An Introduction to Higher Categories

Marco Robalo (IMJ-PRG, UPMC)

Bibliography: J. Lurie’s HTT & HA



Platonic Form

Ideally, an oco-category is a mathematical object that assembles:

@ objects,

@ I-morphisms between objects,

@ for every n > 2, a notion of n-morphisms between
n — 1-morphisms,

o for every n > 1, (weak) composition laws of n-morphisms only
well-defined up to the data of higher morphisms.

@ Associativity of compositions up to homotopy:

Proto-Example (Fundamental co-groupoid) X a CW-complex.
Objects = points,

1-morphisms=paths,

2-morphisms=homotopy of paths ( 2-cells);

3-morphisms= homotopies between homotopies of paths
(3-cells)



Problem: No direct definition of higher categories simultaneously
operational and close to this platonic form (infinite axioms!).

First Breakthrough : Avoid the problem by modeling the pla-
tonic form of co-categories using "exaggerated” templates/models
that contain more structure than what the platonic form requires.

Formally: Find a model category whose objects serve as models
for co-categories (Quasi-categories, Segal Categories, Simplicial
Categories, etc).

Modeling is a common practice:
e Homotopy Theory of Spaces (Homotopy Types) ~~ Modeled
by topological spaces, simplicial sets, categories, etc
@ Homotopy Theory of homotopy-commutative algebras over Q:
~» Modeled by simplicial algebras, diff. graded algebras.
@ Derived and Higher Stacks (Modeled by simplicial
presheaves);



Models: why important?

Question: What is the fundamental role of models and why are
there are so many for the same theory?

Second Breakthrough: Every model category has an associated
oo-category which captures all the important information of the
model structure (Dwyer-Kan Localization)

Models play a double role: (operational) Need ambient model to
shape oco-categories; (fundamental) Every other model incarnates
as an object of this ambient model.

Consequence: Plenty of examples of wannabe oo-categories:

@ 1 oo-category of spaces 8: Model structure on topological
spaces/simplicial sets;
@ oo-category of derived affine schemes and derived stacks;

@ oo-category of chain complexes up to quasi-iso..



Models: drawbacks

Question: If we already have the explicit models, why do we care
about their associated oco-categories?

Answer:

@ Not all co-categories have a practical model presentation
(Typical Examples: oco-categories of algebra-objects in a
® — oo-category: ring spectra);

@ There is no sufficiently refined notion of functor to relate
different models. The relevant notion is that of co-functor
between the co-categories associated to the models.

@ Models for diagrams are not in general given by diagrams of
models.



Modeling with Simplicial Sets: Notations

Category A: objects = finite ordered sets [n] = {0 <1< ... < n};
morphisms = order-preserving maps; SSets := Fun(A°P, Sets).
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Modeling with Simplicial Sets

Modeling usual categories: € usual category ~~ simplicial set
N(€) (Nerve) with

{n-simplexes} := {strings Xo L X1

Boundary maps 9; encode composition law. Degeneracy maps ¢;
encode identity maps.

e {Functors € — D} ~ {Simplicial Maps N(€C) — N(D)}
e X =N(C) < Vn>2 V0<i<n Vu:A — X
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Modeling with Simplicial Sets

Generating compositions: Take diagram shapes
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A} — N(C@) < string of morphisms X oy 2.7 e
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3! extension <> 3! compositions <> shaded faces




Modeling with Simplicial Sets

Processing Associativity:

Xtovy 2.7z " wineo AA-E2NeE) + AL "L N

e (g.f) (h.g)
Generate Compositions: A[2] —%N(€) + A[2]—=%N(©)
Glue
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Modeling with Simplicial Sets

Groupoids: X ~ N(€ groupoid )<» Vn > 2, ¥0<i<n, Vu: Al — X

ALY X
4
£ P 4 /! factorization
Aln]
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A = a/ C A[2] = y \90
_ _
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X
A — N(€) ,dx/ ~ 3 Ext. /d/ N )
X — Y X —_— Y
Summary: Allowing lifting property for extremes i = gives

inverses. For terms in the middle 0</<n gives compositions.




Modeling with Simplicial Sets

Modeling spaces: T topological space ~ simplicial set Sing(T)
with n-simplexes given by continuous maps from the topological
n-simplex A" to T

X ~ Sing(T) —Vn>2,¥0<i<n,Vu: N, — X 3 factorization
not necessarily unique:

/\f,*>X
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Slogan: Kan-complexes are those simplicial sets where the direc-
tion of the arrows is irrelevant.



