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Abstract

We record the fact that the set of chain-level multiplicative HKR natural
equivalences defined simultaneously for all derived schemes, functorialy split-
ting the HKR-filtration and rendering the circle action compatible with the de
Rham differential, is, via Cartier duality, in a natural bijection with the set of
filtered formal exponential maps Ĝa → ”Gm. In particular, when the base k is
a field of characteristic zero, the set of choices is k∗.
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1 Introduction
Let k be a commutative ring. The Hochschild-Kostant-Rosenberg (HKR) theorem
[HKR62] establishes for any smooth k-scheme X = Spec(R) an identification of
the Hochschild homology groups HHi(R/k) := ToriR⊗kR

(R,R) with the modules of
i-differential forms Ωi

X/k, given by the anti-symmetrization map

Ωi
R/k → HHi(R/k), r0.dr1 ∧ · · · ∧ dri 7→

∑
σ∈Σi

(−1)sign(σ)[r0 ⊗ rσ(1) ⊗ · · · ⊗ rσ(i)].

The groups HHi(R/k) are actually defined for every derived k-algebra R ∈ SCRk
(∗) as

the homology groups of the derived tensor product of k-algebras HH(R/k) := R
L
⊗

R
L
⊗
k
R

R

where R is seen as an R
L
⊗
k
R-algebra using the multiplication map R

L
⊗
k
R → R. In

particular, this shows that HH(R/k) carries the structure of an object in SCRk.
Also, for a general R ∈ SCRk we replace Ω1

R/k by the cotangent complex LR/k and
independently of the characteristic of k, we have the HKR filtration on HH(R/k)
that has (ΛiLR/k)[i] as associated graded piece of weight i (see [NS18: IV. 4.1]).
When k is a field with char(k) = 0, the anti-symmetrization map induces a splitting
of the HKR filtration and gives a k-linear quasi-isomorphism [Lod92:Prop. 1.3.16,
Remark 3.2.3, Prop. 5.4.6]
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(∗)Here SCRk denotes the ∞-category of simplicial commutative rings. See [Lu-SAG:§25.1.1]
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HH(R/k) ∼ //
⊕n

i=1 (Λ
iLR/k)[i] (1)

Derived geometry [TV11; BZN12] offers another perspective: since in SCRk, derived

tensor products are pushouts, we find an equivalence in SCRk, HH(R/k) ≃ R
L
⊗
k
S1

that presents HH(R/k) as the derived ring of functions OLX on the derived loop
scheme LX := RMap(S1, X) where by RMap we mean the derived mapping scheme
cf. [Toë14:§3.2].

Similarly, derived geometry offers a geometric incarnation for
⊕n

i=1 (Λ
iLR/k)[i] as the

derived ring of functions of the shifted tangent bundle T[−1]X=Spec(Sym∆(LX/k[1]))
where Sym∆ corresponds to the symmetric algebra construction in the setting of
commutative simplicial rings, with the Gm k-action corresponding to the natural
grading. When k is a Q-algebra, for any affine derived scheme X, the results of
[TV11; BZN12] provide an isomorphism of derived schemes functorial in X

T[−1]X ∼ // LX (2)

that recovers a quasi-isomorphism of the type (1) after passing to global functions.
However, it is unclear if the equivalence obtained through derived geometry coincides
with the anti-symmetrization map of (1).

Observation 1.1. When char(k) = 0, Kapranov [Kap99] explains another way to
produce HKR isomorphisms (1) by considering smooth schemes X with a torsion-
free flat connection ∇ on their tangent bundle. In this case the connection provides a
formal exponential exp∇ : T̂X ≃ “∆ establishing an isomorphism between the formal
completion of X×X along the diagonal and the formal completion of TX along the
zero section. Passing to the self-intersections with X, we obtain another equivalence
of derived schemes of the type (2).

2 The space of functorial HKR isomorphisms: The-
orem 2.6

The goal of this note is prove Theorem 2.6 below, describing the collection of HKR
isomorphisms (1). We start by noticing though, that without further assumptions,
this space can be significantly large: Observation 1.1 shows that every torsion-free
connection on a scheme X provides one, and the space of connections is affine.
But clearly, connection-induced HKR isomorphisms are not functorial unless the
maps preserve the connection. Therefore we will only consider chain level HKR
equivalences enhanced with:

(i) functoriality for all derived k-rings as part of a natural equivalence of ∞-
functors on the ∞-category of derived schemes
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T[−1](−) ∼ // L(−) (3)

(ii) functorial splittings of the HKR-filtration;

(iii) functorial matchings of the circle action on loop spaces with the de Rham
differential on forms .

Observation 2.1. In particular, chain level HKR-equivalences as in (i) are auto-
matically multiplicative by passing to the derived rings of functions in (3).

