Choices of HKR isomorphisms

Marco Robalo (Jussieu)

Algebra Seminar

Table of Contents

(1) HKR-isomorphisms
(2) Extra structure I: the HKR-Filtration
(3) Extra structure II: The circle action and the de Rham differential

4 Reformulation via derived geometry
(5) Main result
(6) Proof of the main result using the filtered circle
(7) Relation with GRR

HKR-isomorphisms

Theorem (Hochschild-Kostant-Rosenberg)
$X=\operatorname{Spec}(R)$ a smooth affine scheme over a commutative ring k . Then the anti-symmetrization map induces an isomorphism

$$
\begin{gathered}
\Omega_{R / k}^{n} \rightarrow \operatorname{HH}_{n}(R / k):=\operatorname{Tor}_{R \otimes_{k} R}^{n}(R, R) \\
r_{0} \cdot d r_{1} \wedge \cdots \wedge d r_{n} \mapsto \sum_{\sigma \in \Sigma_{n}}(-1)^{\operatorname{sign}(\sigma)}\left[r_{0} \otimes r_{\sigma(1)} \otimes \cdots \otimes r_{\sigma(n)}\right]
\end{gathered}
$$

Question

Are there other HKR-isomorphisms?

$$
\Omega_{R}^{*} \simeq \mathrm{HH}_{*}(R)
$$

How many?

HKR-isomorphisms

Proposition (Kapranov)

When $\operatorname{char}(\mathrm{k})=0$, any torsion-free flat connection ∇ on $X=\operatorname{Spec}(R)$ induces an exponential isomorphism

$$
\exp ^{\nabla}: \widehat{\mathrm{TX}} \simeq \widehat{\Delta_{X}}
$$

which by passing to the self-intersection of the zero section, induces an HKR-isomorphism.

Remark

The HKR-isomorphism above is not functorial in X. Depends on ∇.

Goal

Describe the collection of functorial HKR-isomorphisms. This space is still too big so we need to rigidify the problem

Table of Contents

(1) HKR-isomorphisms
(2) Extra structure I: the HKR-Filtration
(3) Extra structure II: The circle action and the de Rham differential

4 Reformulation via derived geometry
(5) Main result
(6) Proof of the main result using the filtered circle
(7) Relation with GRR

The HKR-Filtration

Remark
HH is a chain complex:

$$
\mathrm{HH}(R / \mathrm{k}):=R \underset{\substack{R \underset{k}{\mathbb{\otimes}} R}}{\underset{k}{\mathbb{Q}} R} R
$$

Construction (Whitehead filtration)
HH has a descending filtration $\mathrm{HH}_{\text {Fil }}$:=
$\cdots \rightarrow \tau_{\geq 2} \mathrm{HH}(R / \mathrm{k}) \longrightarrow \tau_{\geq 1} \mathrm{HH}(R / \mathrm{k}) \longrightarrow \tau_{\geq 0} \mathrm{HH}(R / \mathrm{k})=\mathrm{HH}(R / \mathrm{k})$

$$
\cdots \operatorname{gr}^{2}=\Omega_{R / k}^{2}[2] \quad \mathrm{gr}^{1}=\Omega_{R / k}^{1}[1] \quad \operatorname{gr}^{0}=\Omega_{R / k}^{0}[0]
$$

The HKR-Filtration

Remark

(chain level) Splittings of the HKR-filtration produce HKR-isomorphisms:

$$
\mathrm{HH}_{\mathrm{Fil}} \simeq \bigoplus_{i \geq} \mathrm{gr}^{i}
$$

Proposition

If $\operatorname{char}(\mathrm{k})=0$, the anti-symmetrization map induces such a splitting.

Rigified Goal

Describe the collection of HKR-isomorphisms obtained via functorial splittings of $\mathrm{HH}_{\text {Fil }}$.

Still too big!

Table of Contents

(1) HKR-isomorphisms
(2) Extra structure I: the HKR-Filtration
(3) Extra structure II: The circle action and the de Rham differential

4 Reformulation via derived geometry
(5) Main result
(6) Proof of the main result using the filtered circle
(7) Relation with GRR

The naive circle action...

Remark

Algebra structure

Remark

Group structure $\mathrm{S}^{1} \times \mathrm{S}^{1} \rightarrow \mathrm{~S}^{1}$

Theorem (Universal Property)
$S^{1} \circlearrowright \mathrm{HH}(R / k)$ is the universal R-algebra with a S^{1}-action.
... and the de Rham differential ...

