],C)
ev0

yy
ev1

%%

∆[0]

Y
}}

C C

Proposition: Let C be an ∞-category. Then MapC(X ,Y ) is a
Kan-complex. (↔”for n ≥ 2, n-morphisms are invertible”).

0-simpl.:= f : ∆[1]→ C with ∂1(f ) = X , ∂0(f ) = Y .

1-simpl.:= ∆[1]×∆[1]→ C

X Y

X Y

f

f

, n:= ∆[n]×∆[1]→ C

Remark: HomhC(X ,Y ) = π0(MapC(X ,Y ))



Quasi-categories as ∞-categories: Mapping Spaces &
Compositions

Warning:There is no strict manifestation of the ”composition law”
in C, MapC(X ,Y )×MapC(Y ,Z )−×− > MapC(X ,Z )

Rectification (Lurie) ∃ alternative simplicial sets M̃apS(X ,Y ),
together with a canonical zig-zags of weak-equivalences of SSets

M̃apC(X ,Y ) ∼ // • MapC(X ,Y )∼oo

such that the ”composition law” of C is translated by concrete
strict maps

M̃apC(X ,Y )× M̃apC(Y ,Z )→ M̃apC(X ,Z )

Good C is converted into a concrete simplicial category (nota-
tion: C[C]) with strictly associative compositions;

Bad M̃apC(X ,Y ) are not really ”spaces” , ie, not Kan-complexes.
Very complicated.



Quasi-categories as ∞-categories: Simplicial Categories
Rectification C Simplicial category C[C]

Question: Simplicial Categories —-? → Quasi-categories?

Construction. There exists a non-trivial extension of the nerve
construction N from usual categories to simplicial enriched cat-
egories that takes into account the simplicial structure. N∆(−)
(Simplicial Nerve).

Application:. Model a simplicial cat. E by a simplicial set N∆(E)

Prop. E enriched by Kan-complexes =⇒ N∆(E) is a quasi-
category with

Objects of N∆(E)= Objects of E
Weak-equivalences of simplicial sets

MapC(X ,Y )→ E(X ,Y ) (enrichement)
Question: How rich is this dictionary Simplicial categories ↔
Quasi-categories?



Quasi-categories as ∞-categories: Equivalence of Models
C

,,

Theorem (Joyal-Lurie)
There exists a model structure
on the category SSets with

cofibrant-fibrant objects =
Quasi-categories
weak-equivalences =
essentially surjective +
weak-equivalences of
mapping spaces

Theorem (Bergner)
There exists a model structure
on the category of simpl. cats.

fibrant objects = simp.
cats. enriched in
Kan-complexes
weak-equivalences =
essentially surjective +
weak-equivalences of
mapping spaces

N∆ll

Theorem (Lurie)
(C,N∆) forms a Quillen equivalence.



Quasi-categories as ∞-categories: Plug in Examples.

Use the dictionary Simplicial Cats ↔ Quasi-categories to produce
examples:

Machine to produce Examples:

M simplicial model category (model structure + compatible
simplicial enrichement).  

EM := M◦ full simplicial subcategory of cofibrant-fibrant objects
in M is a simplicial category enriched in Kan-complexes

 N∆(EM) is a quasi-category

.



Quasi-categories as ∞-categories: Plug in Examples.
First Non-trivial Example: ∞-category of spaces S := N∆(EM):

M = SSets; model structure to study weak-homotopy
equivalences;
Cofibrant-Fibrant objects are Kan-complexes X , Y , etc
Simplicial structure = simplicial set of maps Hom∆(X ,Y )
(also a Kan-complex).
Objects of S= Kan complexes; MapS(X ,Y ) ∼ Hom∆(X ,Y )
Equivalences = weak-homotopy eq. of Kan-complexes

Example: ∞-category of ∞-categories Cat∞ := N∆(EM):
M = SSets; model structure of Lurie-Joyal is NOT a
simplicial model category  can be modifed to become one
(marked simplicial sets).
Objects of Cat∞= Quasi-cat., MapCat∞(C,D) ∼ space of
∞-functors.
Equivalences = surjective + homotopy equivalences of maps;



Quasi-categories as ∞-categories: Plug in Examples.

Rectification of Diagrams: M a simplicial model category
combinatorial. D be a usual category. Then there is an
equivalence of quasi-categories

Fun(N(D),N∆(EM)) ' N∆(EMD)

where MD := category of D-diagrams in M equipped with the
projective model structure to study the homotopy theory of
diagrams.

Corollary: Third Non-trivial Example: D a usual category.
M = SSets + model structure for weak-homotopy equivalences;

Fun(N(Dop), S) ' Fun(N(Dop),N∆(EM)) ' N∆(EMDop )
l.h.s = P(N(D)):= presheaves of spaces;
r.h.s = (Projective) Model structure on Simplicial Presheaves

Slogan: In the ∞-categorical setting the theory of presheaves is
modeled by the strict theory of simplicial presheaves.