Before formulating our main result we must first describe how derived geometry
helps combining the structures in (i)-(iii), culminating with Definition 2.4 below.
Using the formalism of affine stacks [Toe06], it is shown in the combined results of
[MRT22; Toë20; Mou24b] that over any commutative ring k there exists a flat affine
filtered abelian group stack (underived)

S1
Fil → [A1

k/Gm k]

which we call the filtered circle, and such that for any derived scheme X, the relative
derived mapping stack

RMap
[A1

k/Gm k]
(S1

Fil, X × [A1
k/Gm k]) → [A1

k/Gm k]

provides the HKR-filtration on the derived loop space LX, with associated graded
stack given by (T[−1]X)/Gm k → BGm k. More precisely, it describes the HKR-
filtration with its multiplicative structure as the universal filtered algebra with an
action of the filtered circle. As a consequence, asking for HKR-isomorphisms (i)-(iii),
is to ask for splittings of the filtered circle compatible with the group structure. Let
us then recall the construction of a split filtered stack associated to a graded stack:

Construction 2.2. Let q : [A1
k/Gm k] → BGm k be the map induced by the projection

A1
k → Spec(k) and let Y be a stack endowed with a Gm -action. Take Z = [Y/Gm ] →

BGm k. We define the associated split filtered stack Zsplit → [A1
k/Gm k] to be the

pullback
Zsplit Z

[A1
k/Gm k] BGm k

By construction, it is equivalent to the quotient stack [Y × A1/Gm ] where we let
Gm act on the product coordinate-wise. The associated graded stack (Zsplit)gr is
canonically equivalent to Z because q is a right inverse to the inclusion 0 : BGm k →
[A1

k/Gm k]. Finally, when S → [A1
k/Gm k] is a filtered stack, we denote by Striv :=

(Sgr)split the associated split filtered stack where Sgr is the pullback of S along the
inclusion BGm k → [A1

k/Gm k].

3



Observation 2.3. Since Construction 2.2 is monoidal with respect to cartesian
products, (S1

Fil)
triv is still a group object.

We can finally formulate how to combine the enhanced structures of (i)-(iii) as part
of a single object:

Definition 2.4. We define the set of chain-level HKR-isomorphisms enhanced with
(i)-(iii) as the set of connected components of the mapping space of invertible maps
of group (higher) stacks

Mapinvgroup,[A1
k/Gm k]

(
S1
Fil , (S

1
Fil)

triv
)

ie, universal splittings of the HKR filtration compatible with the action of the filtered
circle.

Observation 2.5. Given a splitting S1
Fil ≃ (S1

Fil)
triv as in Definition 2.4 we obtain

the associated HKR-natural transformation (3) by pre-composition with the relative
derived mapping spaces over [A1

k/Gm k]

RMap
[A1

k/Gm k]
((S1

Fil)
triv, X × [A1

k/Gm k]) RMap
[A1

k/Gm k]
(S1

Fil, X × [A1
k/Gm k])

∼

and extracting the fibers over 1 : Spec(k) = [Gm k/Gm k] → [A1
k/Gm k].

We state our main result:

Theorem 2.6. Let k be a field. Then, the set of chain-level HKR equivalences
enhanced with (i)-(iii) cf. Definition 2.4 is in bijection with the set of formal expo-
nentials, ie, group homomorphisms of formal groups,

HomFGr(Ĝa k,‘Gm k) ≃
®
k∗ if char(k) = 0,

∅ otherwise.

3 Proof of Theorem 2.6
We are interested in computing π0 of the space in Definition 2.4. Thanks to
[Mou24b:Theorem 1.8] we have an explicit formula for the filtered group circle in
terms of relative Cartier duality over [A1

k/Gm k]

S1
Fil ≃ B[A1

k/Gm k](Def
∨)

where Def → [A1
k/Gm k] is the formal group scheme over [A1

k/Gm k] given by the total
space of the deformation to the normal bundle at the unit from the formal group‘Gm k to its lie algebra Ĝa k (cf. [Mou24b:Construction 5.6, Proposition 5.12, Theorem
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1.6].). Here, relative Cartier duality is given by the [A1
k/Gm k]-relative construction

of [Haz12: 37.3.4]:
(−)∨ := HomFGr(−,‘Gm k)

(the hom is taken inside the category of classical formal group schemes, not as
derived schemes) and‘Gm k is the multiplicative formal group. Since the construction
of Cartier duality is the relative one, we can freely interchange

(Def∨)triv ≃ (Deftriv)∨, B[A1
k/Gm k](Def

∨)triv ≃ B[A1
k/Gm k]((Def

∨)triv)

As a consequence, the space of HKR-isomorphisms of Definition 2.4 is equivalent to

Mapinvgroup,[A1
k/Gm k]

Ä
B[A1

k/Gm k](Def
∨) , B[A1

k/Gm k]((Def
triv)∨)

ä
Since all group stacks being used are abelian, the Eckmann–Hilton delooping at the
unit provides a map

Mapinvgroup,[A1
k/Gm k]

Ä
B[A1

k/Gm k](Def
∨) , B[A1

k/Gm k]((Def
triv)∨)

ä
Mapinvgroup,[A1

k/Gm k]

(
Def∨ , (Deftriv)∨

)Ω∗

which induces an isomorphism of π0 with inverse given by the B-construction.

