Donaldson - Thamas invariants in Aussois (OCT 2022)

InTRoduction (Damien)

Casson-invaricuts: (in diffuentid gamety)
M campuct aiented manifld dim 3 Assume M integel hamology sphere.

Look at

$$
\text { stabilyse }=\underbrace{Z(\operatorname{su}(2))}_{\text {cuntr }}(2 / 2 z
$$

\rightarrow The only imaducible rep is the tuvid one.

The is a decalposition of Π :

$$
M=H_{1} \sum_{\sum} H_{2}
$$

(*)
\Downarrow
H_{1}, H_{2} are genus g handle bodies
\sum bounday sphere

$$
\begin{aligned}
& \text { g ho to be the save } \\
& \text { fir } H_{1}, H_{2} \& \sum .
\end{aligned}
$$

Van Kareem

$$
R^{\text {in }}(M) \longrightarrow R^{\text {ire }}\left(H_{1}\right) S \text { is a menifed }
$$

Mocarer: one con prove that is $\& i_{2}$ are submanifelds.

Cain: $R^{i m}(\Sigma)$ is a sypplectic manifold and both $R^{i m}\left(H_{1}\right) \& R^{i n}\left(H_{2}\right)$ are Legarions! dim $3 g-3$

Casson:
points in
The intansection. $R^{\text {in }}(M)$
dain: This numbes is indiumdent y the splith, ($*$)

problem with thonsunsclity.
clain: one con prove tha prose are ciented anoniflds (${\underset{3 n}{3 g-3}}_{\omega \omega \text { is a folme }}^{\text {fom }}$)

Gock: Do this fer bundly/sheaves on calkbi-yaw 3 -folds.
L problem: - introsection theay

- The splitting (x) dor not exist geabdly in generel.
(not glehcly a Lagagian inturation!)

YeT ANother approach (via Gauge Theory)

$$
\begin{aligned}
\operatorname{Conn}(M, S U(2))= & \begin{array}{c}
\text { Connections on the } \\
\text { tunic pincuple } \\
\text { su(2) } \\
\text {-bond } \varphi
\end{array} \\
= & \left\{d+A \mid A \in \Omega^{\prime}(M, 5 u(2))\right.
\end{aligned}
$$

Define a functional on this space:
$S: \operatorname{Conn}(M, S U(2)) \xrightarrow{\text { action }} \mathbb{R}$

$$
d+A \longmapsto \int_{\pi}^{t_{2}}\left(d A \wedge A \frac{+2 A \wedge A \cap A)}{3}\right)
$$

 action ρ

$$
g \in C^{\infty}(M, S u(2))
$$

via $g^{-1}(d+A) g=d+\underbrace{g^{-1} d g+g^{-1} A g}_{\text {Ag }}$
clain: $\exists c$ a constont such thet

$$
S\left(d+A^{y}\right)=S(d+A)+c \mathbb{Z}
$$

$\Rightarrow d s$ is a well-difine one-farm on

$$
X=\frac{\operatorname{Conn}(M, \operatorname{SU}(2))}{C^{\infty}(M, S U(2))}
$$

we con compote the tagent ρX at a gren convaction $\nabla=d+A$

$$
T_{[\nabla]} x \cong \Omega^{\prime}\left(M, \frac{5 \Delta(2))}{\operatorname{Im} \nabla}\right.
$$

Couputation: $d s=0 \Leftrightarrow$ feat conrections.

So

$$
\left\{\pi_{1}-\text { rep }\right\} \simeq\{\text { fleT-cunuctis }\}=\underset{\text { points } \varphi S}{\text { CuTicd }}
$$

Issues when tying to count the number of ariticd points of $S, \partial J$, this is possible

Thenem (Tambis)

$$
\text { casson invariant }=\frac{1}{2}(\#\{d s=0\})
$$

Issus: (1). X may not be a manifold
(2). thansunclity of the intemetion ds n\{oy in $T^{*} X$.