Remark
Chain Level:

$$
\mathrm{H}_{1}\left(\mathrm{~S}^{1}, \mathrm{k}\right) \ni B:=\text { Connes operator : } \mathrm{HH}(R / \mathrm{k}) \rightarrow \mathrm{HH}(R / \mathrm{k})[1]
$$

Proposition

$$
\begin{aligned}
& \mathrm{HH}_{n}(R / \mathrm{k}) \xrightarrow{B} \mathrm{HH}_{n+1}(R / \mathrm{k}) \\
& \underset{\substack{\vee \\
\Omega_{R / \mathrm{k}}^{n}}}{\stackrel{\mathrm{~d}_{\mathrm{dR}}}{\sim}} \xrightarrow{\stackrel{\downarrow}{\sim} \Omega_{R / \mathrm{k}}^{n+1}}
\end{aligned}
$$

Main result

Theorem (Slogan version)

The collection of HKR-isomorphisms

- Chain level;
- Arising as functorial splittings of the HKR-filtration;
- matching the circle action with the de Rham differential;
- compatible with multiplicative structures on both sides;
are in bijection with

$$
\left\{\text { exponentials } \widehat{\mathbb{G}_{a}} \rightarrow \widehat{\mathbb{G}_{m}}\right\} \simeq \begin{cases}\emptyset & \text { if } \operatorname{char}(\mathrm{k}) \neq 0 \\ \mathrm{k}^{*} & \text { if } \operatorname{char}(\mathrm{k})=0\end{cases}
$$

Problem (With the slogan)

" $B=\mathrm{d}_{\mathrm{dR}}$ " is not immediately compatible with the HKR-filtration:

$$
\begin{aligned}
& \cdots \rightarrow \tau_{\geq 2} \underset{\mathrm{~S}^{1} \circlearrowright}{\mathrm{HH}}(R / \mathrm{k}) \longrightarrow \tau_{\geq 1} \underset{\mathrm{~S}^{1} \circlearrowright}{\mathrm{HH}}(R / \mathrm{k}) \longrightarrow \tau_{\geq 0} \underset{\mathrm{~S}^{1} \circlearrowright}{\mathrm{HH}}(R / \mathrm{k}) \\
& \mathrm{S}^{1} \circlearrowright \mathrm{gr}^{n}=\Omega_{R / \mathrm{k}}^{n}[n], \quad \Omega_{R / \mathrm{k}}^{n}[n] \underset{0}{\rightarrow} \Omega_{R / \mathrm{k}}^{n}[n+1]
\end{aligned}
$$

Levelwise circle action on the filtration is too naive. Does not capture graded weights.

What exactly is the de Rham differential?

First step: Consider $\bigoplus_{n \geq 0} \Omega_{R / k}^{n}[n]$ as a graded module and $d_{d R}$ as an extra operator that increases the weight.

Construction (Graded modules)

$$
\begin{gathered}
\mathrm{Ch}_{\mathrm{k}}^{\mathrm{gr}}:=\prod_{n \in \mathbb{Z}} \mathrm{Ch}_{\mathrm{k}} \quad \ni E=\left(E_{n}\right)_{n \in \mathbb{Z}}, \quad \bigoplus: \mathrm{Ch}_{\mathrm{k}}^{\mathrm{gr}} \rightarrow \mathrm{Ch}_{\mathrm{k}} \\
E \underset{\mathrm{k}}{\mathbb{L}} F=\left(\bigoplus_{n+m=\ell} E_{n} \underset{\mathrm{k}}{\mathbb{L}} F_{m}\right)_{\ell \in \mathbb{Z}}
\end{gathered}
$$

Construction

$\mathrm{k}[\epsilon]_{\mathrm{gr}}=$ graded strictly associative dg-algebra freely generated by an element ϵ in homological degree 1 and weight 1 , and strictly verifying $\epsilon^{2}=0$.

Remark
A left- $\mathrm{k}[\epsilon]_{\mathrm{gr}}$-module in $\mathrm{Ch}_{\mathrm{k}}^{\mathrm{gr}} \Leftrightarrow E=\left(E_{n}\right)_{n \in \mathbb{Z}}+$ operator

$$
\epsilon: E(1)[1] \rightarrow E
$$

with $\epsilon \circ \epsilon=0$ (strict).

