Erratum to

PhD thesis "Théorie Homotopique Motivique des espaces non-commutatifs" &

Article published Advances in Mathematics, "K-Theory and the bridge from Motives to non-commutative Motives"

Marco Robalo

The author thanks M. Hoyois for pointing out the error in [3, Lemma 6.4.20]/[4, 3.25] and for several helpful remarks and suggestions.

Description of the Error:

The proof of [3, Lemma 6.4.20]/[4, 3.25] is wrong. As a consequence the conclusion of [3, 6.4.1.9]/[4, 3.24] that \mathcal{H}_{nc} is stable, is unclear. Although we have the semi-orthogonal decomposition of $\operatorname{Perf}(\mathbb{P}^1)$, it does not follow that the fiber of ∞^* is $\operatorname{Perf}(k)$ before we invert the topological circle. In this case, we are forced to change the definition of SH_{nc} all over [3]/[4] as the S^1 -stabilization of \mathcal{H}_{nc} . After forcing this stabilization $\operatorname{Perf}(\mathbb{P}^1)$ becomes a direct sum of two copies of $\operatorname{Perf}(k)$ and it is clear that ∞^* splits this sum and that the non-commutative motive of (\mathbb{P}^1, ∞) is $\operatorname{Perf}(k)$.

Consequences of the Error:

The error of [3, Lemma 6.4.20]/[4, 3.25] affects exclusively the proof of [3, Thm 7.0.32]/[4, Thm 4.7] in [3, Section 7.4]/[4, Section 4.5].

Correction: Proof of [3, Thm 7.0.32]/[4, Thm 4.7] avoiding [3, Lemma 6.4.20]/[4, 3.25]. This replaces [3, Section 7.4]/[4, Section 4.5].

Recall $\operatorname{Fun}_{Nis}(\mathfrak{D}g(k)^{ft}, \mathfrak{S})$ has a zero object by construction. We show that:

Proposition 0.1. There is a canonical equivalence in $\operatorname{Fun}_{Nis}(\mathfrak{D}g(k)^{ft}, S)$

$$\Sigma_{Nis}j(\operatorname{Perf}(k)) := l_{Nis}\Sigma^{naive}j(\operatorname{Perf}(k)) \simeq l_{Nis}(\operatorname{colim}_{n \in \Delta^{op}} \operatorname{Seq}_n)$$

where Seq is the simplicial object of [3, Rmk 7.4.3]/[4, Rmk 4.44] giving the Waldhausen's S-construction of [3, Construction 7.1.2]/[4, Construction 4.14]. Moreover, $\sum_{Nis}^{N} (Perf(k))$ identifies with the Nisnevich localization of the N-iterated Waldhausen's construction.

Proof. For each $n \geq 0$ we have short exact sequence in $\mathcal{D}g(k)^{idem}$ which are also pullbacks, given as

The maps in the sequence admit retracts W_n and S_n with $W_n \circ V_n = Id$ and $U_n \circ S_n = Id$, given by $S_n : \underline{0} \mapsto \underline{0}$ and $W_n : \underline{0} \mapsto 0, \underline{1} \mapsto \underline{0}, ..., \underline{n} \mapsto \underline{n-1}$. Here \underline{i} denotes the object of [n-1]. This notation is to make the distinction between $\underline{0}$ and the zero object 0. To check that (0.1) are exact one checks directly using Yoneda that V_n is fully faithful with essential image given by the full thick subcategory $< \underline{1}/\underline{0}, ..., \underline{n}/\underline{0} > \subseteq [n]_k$ spanned by the quotients $\underline{1}/\underline{0}, ..., \underline{n}/\underline{0}$. Moreover, one checks that U_n has the universal property of the Verdier quotient $[n]_k / < \underline{1}/\underline{0}, ..., \underline{n}/\underline{0} >$. Indeed, to give an dg-functor $[n]_k \to T$ such that all the objects $\underline{1}/\underline{0}, ..., \underline{n}/\underline{0}$ go to zero, as the functor is exact and the categories are stable, it follows that the maps $t_0 \to t_1, ..., t_0 \to t_n$ are equivalences in T. In this case the map is determined by the image of $t_0 = t_1 = ... = t_n$. The claim that the diagrams (0.1) are also pullbacks follows from [3, Corollary 2.1.12]/[4, Cor 1.18] because each $[n-1]_k$ has a compact generator $(\underline{0} \oplus ... \oplus \underline{n-1})$. By definition, we obtain Nisnevich diagrams of non-commutative spaces

in $\mathcal{NcS}(k)$. Now, as in [2, §3.3] and [5, §1.5] we remark that the exact sequences (0.1) are, as *n* varies, part of a co-simplicial diagrams in $\mathcal{Dg}(k)^{idem}$ and therefore, simplicial diagram in $\mathcal{NcS}(k)$

$$\begin{array}{c|c} Perf(k) & \longrightarrow 0 \\ \hline & & \\ \hline & \\ \text{onstant dia.} \\ U_n \\ \downarrow \\ & \\ \hline & \\ \widehat{[n]_k} \\ PSeq_{\bullet} \end{array} \xrightarrow{V_n} Seq_{\bullet} \end{array}$$

$$(0.3)$$

Finally, composition with Yoneda $j : \mathcal{NcS}(k) \hookrightarrow \operatorname{Fun}(\mathcal{Dg}(k)^{ft}, \mathbb{S})$ we obtain a sequence of simplicial objects $j(\operatorname{Perf}(k)) \to j(\operatorname{PSeq}_{\bullet}) \to \operatorname{Seq}_{\bullet}$