Talk 4: Thomas paper cbout holomplic analgue of this stay

$$
\begin{aligned}
& \pi \xrightarrow{\text { rupbe }} \subset y 3-\text { fold } \\
& S \cup(2) \xrightarrow{\text { Npleve }} B(n(\phi)
\end{aligned}
$$

Trivid $\underset{\substack{\text { mincips } \\ \text { SU(2)-budle }}}{\substack{\text { melace }}}$ by any C^{∞}-bndle ρ ronten.

Rm k: η
a priv this does not use the symmetry of the obstuction they to be defied. Howern, to slow independence of the choice, we slow that all symmetric obstucction thence give the save number.

- Back to problem (2): We ars in the folloming geneal sitution: (algeliovic geonety)

$$
=\sum_{x}^{E} \text { vecta bndle }
$$

Expeocted dim of $Z=\operatorname{dim} X-\operatorname{Rmk}(E)$ Intesection product to geT a class in $\begin{gathered}H_{\operatorname{din} X-n k}(E)\end{gathered}$

Constuction:

in patiouler. $\mathrm{H}^{\circ}(\phi)$ is an iso
$\approx H^{-1}(\phi)$ is sugeetre.

Talk \#2 and taete \#11 intoprectation in tams ρ downed gounty.
$F=$ cotagent coupbix of the denved uno lows of s.

Rmak: If the puefect onstuction They is symmetic ($F^{V} \simeq F[-1]$) Then the virtud findamente dass is indpendent of the choice of symivetic pufect obstr. Thery.
(Exupls: dekived Logragian inturrections). $\underbrace{\text { (} 3 \text {). }}_{\text {twek } 13}$

- Back to prodemn (D): locally around a
flat connection ${ }^{\text {elliptic Regulaity tells us }}$
the T one con find
"criticel chats",
ie
locely

$$
\left.\{d s=0\} \simeq f_{h} f=0\right\}
$$

ff ρ defind in sare U whe U is

Daboux-lenme.
(The pde thet computs $d s=0$)
(Eulr-logrange equetins)
(beccure it cone foma)? defention of d
($d+\cdot$.)
actucly a maniffld.
gives rise to a symmetic semi-pufeet obstrection theng.

Categaification: (tules 687) + duved symplectic appuiceh (last appuoch)

$$
U \xrightarrow{f} \mathbb{R} \quad \cup \text { smocth }
$$

$\operatorname{ait}(f)=\{d f=0\}$ has a natrel denved enhoncent dauT(f)

twisted de Rhan couplex is a deferetion of OduT (f).
extend roles to $u[(u 7)]\left(u^{-1}\right)$.

Thenow: (sabbah-saito) this coincides with the sheaf of vanishing aycles of f. defined on the zens lows but suppented on the critical locus
(congetined by Kontsevich-Soibelman)
Pollen: The is a gluing problem consoled by a Z1/22-gerbe aientation data. Given such an aisutotion data we con glue these twisted deRhan couplixes.

Rok: in physics papas on the subject, physicists compute integuls such as $\int_{x} e^{f / \mu} \alpha$

$$
\begin{aligned}
& d\left(e^{f / m} \alpha\right)=0 \quad \Leftrightarrow \\
& \text { \& } \frac{1}{\mu} \underbrace{d f \wedge \alpha+} d \alpha=0 \\
& (\underbrace{d+\frac{1}{\mu} d g} \wedge_{-}) \alpha=0 \\
& \text { tuisted } \\
& \int e^{f / n} \cdot \alpha \\
& \text { de Khan } \\
& \text { diffents }
\end{aligned}
$$

use stationery phuse method
$=\sum_{x \in \operatorname{ait}(f) \text { surethy thet depends only }}$ $x \in \operatorname{ait}(f)$ of the beberin at x.

TekK 2: Viktucl fundarrental classes aftere Behrendi-Fentechi

Kontsevich-Manin: GW-invarionts should be camputed as integels over $\overline{\mathcal{M}}_{1 n}(X, \beta)$.