Finally, we consider the map induced by the functor of Cartier duality

Mapinvgroup,[A1
k/Gm k]

(
Def∨ , (Deftriv)∨

)
MapinvFGr,[A1

k/Gm k]

(
Deftriv,Def

)(−)∨ (4)

which is an equivalence, thanks to the fully faithfulness of Cartier duality [Mou24b:Const
3.7, Prop 3.12, Const 3.17, Prop. 3.19]. Here, FGr denotes the category of relative
smooth formal groups. Notice that, independently of char(k), both mapping spaces
in (4) are discrete. Moreover, thanks to [Hen17:1.4.2 and 1.4.5] we can either see
the last mapping space as maps of prestacks or as continuous maps.

Since Def → [A1
k/Gm k] is a smooth formal group relative to [A1/Gm ], we can identify

the trivial filtration Deftriv → [A1
k/Gm k] with the affine linear formal group associated

to its relative Lie algebra. In particular, following Construction 2.2, it is given by
the constant family over [A1

k/Gm k]

Deftriv ≃ [(Ĝa k × A1
k)/Gm k]

In conclusion, we have shown that the set of functorial HKR-isomorphisms as in
Definition 2.4 is in bijection with the set of filtered formal exponentials

MapinvFGr,[A1
k/Gm k]

Ä
[(Ĝa k × A1

k)/Gm k] , Def
ä
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Observation 3.1. By extracting the underlying groups of the filtration (ie, the
fibers over 1 in [A1

k/Gm k]) we find a map

MapinvFGr,[A1
k/Gm k]

Ä
[(Ĝa k × A1

k)/Gm k] , Def
ä
→ MapinvFGr

Ä
Ĝa k,‘Gm k

ä
(5)

By height reasons, since Ĝa k is of height ∞ and ‘Gm k is of height 1, the target of (5)
is empty when k is of char(p) > 0. Therefore, so is the source of (5).

Finally, assume char(k) = 0. The relative exponential map (see for instance [Dem:Exposé
VIIB - §3] or [GR17:Chapter 7, Cor. 3.2.2]) defines an isomorphism of filtered formal
group schemes

[(Ĝa k × A1
k)/Gm k] Def

exprel
∼

Composition with exprel defines a bijection

MapinvFGr,[A1
k/Gm k]

Ä
[(Ĝa k × A1

k)/Gm k] , Def
ä

MapinvFGr,[A1
k/Gm k]

Ä
[(Ĝa k × A1

k)/Gm k] , [(Ĝa k × A1
k)/Gm k]

ä∼ exprel ◦− (6)

Let us compute the last space: since char(k) = 0, the category of formal groups relat-
ive to [A1

k/Gm k] is equivalent to the category of Lie algebra objects in QCoh([A1
k/Gm k])

[GR17:Chapter 7]. The Lie algebra associated to [(Ĝa k × A1
k)/Gm k] is the structure

sheaf O[A1
k/Gm k](1) with the weight-(1) action of Gm k, endowed with the abelian Lie

bracket (see [Mou24b:§5]). Since QCoh([A1
k/Gm k]) is symmetric monoidal equivalent

to filtered k-modules Fil(Modk) [Mou21], O[A1
k/Gm k](1) corresponds to the abelian Lie

algebra given by k(1). It follows that

MapinvFGr,[A1
k/Gm k]

Ä
[(Ĝa k × A1

k)/Gm k] , [(Ĝa k × A1
k)/Gm k]

ä
π0MapinvLie,Fil(Modk)

(k(1), k(1)) = k∗

∼

In particular, the map (6) sends λ ∈ k∗ to exp(λ.(−)), thus proving Theorem 2.6.

Remark 3.2. Theorem 2.6 describes the space of group splittings of the filtered
circle as exponentials (cf. Definition 2.4). The results of [Mou24a] show that even in
characteristic zero, the filtered circle does not admit splittings as a pointed cogroup
with co-multiplication given by the pinch map. The universal obstruction is the
Todd class. Recall that the splitting principle for algebraic K-theory implies that
the collection of Chern characters from K-theory to de Rham cohomology coincides
with the collection of exponential maps - see [TV15:Lemma 5.5]. In summary, the
existence of group splittings of S1

Fil allows the Chern characters to exist, and the fact
that none of those are cogroup splittings, imposes the Grothendieck-Riemann-Roch
theorem.
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