Construction

$\mathrm{k}[\epsilon]_{\mathrm{gr}}$ carries a strictly commutative graded Hopf structure

$$
\mathrm{k}[\epsilon]_{\mathrm{gr}} \rightarrow \mathrm{k}[\epsilon]_{\mathrm{gr}} \otimes_{\mathrm{gr}} \mathrm{k}[\epsilon]_{\mathrm{gr}}
$$

determined by

$$
\epsilon \mapsto \epsilon \otimes 1+1 \otimes \epsilon
$$

\Rightarrow tensor product of $\mathrm{k}[\epsilon]_{\mathrm{gr}}$-modules makes sense.

Definition

- Mixed graded modules $=$ left-modules over $\mathrm{k}[\epsilon]_{\mathrm{gr}}$.
- Mixed graded algebras = commutative algebra objects in the symmetric monoidal ∞-category of mixed graded modules.

Proposition

Over any ring k , setting $\epsilon:=\mathrm{d}_{\mathrm{dR}}$ endows $\bigoplus_{n \in \mathbb{Z}} \Omega_{R / \mathrm{k}}^{n}[n]$ with a structure of mixed graded algebrax.

Problem

Identify the connection between three types of structures:

- circle actions;
- mixed graded structures
- HKR-filtration

Table of Contents

(1) HKR-isomorphisms
(2) Extra structure I: the HKR-Filtration
(3) Extra structure II: The circle action and the de Rham differential
4) Reformulation via derived geometry
(5) Main result
6) Proof of the main result using the filtered circle

Proposition (Toën and Vezzosi, Ben-Zvi and Nadler)
Let $X=\operatorname{Spec}(R)$:

- $\operatorname{HH}(R / k)=\mathcal{O}_{\mathbb{R} M a p\left(S^{1}, X\right)}$.
- $\bigoplus_{n \geq 0} \Omega_{X / k}^{n}[n] \simeq \operatorname{Sym}^{\Delta}\left(\Omega_{X / \mathrm{k}}^{1}[1]\right) \simeq \mathcal{O}_{\mathrm{T}[-1] X}$

Remark

$\mathbb{R} \operatorname{Map}\left(\mathrm{S}^{1}, X\right)$ has an S^{1} - action.

$$
\mathcal{O}_{\mathbb{R M a p}\left(\mathrm{S}^{1}, X\right) / \mathrm{S}^{1}}=\mathrm{HH}(R / \mathrm{k})+\mathrm{S}^{1}-\text { action } .
$$

Remark

$\mathrm{T}[-1] X$ has a \mathbb{G}_{m}-scaling along the fibers. This is responsible for the grading.

Lemma

$$
\{\text { Chain complexes with additional } \mathbb{Z} \text {-grading }\}^{\otimes} \simeq \underbrace{\mathrm{Qcoh}_{\infty}\left(\mathrm{B} \mathbb{G}_{m}\right)^{\otimes}}_{\mathbb{G}_{m}-\text { representations }}
$$

Corollary

$$
\begin{aligned}
& \pi:(\mathrm{T}[-1] X) / \mathbb{G}_{m} \rightarrow \operatorname{Spec}(\mathrm{k}) / \mathbb{G}_{m}=\mathrm{B} \mathbb{G}_{m} \\
& \mathcal{O}_{(\mathrm{T}[-1] X) / \mathbb{G}_{m}}=\pi_{*} \mathcal{O} \simeq \bigoplus_{n \geq 0} \Omega_{X / \mathrm{k}}^{n}[n] \text { with grading }
\end{aligned}
$$

What about d_{dR} ?

Construction

$$
\mathrm{k}[\eta]:=\mathrm{k} \oplus \underbrace{\mathrm{k}[-1]}_{\text {weight }-1}
$$

with the trivial square zero multiplication as a cosimplicial graded commutative algebra.

$$
\underbrace{\operatorname{coSpec}(\mathrm{k}[\eta])}_{\text {Affine stack }} \circlearrowleft \mathbb{G}_{m}
$$

Proposition

$\operatorname{coSpec}(\mathrm{k}[\eta])$ admits a unique abelian group structure, compatible with the grading.