Exemple:

$$
\underbrace{N_{d}}_{N_{d}}=\int_{M_{0,3 d-1}}\left(1 p^{2}, d\right)
$$

curvis of degued of genus 0
passing thayh 3d-1 points
ingenod:

$$
\bar{\mu}_{g, n}(x, \beta) \text { con be singulu }
$$

(hove the wrong dimensiow)
Soluction in differentid gearrety: "pertub" the moduli spuce to male it smeath"

Solution : Constuat a viztud findarentel das $[M i]^{v i z}$

$$
\begin{gathered}
{[M]^{\text {nit }} \in A_{\text {viztud } \operatorname{dim}}(M)} \\
\downarrow \\
H_{2 . v d}(M)
\end{gathered}
$$

$[M]^{\text {riz }}$ constucted by [Li-tiam, Befuend-Fentechi] (95-96)
inpuT: obstuction theny on M Theoy

outpuT: $[r T]^{v i z}$
\qquad
(this trek follows the suvey of Pandnipende-thome)

1) locd modil:

$$
\begin{array}{lll}
\text { modil: } & \text { E Rak }=R \\
& s\left({ }_{l}\right. & \\
M_{i}=\underbrace{Z(s)} \subseteq A & \text { smeth } \operatorname{dim}=n
\end{array}
$$ yrosfs.

ided case: S is honverse to the wo seation】
$Z(s)$ is smath ρ dim $n-R$
less ided case: \exists splitting $E \simeq E^{\prime} \oplus E / E^{\prime}$ and $s=\left(s^{\prime}, 0\right)$ with s^{\prime} hansrusly intuets - rection on ϵ^{\prime}
in this cose
$Z(s)$ is still smeoth buT the dim is $n-R^{\prime}$ whe $R^{\prime}=\operatorname{Ronk} E^{\prime}$

So, not the expected dim.

In this cale $Z\left(s_{\varepsilon}\right) \subseteq Z(\Omega) \subseteq A$
then
idua: itos the dose petarcain.

$$
\begin{aligned}
& {[Z(\Omega)]^{\text {vi2T }}:=} {\left[Z\left(s_{\varepsilon}\right)\right] \in H_{2(n-R)}(M) } \\
&= C_{R-R)}\left(E / E^{\prime}\right) \cap[Z(s)] . \\
& \text { top chern } \\
& \text { dass }
\end{aligned}
$$

Mope gennel:

$$
[M]^{V^{V i T} T}:=0_{E}^{\prime}\left[C_{s}\right] \in A_{n-R}(M)
$$

A

$$
\{t \rightarrow+\infty
$$

Cintinsic
nomel
core)
C_{5} is pure \oint n-dim.

$$
C_{s} \subseteq E
$$

idea: We wart to $\underbrace{}_{\text {Ose an intrisic version of this cone using "infiniterinel }}$ datu" $p \in \mathbb{C}$

(The cotannal of $T_{p} A \xrightarrow{\text { d5lp }} \epsilon_{p}$) $:=$ obstuction bundle obs.
(2) Perfect) obstuection theay: X scheme, $\frac{D r}{\text { stack }}$

Cotongnt camplex : $\Omega_{x}=T_{x}{ }^{v}$
Functoridity: $\rightarrow f^{r} \Omega_{y} \rightarrow \Omega_{x} \rightarrow \Omega_{f} \rightarrow 0$
$L_{x}:=$ LeFT $D \in R V \in D$ Functur of Ω_{x}
$D^{n}(x)$ (danived cat. ρx)

- $h^{0}\left(1_{x}\right)=\Omega_{x}$
- $h^{i}\left(U_{x}\right)=0$ for $i>0$ (x a scherve)
- functriclity in denved categairs:

$$
f: x \rightarrow y \quad f^{v} \|_{x} \rightarrow \psi_{y} \rightarrow \psi_{\delta}
$$

- X smoth $\Rightarrow U_{x} \simeq e_{x}^{1}$
- $X \underset{\text { Regule }}{\rightarrow} \mathcal{A}^{\text {suneth }}, \|_{X}=\left[I /\left.I^{2} \rightarrow \Omega_{A}\right|_{X}\right]$

Definition: An onstuction thery in is a complex $E^{\prime} \in D(x)$ togetter with a rrop $E^{*} \rightarrow \Delta_{x}$ mech thet

- $h^{0}(\phi)$ is an iso.
- $h^{-1}(\phi)$ is sygedre.