where Seq_{\bullet} is the simplicial object giving Waldhausen's S-construction explained in [3, Rmk 7.4.3]/[4, Rmk 4.44] giving the Waldhausen's S-construction of [3, Const. 7.1.2]/[4, Const. 4.14]. As explained in [5, Lemma 1.5.1] the simplicial object $PSeq_{\bullet}$ is simplicially homotopy equivalent to the constant associated to the zero dg-category and therefore, it is contractible. In this case we obtain a sequence,

$$j(Perf(k)) \to |PSeq_{\bullet}| := colim_{\Delta^{op}} j(PSeq_{\bullet}) \simeq * \to |Seq_{\bullet}| := colim_{\Delta^{op}} Seq_{\bullet}$$

which, because of the Nisnevich localization (i) forces each level of (0.2) to become pushouts, (ii) forces the zero dg-category to remain a zero object and (iii) preserves sifted colimits, induces a pushout square in Nisnevich sheaves of spaces

which exhibits $l_{Nis}(|Seq_{\bullet}|)$ as the (Nisnevich local) suspension of Perf(k). This concludes the proof of the first claim. For the iterated S-construction, notice that

$$\Sigma_{Nis}\Sigma_{Nis}(Perf(k)) \simeq \Sigma_{Nis}colim_{\Delta^{op}}Seq_n = \Sigma_{Nis}colim_{\Delta^{op}}j([n-1]_k) \simeq l_{Nis}colim_{\Delta^{op}}\Sigma_{Nis}j([n-1]_k)$$

and that using the fact that the category of Nisnevich sheaves of spaces has a zero object (by convention) and the monoidal structure is compatible with colimits in each variable, we have $\Sigma_{Nis}j([n-1]_k) \simeq$ $(\Sigma_{Nis}j([n-1]_k)) \otimes j(Perf(k)) \simeq j([n-1]) \otimes \Sigma_{Nis}Perf(k)$, and in the continuation of the chain of equivalences above, we obtain

$$\simeq l_{Nis} colim_{(n,m)\in\Delta^{op}\otimes\Delta^{op}} j([n-1]) \otimes j([m-1]) = l_{Nis}|Seq_{\bullet,\bullet}|$$

This is exactly the formula for the 2-iterated S-construction of Waldhausen. We conclude by induction. \Box

Corollary 0.2. ([3, Thm 7.0.32]/[4, Thm 4.7]) We have an equivalence in $Fun_{Nis}(\mathcal{D}g(k)^{ft}, \operatorname{Sp})$

$$\Sigma_{Nis}^{\infty} j(\operatorname{Perf}(k)) = K^S.$$

In particular, after forcing \mathbb{A}^1 -invariance we have an equivalence between the unit non-commutative motive and $l_{\mathbb{A}^1}(K^S) = KH$ in \mathfrak{SH}_{nc}

Proof. By definition [5] the presheaf of spectra given connective K-theory spectrum K_{Spec}^{C} is represented by the sequence of presheaves of spaces given by the iterated S-construction, $(j(Perf(k)), |Seq_{\bullet}|, |Seq_{\bullet,\bullet}|, ...)$ which thanks to Waldhausen's additivity theorem is an Ω -spectrum for $n \geq 1$. As a presheaf of spectra it is equivalent to the filtered colimit in $\operatorname{Fun}(\mathfrak{D}g(k)^{ft}, \operatorname{Sp})$ given by $\operatorname{colim}_{n\geq 0}\Omega^n\Sigma^{\infty}|Seq_{\bullet},...\bullet|$. Now we

compute $l_{Nis}(K_{Spec}^{C})$. Because of [3, Thm. 7.0.29]/[4, Thm. 4.4] we know that $l_{Nis}(K_{Spec}^{C}) = K^{S}$. But the formula above combined with Prop. 0.1 gives also (because l_{Nis} for presheaves of spectra is exact and commutes with colimits)

$$l_{Nis}(K^{C}_{Spec}) = l_{Nis} colim_{n \ge 0} \Omega^{n} \Sigma^{\infty} | Seq_{\bullet, \dots \bullet}| \simeq colim_{n \ge 0} \Omega^{n} \Sigma^{\infty}_{Nis} \Sigma^{n}_{Nis} j(Perf(k)) \simeq$$
$$\simeq colim_{n} \Omega^{n} \Sigma^{n}_{Nis} \Sigma^{\infty}_{Nis} j(Perf(k)) \simeq \Sigma^{\infty}_{Nis} j(Perf(k))$$

We obtain [3, Thm 7.0.32]/[4, Theorem 4.7] by forcing \mathbb{A}^1 -invariance.

References

- [1] A Blumberg, D Gepner, and G Tabuada. A Universal Characterization of Higher Algebraic K-Theory.
- [2] Randy McCarthy. The cyclic homology of an exact category. J. Pure Appl. Algebra, 93(3):251-296, 1994.
- [3] Marco Robalo. Théorie homotopique motivique des espaces noncommutatifs. PhD Thesis, Université de Montpellier 2, 2014.
- [4] Marco Robalo. K-theory and the bridge from motives to noncommutative motives. Adv. Math., 269:399–550, 2015.
- [5] Friedhelm Waldhausen. Algebraic K-theory of spaces. In Algebraic and geometric topology (New Brunswick, N.J., 1983), volume 1126 of Lecture Notes in Math., pages 318–419. Springer, Berlin, 1985.