Definition

$$
\underbrace{\mathrm{S}_{\epsilon-\mathrm{gr}}^{1}}_{\text {Mixed graded circle }}:=\left[\operatorname{coSpec}(\mathrm{k}[\eta]) / \mathbb{G}_{m}\right] \rightarrow \mathrm{B} \mathbb{G}_{m}
$$

Lemma

$$
\mathrm{Q} \operatorname{coh}\left(\mathrm{~B}_{\mathrm{BG}_{m}}\left(\mathrm{~S}_{\epsilon-\mathrm{gr}}^{1}\right)\right)^{\otimes} \simeq\{\text { Mixed graded modules }\}^{\otimes}
$$

Remark (BenZvi-Nadler)

When $\operatorname{char}(\mathrm{k})=0$

$$
\operatorname{coSpec}(\mathrm{k}[\eta]) \underbrace{\simeq}_{\mathbb{G}_{m}-e q .} \mathrm{B} \mathbb{G}_{a}
$$

Proposition

Equivalence of \mathbb{G}_{m}-stacks (independent of $\operatorname{char}(\mathrm{k})$)

$$
\mathbb{R} \operatorname{Map}(\operatorname{coSpec}(\mathrm{k}[\eta]), X) \simeq \mathrm{T}[-1] X
$$

Construction

$$
\begin{gathered}
\mathrm{S}_{\epsilon-\mathrm{gr}}^{1} \circlearrowright(\mathrm{~T}[-1] X) / \mathbb{G}_{m} \\
{\left[(\mathrm{~T}[-1] X) / \mathbb{G}_{m}\right] / \mathrm{S}_{\epsilon-\mathrm{gr}}^{1} \rightarrow \mathrm{~B}_{\mathrm{BG}_{m}}\left(\mathrm{~S}_{\epsilon-\mathrm{gr}}^{1}\right)}
\end{gathered}
$$

Proposition

$$
\mathcal{O}_{\left[(\mathrm{T}[-1] X) / \mathbb{G}_{m}\right] / \mathrm{S}_{\epsilon-\mathrm{gr}}^{1}}=\bigoplus_{n \geq 0} \Omega_{X / \mathrm{k}}^{n}[n] \text { with grading }+\mathrm{d}_{\mathrm{dR}}
$$

Geometrization of the filtration

Need to explain

$$
\mathrm{S}^{1} \circlearrowright \mathrm{~L} X \Leftarrow \underbrace{\text { geometrization of } \mathrm{HH}_{\mathrm{Fil}}}_{?} \Rightarrow \mathrm{~S}_{\epsilon-\mathrm{gr}}^{1} \circlearrowright \mathrm{~T}[-1] X
$$

Bridge between the underlying object and the associated graded.

Lemma (Simpson)

The quotient stack $\left[\mathbb{A}^{1} / \mathbb{G}_{m}\right]$ encodes filtrations, ie, $\{\text { chain complexes with additional } \mathbb{Z} \text {-filtration }\}^{\otimes} \underbrace{\simeq}_{\text {Rees }} \operatorname{Qcoh}_{\infty}\left(\left[\mathbb{A}^{1} / \mathbb{G}_{m}\right]\right)^{\otimes}$

Remark

$$
\begin{gathered}
\operatorname{Qcoh}_{\infty}(\operatorname{Spec}(\mathrm{k}))<1^{1^{*}} \operatorname{Qcoh}_{\infty}\left(\left[\mathbb{A}^{1} / \mathbb{G}_{m}\right]\right) \xrightarrow{0^{*}} \operatorname{Qcoh}_{\infty}\left(\mathrm{B} \mathbb{G}_{m}\right) \\
\downarrow \sim \\
\{\text { complexes }\}
\end{gathered}
$$

Definition

A filtered (derived) stack is a (derived) stack Z together with a map $Z \rightarrow\left[\mathbb{A}^{1} / \mathbb{G}_{m}\right]$.

Remark

Given $p: Z \rightarrow\left[\mathbb{A}^{1} / \mathbb{G}_{m}\right], p_{*} \mathcal{O}_{Z} \in \operatorname{Qcoh}_{\infty}\left(\left[\mathbb{A}^{1} / \mathbb{G}_{m}\right]\right)$ has is a filtered chain complex.

Theorem (Moulinos-R-Toën)

- There exists a filtered abelian group stack

$$
\mathrm{S}_{\mathrm{Fil}}^{1} \rightarrow\left[\mathbb{A}^{1} / \mathbb{G}_{m}\right]
$$

that implements a filtration on the topological circle with associated graded $\mathrm{S}_{\epsilon-\mathrm{gr}}^{1}$.

- Universal property of the HKR-filtration:

$$
\operatorname{HH}_{\mathrm{Fil}}(R / \mathrm{k}) \simeq \mathcal{O}_{\mathbb{R} M a p\left(\mathrm{~S}_{\mathrm{Fil}}^{1}, X\right)}
$$

is the universal filtered R-algebra with an action of the filtered circle $\mathrm{S}_{\mathrm{Fi}}^{1}$.