Modeling with Simplicial Sets

Modeling oco-categories: A Quasi-category is a simplicial set
which shares simultaneously features of categories and spaces:

Definition
A Quasi-category is a simplicial set € with the following property:
Vn>2 V0<i<n,Vu: /\ﬁ, — C

N — ¢
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Examples:
e C category =—> N(C) quasi-category with uniquely-defined
compositions;
e X Kan complex = X quasi-category;



Playing with Quasi-categories: Unveiling the definition

€ quasi-category. How far can we go?

Generating ”"Compositions”:

A = y C A[2) = / \9

A} — C ¢ string of 1-simplexes X oy £2.Z e
Z
AN ——¢
! - o / \g
J e 3 X———F—Y
/
Al2]

Each 2-simplex in € "makes a form of commutativity”. There can
be many!




Playing with Quasi-categories: Unveiling the definition

Control of non-uniqueness of ”"compositions”:
4 Z
A2l = e / \, ARl =€ "\g
X —_— Y X —_— Y

AL —— ¢ ARl —— @

+» homotopy of compositions J; ~ J;. Lifting Mechanism
provides compatibility between compositions.

More Generally: compatibility of n different compositions ~~» n-simplexes.



Playing with Quasi-categories: Unveiling the definition

Processing " Associativity”:
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Quasi-categories as oo-categories: oo-functors

Definition: An oco-category is a Quasi-category. Objects=
0-simplexes. Morphisms = 1-simplexes. ’

Definition: An oco-functor is a map of simplicial sets between
quasi-categories.

Explanation: Functors <> functions that preserve commutative
diagrams <+ send n-simplexes to n-simplexes and preserve bound-
aries.

Prop.(oo-category of functors) € oo-category, K simplicial set
(diagram shape):
Fun(K,C) := Homa(K,C) (internal-hom)

is a oo-category.

Prop.(Products) €, D oco-categories = C x D oco-category.
EEGEGEEEERR.



Quasi-categories as oo-categories: Homotopy Category

C oo-category ~~ truncation (forgets higher cells) produces usual
category hC (homotopy category):

@ Objects of hC: 0-simplexes of C;

@ Morphisms of hC:= homotopy classes of 1-morphisms:f, g are
equivalent iff there exists a 2-morphism v : A[2] — @

/ \dy rendering f homotopic to g

X—>Y

@ Compositions: Well-defined using the lifting property.
Definition: Subcategory of a quasi-category € is a sub-simplicial
set C’ obtained as a fiber product in simplicial sets

¢—=0C

L

N(D) —— N(hC)) with D a subcategory of hC.




Quasi-categories as oo-categories: Equivalences

Definition: A 1-morphisms f of C is said to be an equivalence if
its homotopy class [f] in hC is an isomorphism, ie,3

Z
’d% r\a rendering f invertible up to a 2-cell
_—
X - Y

Definition: An oo-category is an co-groupoid if all its 1-morphisms
are invertible.

Prop: An C oco-category is an co-groupoid if and only if it is a
Kan-complex.

Example: T topological Space ~~ (Proto-Example) Fundamental
oo-groupoid of T := Sing(T).



Quasi-categories as oo-categories: Mapping Spaces

C oo-category. X, Y objects ~» d "space” of morphisms X — Y,

Definition: The mapping space between X and Y is the simplicial
set Mape(X, Y) defined as the fiber product

A[0] Fun(A[1], €) A[0]
N \ 7

Proposition: Let C be an oo-category. Then Mape(X, Y) is a
Kan-complex. («»"for n > 2, n-morphisms are invertible").

O-simpl.:= f : A[1] — C with 01(f) = X, do(f) =Y.

Xty

L-simpl.:= A[1] x A[1] — € l \ l ,ni= Aln] x A[1] = €

X—f>Y

Remark: Hompe(X, Y) = mo(Mape(X, Y))




Quasi-categories as co-categories: Mapping Spaces &
Compositions

Warning:There is no strict manifestation of the "composition law"
in C, Mape(X,Y) x Mape(Y,Z) — X— > Mape(X, Z)

Rectification (Lurie) 3 alternative simplicial sets Maps(X, Y),
together with a canonical zig-zags of weak-equivalences of SSets

Mape(X, ¥) —> e <~— Mape(X, Y)

such that the "composition law"” of € is translated by concrete
strict maps

Mape(X, Y) x Mape(Y, Z) — Mape(X, Z)

Good C is converted into a concrete simplicial category (nota-
tion: €[C]) with strictly associative compositions;

Bad I\Za/p@(X, Y') are not really "spaces” , ie, not Kan-complexes.
Very complicated.
EEGEGEEEERR.



