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1. Introduction

Let X be a topological space and consider the free loop space Map(S1, X). This
space carries a circle action, obtained by pre-composition with the group structure
on S1. But there is something else going one: Sullivan-Chas constructed a loop
product operation on the homology of the Map(S1, X). This operation can be
modellied at the level of chains, but it boils down to the following diagram

Map(S1, X)×Map(S1, X)← Map(S1 ∨ S1, X)→ Map(S1, X)

induced by composition with

S1
∐

S1 → 8 = S1 ∨ S1 ← S1 (1)

where the first map is the canonical map and the second is map given by going
around the figure 8.

Up to homotopy, one can understand the diagram 1 as the pair of pants

where the first map gives the inclusion of the two circles on the left and the second
map is the inclusion of the circle on the right.

This map can also be seen as a map

S1
∐

S1 99K S1

in the category of cobordisms: objects are topological spaces and morphisms are
cobordisms. In this case, the algebra structure on the homology of the free loop
space is a consequence of the following fact:

Proposition 1.1. The object S1, seen in the ∞-category of cobordisms in spaces,
carries the structure of E2-algebra with multiplication given by the operation 1. More
generally, σ ∈ E2(n) seen as a configuration of n little disks, acts via the n-pants
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∐
n

S1 → ∨nS1 ← S1

The goal of this talk is to illustrate the general nature of this phenomenon and
explain why the operad E2 appears here.

Before that, let me explain how to pass from this statement to the free loop
space: applying the functor Map(−, X) to 1 we obtain a correspondence/span in
the category of spaces: objects are spaces, and morphisms fromX to Y are diagrams

Z

��~~

X Y

with composition obtained by taking (homotopy) pullbacks. Finally, as the opera-
tion Map(−, X) sends coproducts to products, we get:

Proposition 1.2. The free loop space Map(S1, X), seen in the ∞-category of spans
in spaces, carries a structure of E2-algebra.

Before unravelling the magic behind, let me give you a hint, by saying that this
result has analogues versions for the higher dimensional spheres Sn, namely:

Proposition 1.3 (Ginot-Tradler-Zeinalian). The sphere Sn, seen as an object in
the ∞-category of cobordisms in spaces, carries a structure of En+1-algebra with
multiplication given by co-spans

Sn
∐

Sn → ∨Sn ← Sn (2)

By transport, Map(Sn, X), seen as an object in the∞-category of spans in spaces,
carries a structure of En+1-algebra.

2. Brane Actions

At this point I have to illustrate the mechanism responsable for these algebra
structures. The following remark unravels some of the mistery:

Remark 2.1. The circle S1 is weakly equivalent to the space E2(2) of binary oper-
ations in the little disks operad. Similarly, Sn is weakly equivalent to En+1(2).

To really explain what is going on we need a definition:
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Definition 2.2 (J.Lurie). Let O be a monochromatic ∞-operad with O(0) '
O(1) ' ∗. Let σ ∈ O(n) be a n-ary operation. The space of extensions of σ -
Ext(σ) - is the homotopy fiber product

{σ} ×O(n) O(n+ 1)

where the map O(n+1)→ O(n) forgets the last entry. We say that O is coherent
if for each pair of composable operations σ, τ , the natural square

Ext(Id) //

��

Ext(σ)

��

Ext(τ) // Ext(σ ◦ τ)

is homotopy-cocartesian.

Lemma 2.3. (Lurie HA, Toen) The ∞-operads Ek are coherent.

Proof. The proof boils down to the fact that given σ ∈ Ek(n), the space of extensions
computed by the homotopy pullback gives

Ext(σ) = ∨nSn //

��

Ek(n+ 1)

Forget Last entry
��

∗ // Ek(n)

and the diagram in the coherence condition becomes

Ext(Id) = Sn //

��

Ext(σ) = ∨nSn

��

Ext(τ) = ∨mSn // Ext(σ ◦ τ) = ∨n+m−1S
n

�

Theorem 2.4 (Toen). Let O be a coherent ∞-operad. Then, O(2) = Ext(Id), seen
as an object in the ∞-category of co-spans in spaces, carries an action of O with
multiplication given by the

σ ∈ O(n) 7→
∐
n

Ext(Id)→ Ext(σ)← Ext(Id)

Proof. (Sketch) Let C be a category with products. Then Ccorr has a monoidal
structure induced by ×. An O-algebra in Ccorr is the same as a compatiblity family
of maps O(n) 7→MapCcorr(Xn, X) assemblying to a map of props

O⊗ → Ccorr,×

This is the same as a symmetric monoidal functor
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Env(O)⊗ → Ccorr,×

We now use the fact that the construction C 7→ Ccorr admits a left adjoint
D 7→ Tw(D) given by the category of twisted arrows: objets = morphisms in D
and morphisms between u : X → Y and v : A → B are given by commutative
diagrams

X //

u
��

A

v
��

Y Boo

In this case, the data of a symmetric monoidal functor Env(O)⊗ → Ccorr,× is
equivalent to the data of a functor

Tw(Env(O))⊗ → Cop

Finally, in the case C=Sop (when we obtain co-correspondences) this is

Tw(Env(O))⊗ → Sop

which via the Grothendieck construction, this becomes equivalent to the data of a
cartesian firation

B → Tw(Env(O))⊗

.
Finally, the construction of this boilds down to the fact that the operad is coher-

ent. �

3. Applications in algebraic geometry

.
To conclude my talk I would like to explain some applications of this result

in algebraic geometry. This time, we fix X a smooth projective variety over C.
Gromov-Witten invariants are numerical invariants obtained by counting curves
of degree d in X passing by n marked points. This is a story in itself which I
will not have time to narrate here today. However, there is something I can say:
these invariants are known to satisfy certain compatibilities and recursive relations
obtained as d and n vary, obtained as a result of the dynamics of gluing curves

Mg,n ×Mg′,m →Mg+g′,n+m−2

which endow the collection of moduli spaces of stable curves Mg,n with a structure
of operad in stacks.

Theorem 3.1. (Manin-Kontsevich) Let X be a smooth projective variety over C.
Then the cohomology of X carries an extra multiplicative structure known as Quantum
product

H(X)⊗n → H(X)
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This operation is part of a data that endows H(X) with the structure of algebra
over the operad {H∗(Mg,n)}n≥1.

The dynamics of brane actions allows us, as for the results of Sullivan, to show
that this algebra structure exists before passing to cohomology, and in fact:

Theorem 3.2. (Mann-R.) Let X be a smooth projective variety over C. Then X,
seen as an object in the ∞-category of spans in derived stacks, carries the structure
of {Mg,n}-algebra. In particular, by applying the functor K-theory we get an algebra
structure on K(X) which recovers the Quantum K-theory of Givental-Lee.
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