Quasi-categories as ∞-categories: Limits and Colimits.
C ∞-category  theory of limits and colimits internal to the lan-
guage of quasi-categories.

Definition: X ∈ C initial object iff for every object Z ∈ C the
Kan-complex MapC(X ,Z ) is contractible.

Slogan: Universal properties are defined only up to a contractible
space of choices.

Cones: K simplicial set (diagram shape), d : K → C ∞-functor
(diagram). Construct a new simplicial set KB by formally adding
an exterior vertex to K . A ”cone under d” is a map of simplicial
sets d̃ : KB → C whose restriction to K is d .
Prop.: There exists a quasi-category of ”cones under d”, Cd/.

Definition: A Colimit of d is an initial object of Cd/.. In
particular, by definition the collection of candidates for a colimit
form a contractible space.

Similar for Limits.



Quasi-categories as ∞-categories: Interpreting Homotopy
Colimits.

Prop: F : J → E simplicial functor between simplicial categories
enriched in Kan complexes. Let C be an object of E together with
a compatible family of maps {ηj : F (j)→ C}j∈J . Then

C is a homotopy colimit of F iff the induced map of simplicial sets
N∆(J)B → N∆(E ) is a colimit diagram.

Example: CoeqS(∗
Id

**

Id
44 ∗) = colimS

∗
∐
∗ ∗

∗

=

= hcolim.
∗

∐
∗ ∗

∗

=colim.
∗

∐
∗ ∆1

∆1

= S1

Example: x : ∗ → X in S. ∗ ×h
X ∗ ' Ωx X



Quasi-categories as ∞-categories: Dwyer-Kan Localization
Now: We have Cat∞ and can talk about limits and colimits in-
side.
A usual category  N(A) ∞-category with unique compositions.
Definition: W class of morphisms in A. An ∞-localization of A

along W , is a quasi-category N(A)[W−1]∞ + a map of simplicial
sets ` : N(A)→ N(A)[W−1]∞ such that for any quasi-category C,

Fun(N(A)[W−1]∞,C)→ Fun(N(A),C)

is fully faithful with essential image = ∞-functors sending W to
equivalences in C.

Remark: N(A)[W−1]∞ can be obtained as a pushout in Cat∞.∐
w∈W N([1]) //

��

N(A)

`
��∐

w∈W N(J) // N(A)[W−1]∞ J = groupoid 2 objects, 1 iso.



Quasi-categories as ∞-categories: Dwyer-Kan Localization

Quillen, Dwyer-Kan: M simplicial model category with W
weak-equivalences. There there is a chain of equivalences of
∞-categories

N(M)[W−1]∞ '
cof .repl .

N(Mc)[W−1
c ]∞ ' N∆(EM)

Definition: We use the terminology underlying ∞-category of M
to address one of these equivalent quasi-categories.

Remark: h(N(M)[W−1]∞) is the usual homotopy category of M
(Gabriel-Zisman localization).

Examples
∞-derived category of a ring R, D∞(R) := N(M)[W−1]∞
with M= strict category of chain complexes of R-modules.
W =quasi-iso’s.
∞-category of cdga’s/C, cdga∞C := N(M)[W−1]∞ with M=
strict cdga’s, W =quasi-iso’s.



Yoneda and Presheaves
Definition: quasi-category of presheaves of spaces on quasi-
category C

P(C) := Fun(Cop, S)

Seen before: A usual category, C := N(A) then P(C) ' N∆(EM),
M := simplicial presheaves on A.

Prop (Yoneda): For any quasi-category C there exists a fully
faithfull ∞-functor j : C→ P(C)

with the following universal property: If D has all colimits, then
the composition

FunL

Left-adjoints
(P(C),D)→ Fun(C,D)

is an equivalence of ∞-categories

Remark: To construct j one needs to exhibit a cocartesian fibra-
tion N→ Cop × C. N is given by the ∞-category of Twisted arrows
in C.



How to construct Yoneda?
More generally: How to construct ∞-functors? Not enough to
say what happens on objects and 1-morphisms. Need to explain
the action on n-simplexes.
Idea: Re-organize an ∞-functor F : C → D as a ”family with a
connection data”.

N C = p−1(0) D = p−1(1)

∆1 0 1

p

with MapN((0, c), (1, d)) ' MapD(F (c), d)

Key point: Not all families over ∆1 define ∞-functors. Need
connection data to jump between fibers.

coCartesian fibration:= family + appropriate connection data.



Grothendieck construction
Previous example: Single ∞-functor ↔ Family over ∆1. This
dictionary can be explained by an ∞-categories

coCart/∆1 ' Fun(∆1,Cat∞)

More generally: Replacing ∆1 by any simplicial set S, it is still
true that diagrams of ∞-categories indexed by S can be exhibited
as families over S with connection:

coCart/S ' Fun(S,Cat∞)

The way the connection data is implemented in the definition of
cocartesian fibration ensures the functoriality up to homotopy.
Back to Yoneda: Need to construct ∞-functor C × Cop → S ⊆
Cat∞ sending (X ,Y ) → MapC(X ,Y ). Instead, construct the
appropriate family over C× Cop.