Quasi-categories as oo-categories: Simplicial Categories

Rectification C ~~» Simplicial category €[C]
Question: Simplicial Categories —7 — Quasi-categories?

Construction. There exists a non-trivial extension of the nerve
construction N from usual categories to simplicial enriched cat-
egories that takes into account the simplicial structure. Na(—)
(Simplicial Nerve).

Application:. Model a simplicial cat. E by a simplicial set Na(E)

Prop. E enriched by Kan-complexes = Na(E) is a quasi-
category with

@ Objects of Na(E)= Objects of E
@ Weak-equivalences of simplicial sets
Mape(X, Y) = E(X, Y) (enrichement)

Question: How rich is this dictionary Simplicial categories <>
Quasi-categories?



Quasi-categories as oo-categories: Equivalence of Models

¢
/—\
Theorem (Joyal-Lurie) Theorem (Bergner)

There exists a model structure There exists a model structure
on the category SSets with on the category of simpl. cats.
@ cofibrant-fibrant objects = e fibrant objects = simp.

Quasi-categories cats. enriched in
@ weak-equivalences = Kan-complexes
essentially surjective + @ weak-equivalences =
weak-equivalences of essentially surjective +
mapping spaces weak-equivalences of
mapping spaces
~— N -

Theorem (Lurie)

(¢€,Na) forms a Quillen equivalence.




Quasi-categories as co-categories: Plug in Examples.

Use the dictionary Simplicial Cats <> Quasi-categories to produce
examples:

Machine to produce Examples:

M simplicial model category (model structure + compatible
simplicial enrichement). ~~

Epn := M° full simplicial subcategory of cofibrant-fibrant objects
in M is a simplicial category enriched in Kan-complexes

~+ Na(Ex) is a quasi-category




Quasi-categories as oo-categories: Plug in Examples.

First Non-trivial Example: co-category of spaces 8 := Na(Ey):
@ M = SSets; model structure to study weak-homotopy
equivalences;

o Cofibrant-Fibrant objects are Kan-complexes X, Y, etc

e Simplicial structure = simplicial set of maps Homa (X, Y)
(also a Kan-complex).

@ Objects of 8= Kan complexes; Mapg(X, Y) ~ Homna (X, Y)
e Equivalences = weak-homotopy eq. of Kan-complexes

Example: oco-category of oco-categories Catoo := Na(Ey):
@ M = SSets; model structure of Lurie-Joyal is NOT a
simplicial model category ~ can be modifed to become one
(marked simplicial sets).

@ Objects of Cat,o= Quasi-cat., Mapc,;__(C, D) ~ space of
oo-functors.

@ Equivalences = surjective + homotopy equivalences of maps;
R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRERRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRERREERERRERERERERESEEEEEEBEEEBDZIR
.



Quasi-categories as oo-categories: Plug in Examples.

Rectification of Diagrams: M a simplicial model category
combinatorial. D be a usual category. Then there is an
equivalence of quasi-categories

Fun(N(D), NA(EM)) >~ NA(EMD)

where MP := category of D-diagrams in M equipped with the
projective model structure to study the homotopy theory of
diagrams.

Corollary: Third Non-trivial Example: D a usual category.
M = SSets + model structure for weak-homotopy equivalences;

Fun(N(D°P), 8) ~ Fun(N(DP), Na(Ent)) ~ Na(Eymper)

l.h.s = P(N(D)):= presheaves of spaces;
r.h.s = (Projective) Model structure on Simplicial Presheaves



Quasi-categories as oo-categories: Limits and Colimits.

C oo-category ~~ theory of limits and colimits internal to the lan-
guage of quasi-categories.

Definition: X € C initial object iff for every object Z € C the
Kan-complex Mape(X, Z) is contractible.

Slogan: Universal properties are defined only up to a contractible
space of choices.

Cones: K simplicial set (diagram shape), d : K — € oo-functor
(diagram). Construct a new simplicial set K by formally adding
an exterior vertex to K. A "cone under d” is a map of simplicial
sets d : K¥ — € whose restriction to K is d.