Remark

A similar universal property has been obtained by Raksit.

Example

X quasi-smooth

$\mathrm{HH}_{\mathrm{Fil}}(X)^{h S_{\text {Fil }}^{1}}=\mathrm{HC}^{-}(X / k)$ with Antieau filtration

Table of Contents

(1) HKR-isomorphisms
(2) Extra structure I: the HKR-Filtration
(3) Extra structure II: The circle action and the de Rham differential

4 Reformulation via derived geometry
(5) Main result

6 Proof of the main result using the filtered circle
(7) Relation with GRR

Functorial HKR isomorphisms

Definition

$\{$ Universal HKR isomorphisms $\}:=\left\{\right.$ group splittings $\left.\mathrm{S}_{\mathrm{Fil}}^{1} \simeq\left(\mathrm{~S}_{\mathrm{Fil}}^{1}\right)^{\text {triv }}\right\}$

Theorem (Precise formulation)
$\{$ Universal HKR isomorphisms $\} \simeq\left\{\right.$ exponentials $\left.\widehat{\mathbb{G}_{a}} \rightarrow \widehat{\mathbb{G}_{m}}\right\} \simeq$

$$
\simeq \begin{cases}\emptyset & \text { if } \operatorname{char}(k) \neq 0 \\ k^{*} & \text { if } \operatorname{char}(\mathrm{k})=0\end{cases}
$$

Table of Contents

(1) HKR-isomorphisms
(2) Extra structure I: the HKR-Filtration
(3) Extra structure II: The circle action and the de Rham differential

4 Reformulation via derived geometry
(5) Main result
(6) Proof of the main result using the filtered circle

Witt vectors

Definition

$$
\mathbb{W}(R):=\underbrace{1+t R[[t]]}_{\text {invertible formal power series }}
$$

$(\mathbb{W},+):\{$ Commutative rings $\} \rightarrow\{$ Abelian groups $\}$

Remark

Underlying scheme

$$
\mathbb{W} \simeq \prod_{i \geq 0}^{\infty} \mathbb{A}^{1}
$$

As a group, built from successive extensions by \mathbb{G}_{a}.

Construction

- Ghost coordinates

$$
-\frac{d}{d t} \log :(1+t \cdot R[[t]])^{\times} \rightarrow R[[t]], \quad f \mapsto-\frac{f^{\prime}}{f}
$$

transforms products of formal power series into sums.

$$
\text { Ghost }:(\mathbb{W},+) \rightarrow\left(\prod_{i=1}^{\infty} \mathbb{G}_{a},+\right)
$$

- Frobenius endomorphisms

$$
\operatorname{Frob}_{n}: \mathbb{W} \rightarrow \mathbb{W}, \quad \forall n \in \mathbb{N}
$$

determined by the shift maps on Ghost coordinates

$$
\text { Shift }_{n}: \prod_{i=1}^{\infty} \mathbb{G}_{a} \rightarrow \prod_{i=1}^{\infty} \mathbb{G}_{a} \quad\left(\omega_{i}\right) \mapsto\left(\omega_{n i}\right)
$$

- $\mathbb{G}_{m} \circlearrowright \mathbb{W}$ given by multiplication by Teichmuller representative.

Definition

$$
\begin{aligned}
& \text { Fix }:=\bigcap_{n}\left(\text { Frob }_{n}-\text { fixed points }\right) \subseteq \mathbb{W} \\
& \text { Ker }:=\bigcap_{n}\left(\text { Kernel Frob }_{n}\right) \quad \subseteq \mathbb{W}
\end{aligned}
$$

Remark

When $\operatorname{char}(\mathrm{k})=0, \operatorname{Fix}=\operatorname{Ker}=\mathbb{G}_{\mathbf{a}}$.

Remark

Ker is closed under \mathbb{G}_{m}-action.