Exercise: Formulate the notion of pair of adjoint functors as a
family over ∆1 where the connection data works in both directions-
bicartesian fibration.



Presentable Categories
κ strongly inaccessible card. ↔ U := sets of rank < κ, universe

U ⊆ V universes  U-small SSets↔ V-small SSets := U− big

Catsmall
∞ ↔ Catbig

∞

Presentable data: U-Big Data determined by U-Small Data.

Definition: C0 small ∞-category. κ′ < κ. C0 is κ′ -filtered if for
every κ′-small simplicial set K and diagram F : K → C0 there
exists an extension KB → C0.

Definition: C0 small ∞-category. κ′ < κ. Indκ′(C0) := full sub-
category of P(C0) containing representables + stable under κ′-
filtered colimits.
Definition: C ∞-category is presentable if C has all small colimits
and is of the form Indκ′(C0) for some small ∞-category C0.

Examples: S is presentable, of the form Indω of (homotopy) finite
CW-complexes. All categories of presheaves are presentable.



Presentable Categories: Adjoint Functor Theorem

Prop. (Adjoint Functor Theorem). F : C→ D ∞- functor
between presentable ∞-categories. Suppose F commutes with all
small colimits. Then F admits a right adjoint.

Definition: PrL is the (non-full) subcategory of Catbig
∞ spanned

by presentable ∞-categories and colimit preserving functors.

Remark: One can also define a (non-full) subcategory PrR⊆
Catbig

∞ spanned by presentable categories and functors which pre-
serve limits and κ’s filtered colimits for some cardinal κ′ < κ. We
have (PrR)op ' PrL

Prop: The inclusions PrR,PrL ⊆ Catbig
∞ preserve all limits.

Prop: C and D presentable. Then FunL(C,D) is presentable.



Presentable Categories: Localizations
Prop. (Presentable Localizations):C presentable ∞-category,
W small collection of 1-morphisms in C. CW−local := full
subcategory of C spanned by X such that for every S → S ′ in W
the map MapC(S ′,X )→ MapC(S,X )

is an equivalence. Then CW−local is presentable and the inclusion
CW−local ⊆ C admits a left adjoint C→ CW−local which exhibits
CW−local as an ∞-localization of C along W internal to the theory
of presentable ∞-categories.

Examples: Produce examples of presentable categories as pre-
sentable localizations of presheaves. In fact:

Prop: C is presentable iff it is a presentable localization of some
P(C0).

Prop: A usual category. Presentable localizations of P(N(A))
correspond via the rectification result to Bousfield localizations of
simplicial presheaves on A.



Higher Algebra
What is a symmetric monoidal structure?:A usual category +
unit ∗ → A + n-ary operations ⊗n : A× ...× A

n
→ A + associa-

tivity constrains + symmetry constrains under the action of the
Σn.

Segal: This combinatorial pattern is described by the category
of finite pointed sets Fin∗ and the data of a symmetric monoidal
category is a the data of a pseudo-functor

A⊗ : Fin∗ → Cat, with property A⊗({n}0) = A× ...× A
n

Example: {0, 1, 2} → {0, 1} 1, 2 7→ 1, 0 7→ 0, Image under
A⊗ gives operation A × A → A. Image of permutation of 1 by
2, {0, 1, 2} → {0, 1, 2} gives symmetry.

Symmetric monoidal ∞-category:= ∞-functor

C⊗ : N(Fin∗)→ Cat∞, with C⊗({n}0)→
n∏

i=1
C⊗({0, 1}) eq.



Some subtle points:

”The diagram commutes”. The claim does not make sense
unless the n-simplex providing the commutativity is exhibited.
One should look for an explicit construction of the simplex or
for a universal property or ”machine” defining it.

”The ∞-functor F : C→ D doing this on objects and
that on 1-morphisms”. Such a description should always be
understood as informal. The only construction with
mathematical sense is that of a map of simplicial sets
F : C→ D which specifies what happens with all simplexes.
Typically we construct ∞-functors via some universal property
involved, via Quillen adjunctions or via the exhibition of a
cartesian/cocartesian fibration.

”The object has an (associative, commutative,
Lie)-algebra structure”. The exhibition and construction of
such structures is in general very subtle.



Main ∞-categories in these lectures:

Spaces S, ∞-categories Catsmall
∞ , Catbig

∞ , presentable
∞-categories PrL, stable presentable PrL

Stb

cdga’s cdga∞C , derived schemes/manifolds/stacks/prestacks;

Spectra Sp, derived category of a ring R, D∞(R),
Qcoh∞(X ), Perf(X ) (quasi-coherent and perfect complexes),

∞-categories of algebra-objects and modules over them in all
the ∞-categories above.

(∞, n)-categories of correspondences, Lagrangian
correspondences, cobordisms, etc.

Ready for action!