Prop.: There exists a quasi-category of "cones under d”, Cy,.

Definition: A Colimit of d is an initial object of Cg, . In
particular, by definition the collection of candidates for a colimit
form a contractible space.

Similar for Limits.



Quasi-categories as oo-categories: Interpreting Homotopy

Colimits.

Prop: F : J — E simplicial functor between simplicial categories
enriched in Kan complexes. Let C be an object of E together with
a compatible family of maps {n; : F(j) = C}jcy. Then

C is a homotopy colimit of F iff the induced map of simplicial sets
Na(J)” — Na(E) is a colimit diagram.

Id *[[* —— %
Example: Coeq®(x %) = colim® l =
Id

%
*[[* —— * #[[* —— Al
= hcolim. l =colim. l =61
* Al

Example: x : x — X in 8. *X&*:QXX



Quasi-categories as oo-categories: Dwyer-Kan Localization

Now: We have Cat, and can talk about limits and colimits in-
side.

A usual category ~» N(A) oo-category with unique compositions.

Definition: W class of morphisms in A. An oo-localization of A
along W, is a quasi-category N(A)[W 1], + a map of simplicial
sets £ : N(A) — N(A)[W 1], such that for any quasi-category €,

Fun(N(A)[W ™., €) — Fun(N(A), €)

is fully faithful with essential image = oco-functors sending W to
equivalences in C.

Remark: N(A)[W 1]« can be obtained as a pushout in Cat.

Hwew N([1]) N(A)
| lf
[Twew N(J) ——= N(A)[W J = groupoid 2 objects, 1 iso.



Quasi-categories as oo-categories: Dwyer-Kan Localization

Quillen, Dwyer-Kan: M simplicial model category with W
weak-equivalences. There there is a chain of equivalences of
oo-categories

NOOIW oo N(M)[We oo = Na(Exc)

-
cof .repl.
Definition: We use the terminology underlying co-category of M

to address one of these equivalent quasi-categories.

Remark: h(N(M)[W™1]) is the usual homotopy category of M
(Gabriel-Zisman localization).

Examples
o oo-derived category of a ring R, Duo(R) := N(M)[W 1]«
with M= strict category of chain complexes of R-modules.
W =quasi-iso's.
e oo-category of cdga's/C, cdga® := N(M)[W 1], with M=
strict cdga's, W=quasi-iso's.



Yoneda and Presheaves

Definition: quasi-category of presheaves of spaces on quasi-
category C

P(C) := Fun(C, §)
Seen before: A usual category, C := N(A) then P(C) ~ Na(Ex),

M := simplicial presheaves on A.

Prop (Yoneda): For any quasi-category C there exists a fully
faithfull co-functor jie—Pe)

with the following universal property: If D has all colimits, then
the composition
Fun" (P(C), D) — Fun(C, D)

Left-adjoints

is an equivalence of co-categories

Remark: To construct j one needs to exhibit a cocartesian fibra-

tion N — C°% x C. N is given by the oco-category of Twisted arrows

in C.
EEGEGEEEERR.



How to construct Yoneda?

More generally: How to construct oo-functors? Not enough to
say what happens on objects and 1-morphisms. Need to explain
the action on n-simplexes.

Idea: Re-organize an oo-functor F : € — D as a "family with a
connection data".

N ¢=p(0) D=p (1)
Al 0 1

with MapN((07 C)? (17 d)) = MapD(F(C)v d)

Key point: Not all families over Al define co-functors. Need
connection data to jump between fibers.

coCartesian fibration:= family + appropriate connection data. J




Grothendieck construction

Previous example: Single co-functor <+ Family over Al. This
dictionary can be explained by an co-categories

coCart/A! ~ Fun(A?, Caty,)

More generally: Replacing Al by any simplicial set S, it is still
true that diagrams of oo-categories indexed by S can be exhibited
as families over S with connection:

coCart/S ~ Fun(S, Cato)

The way the connection data is implemented in the definition of
cocartesian fibration ensures the functoriality up to homotopy.

Back to Yoneda: Need to construct oo-functor € x CP — § C
Cats sending (X, Y) — Mape(X, Y). Instead, construct the
appropriate family over € x C°P.

Exercise: Formulate the notion of pair of adjoint functors as a
family over Al where the connection data works in both directions-
bicartesian fibration.