Proposition (Moulinos-R-Toën over $\mathbb{Z}_{(p)}$, J. Tapia, J.Sauloy and Toën over \mathbb{Z})

$$
\mathrm{BFix} \simeq \operatorname{coSpec}\left(\mathrm{C}^{\bullet}\left(\mathrm{S}^{1}, \mathbb{Z}\right)\right) \quad(\mathrm{BKer}) / \mathbb{G}_{m} \simeq \mathrm{~S}_{\epsilon-\mathrm{gr}}^{1}
$$

Construction

Consider the family of abelian groups $\mathbb{H} \rightarrow \mathbb{A}^{1}$ given by

$$
\mathbb{H}_{\lambda}:=\bigcap_{n}\left(\text { Kernel Frob }_{n}-\lambda^{n-1} \mathrm{Id}\right) \longleftrightarrow \stackrel{\mathbb{H}}{\vdots}
$$

Interpolates between $\mathbb{H}_{\lambda=0}=\operatorname{Ker}$ and $\mathbb{H}_{\lambda=1}=\mathrm{Fix}$

Remark

\mathbb{G}_{m}-action on \mathbb{W} restricts to \mathbb{G}_{m}-action on \mathbb{H} compatible with group structure.

Definition

$$
\mathrm{S}_{\mathrm{Fil}}^{1}:=\mathrm{B}_{\left[\mathbb{A}^{1} / \mathbb{G}_{m}\right]}\left(\mathbb{H} / \mathbb{G}_{m}\right)
$$

Cartier duality

Reminder (Cartier Duality)

Over a commutative ring k, construction sending a smooth commutative formal group \mathcal{G}

$$
\mathcal{G} \mapsto \mathcal{G}^{\vee}:=\operatorname{HOM}_{\mathrm{CommFGr}}\left(\mathcal{G}, \widehat{\mathbb{G}_{m}}\right)
$$

defines an equivalence of categories
CommFGr $_{k} \simeq\{$ commutative affine algebraic groups over $k\}$
Proposition (Moulinos, Sekiguchi-Suwa)

- Ker $\simeq{\widehat{\mathbb{G}_{a}}}^{\vee}$;
- $\operatorname{Fix} \simeq{\widehat{\mathbb{G}_{m}}}^{V}$
- The filtered group $\mathbb{H} / \mathbb{G}_{m}$ is the (filtered) Cartier dual of the family Def over $\left[\mathbb{A}^{1} / \mathbb{G}_{m}\right]$ implementing the deformation to the normal bundle of $1 \in \widehat{\mathbb{G}_{m}}$.

Functorial HKR isomorphisms

Definition

Universal HKR isomorphisms \Leftrightarrow universal splittings of the HKR-filtration \Leftrightarrow group splittings

$$
\mathrm{S}_{\mathrm{Fil}}^{1} \simeq\left(\mathrm{~S}_{\mathrm{Fil}}^{1}\right)^{\text {triv }}
$$

Sketch of proof of the main result.
$\left\{\right.$ group splittings $\left.S_{\text {Fil }}^{1} \simeq\left(S_{\text {Fil }}^{1}\right)^{\text {triv }}\right\} \underset{\text { Cartier Duality }}{\simeq}\left\{\right.$ exponentials $\left.\widehat{\mathbb{G}_{a}} \rightarrow \widehat{\mathbb{G}_{m}}\right\}$

Table of Contents

(1) HKR-isomorphisms
(2) Extra structure I: the HKR-Filtration
(3) Extra structure II: The circle action and the de Rham differential

4 Reformulation via derived geometry
(5) Main result

6 Proof of the main result using the filtered circle
(7) Relation with GRR

Relation with GRR

Remark (Toën-Vezzosi)

When $\operatorname{char}(k)=0$, because of the splitting principle

$$
\left\{\text { exponentials } \widehat{\mathbb{G}_{a}} \rightarrow \widehat{\mathbb{G}_{m}}\right\} \simeq \mathrm{k}^{*} \simeq\left\{\text { Chern Characters } K_{0} \rightarrow H_{\mathrm{d}_{\mathrm{dR}}}^{*}\right\}
$$

in particular, universal HKR-isomorphisms are in bijection with Chern characters.

Relation with GRR

Remark

The circle S^{1} also admits a cogroup structure.

$$
S^{1} \rightarrow S^{1} \vee S^{1}
$$

This cogroup structure extends to the filtered circle $\mathrm{S}_{\mathrm{Fil}}^{1}$.

Theorem (Moulinos)

There are no cogroup splittings $\mathrm{S}_{\text {Fil }}^{1} \simeq\left(\mathrm{~S}_{\text {Fil }}^{1}\right)^{\text {triv }}$. The obstruction is the universal Todd class.

Corollary

None of the group splittings induced by the choice of a Chern character is a cogroup splitting. The consequence is the Grothendieck-Riemann-Roch theorem.

Thank you for your attention.