Presentable Categories

K strongly inaccessible card. <+ U := sets of rank < &, universe
U C 'V universes ~» U-small SSets <+ V-small SSets := U — big

Catsmall o, Catble
Presentable data: U-Big Data determined by U-Small Data.

Definition: Gy small co-category. k' < k. Cq is k' -filtered if for
every r’-small simplicial set K and diagram F : K — G there
exists an extension K& — Cq.

Definition: Gy small oo-category. k' < k. Ind,/(Co) := full sub-
category of P(Cp) containing representables + stable under x’-
filtered colimits.

Definition: C oo-category is presentable if € has all small colimits
and is of the form Ind,/(Cp) for some small co-category Co.

Examples: § is presentable, of the form Ind,, of (homotopy) finite
CW-complexes. All categories of presheaves are presentable.



Presentable Categories: Adjoint Functor Theorem

Prop. (Adjoint Functor Theorem). F : ¢ — D oo- functor
between presentable co-categories. Suppose F commutes with all
small colimits. Then F admits a right adjoint.

Definition: Pr' is the (non-full) subcategory of Cat2® spanned
by presentable co-categories and colimit preserving functors.

Remark: One can also define a (non-full) subcategory Pri*C
Catlgég spanned by presentable categories and functors which pre-
serve limits and «'s filtered colimits for some cardinal v’ < k. We
have (Prf)or ~ prl

Prop: The inclusions Pr®, Pr C Catgég preserve all limits.

Prop: C and D presentable. Then Fun™(C, D) is presentable.



Presentable Categories: Localizations

Prop. (Presentable Localizations):C presentable co-category,
W small collection of 1-morphisms in €. @W—local .— f]|
subcategory of € spanned by X such that for every S — S’ in W

the map Mape(S', X) = Mape(S, X)

is an equivalence. Then @W—local is presentable and the inclusion
@W-local @ admits a left adjoint € — @W~local which exhibits
@W=local 55 an co-localization of € along W internal to the theory
of presentable co-categories.

Examples: Produce examples of presentable categories as pre-
sentable localizations of presheaves. In fact:

Prop: C is presentable iff it is a presentable localization of some
P(Co).

Prop: A usual category. Presentable localizations of P(N(A))
correspond via the rectification result to Bousfield localizations of
simplicial presheaves on A.



Higher Algebra

What is a symmetric monoidal structure?:A usual category +
unit * — A -+ n-ary operations ®”7 : Ax ... x A — A + associa-
I — |

n
tivity constrains + symmetry constrains under the action of the
Y.

Segal: This combinatorial pattern is described by the category
of finite pointed sets Fin, and the data of a symmetric monoidal
category is a the data of a pseudo-functor

® . W : ® _
A® : Fin, — Cat, with property A®({n}o) = A x - x A
Example: {0,1,2} — {0,1} 1,2 + 1,0 + 0, Image under

A€ gives operation A x A — A. Image of permutation of 1 by
2,{0,1,2} — {0,1,2} gives symmetry.

Symmetric monoidal co-category:= oco-functor

C® : N(Fin,) — Cateo, with €®({n}o) — ﬁ €®({0,1}) eq.
i=1




Some subtle points:

@ "The diagram commutes”. The claim does not make sense
unless the n-simplex providing the commutativity is exhibited.
One should look for an explicit construction of the simplex or
for a universal property or "machine” defining it.

@ "The oco-functor F : ¢ — D doing this on objects and
that on 1-morphisms”. Such a description should always be
understood as informal. The only construction with
mathematical sense is that of a map of simplicial sets
F : € — D which specifies what happens with all simplexes.
Typically we construct oo-functors via some universal property
involved, via Quillen adjunctions or via the exhibition of a
cartesian/cocartesian fibration.

@ "The object has an (associative, commutative,
Lie)-algebra structure”. The exhibition and construction of
such structures is in general very subtle.



Main oo-categories in these lectures:

@ Spaces 8, co-categories CatS™®! CatP8 presentable
oco-categories Prl, stable presentable Prf,,

@ cdga's cdgag’, derived schemes/manifolds/stacks/prestacks;

@ Spectra Sp, derived category of a ring R, Dso(R),
Qcoh (X)), Perf(X) (quasi-coherent and perfect complexes),

@ oo-categories of algebra-objects and modules over them in all
the oo-categories above.

@ (o0, n)-categories of correspondences, Lagrangian
correspondences, cobordisms, etc.

Ready for action!