Rmk: Moduli spaces usudly corre with obstuction theaics. sine $T M=\operatorname{HoM}\left(\operatorname{Spee}\left(\Phi(\varepsilon) / \varepsilon^{2}\right), \Pi\right)$

Exemple: $\quad M_{:}=\operatorname{Maps}(C, X)$
unve smoth
\downarrow
obstuction thery corsher if whe doist E^{-0} is know theT E is actudy the cotyent corplix to a drumed inhmarest
If we use denved gaverty, $\$$ ames foum of the mpping facturicity cournt fo colp couses

Defnition: $E^{0} \xrightarrow{\phi} L_{x}$ is a 2-term penfect obs. They ($P \circ T$)
if locally we con write

$$
E^{0}=\left[E^{-1} \longrightarrow E^{0}\right]
$$

Rimle:

$$
\operatorname{Ronk}\left(E^{0}\right)_{I_{p}}:=\operatorname{Rnk}\left(E^{0}\right)_{I_{p}}-\operatorname{Rnh}\left(E^{-1}\right)_{\left.\right|_{p}}
$$

is a localy constur fration.

Thenem: (Betrend-Fortechi, Li-tian) If M hos a 2terem pot, there is $[M]^{v i 2}=\left[M, E^{\bullet} \rightarrow u_{x}\right]^{v i 2} \in A_{v . d}(M)$
$\operatorname{vd}=\operatorname{Rank}\left(E^{\bullet}\right) \quad$

$H_{\text {2.vidim! }}(M)$

$$
[M]^{v i 2}=\left[M, E^{\cdot} \rightarrow 4_{x}\right]^{v i 2} \in A_{v \cdot d}(M)
$$

idea of proof
in this tale: "stack" = locally looks like $[X / G]$

Dofnition: A vector budle/(cone stack) over M is a stuck $V \rightarrow M /(C \rightarrow M)$ The locelly looks like a quotient of two vectr bundle $\left[E_{1} / E_{0}\right]$ (Rasp , c / E] $\underbrace{}_{\text {cure }}$ in The sense of Fulton.

Defintious / Propositiow

- $\dot{P \in D}(M)$ with $h^{\geq 0}(P)=0$

Then There is a cone stack such that locelly

$$
\begin{aligned}
& P_{0}:=\left(P^{0}\right)^{v}=\left[P_{0} \rightarrow P_{1}-P_{2} \rightarrow \ldots\right] \\
& c\left(P^{0}\right)=\left[\frac{\operatorname{kar}\left(P_{1}-P_{2}\right)}{P_{0}}\right]=h^{\prime} / h^{0}\left(P_{0}\right)
\end{aligned}
$$

associcted cone stack:
dairs: if P^{0} is a 2 -termm pufeat ohst. Theny then $C\left(P^{\circ}\right)$ is a vecte budle stach.

$$
\begin{align*}
& E^{0} \rightarrow U_{x} \rightarrow c\left(U_{x}\right) \xrightarrow{c(\phi)} C\left(E^{0}\right) \\
& \text { " } \\
& \underset{\substack{\text { nhol } \\
\text { shef. }}}{\mathrm{N}_{x}}
\end{align*}
$$

thrin (Betend-Fentedii): $C(\phi)$ is a closed embeddily

Puplem: N_{x} is not pure dimensin $\quad(x=M)$ φ_{x} \&n inthinsic nand core
intrinsic nomad shes: (cell modelled on
local

FAct: G_{M} is pure $\operatorname{dim} 0$

Definition:

$$
[M]^{v i n T}:=0_{\varepsilon}^{!}\left(\left[G_{n}\right]\right)
$$

How to work with viztud find. Classes (Basic toolkit)

- M smooth, $[M]^{\text {virt }}=e_{\text {Top }}\left(h^{1}\left(E^{0}\right)^{V}\right) \cap[M]$
- (ranolache) f:M $\rightarrow N$ with neletve p.O.T

$$
f^{\prime}: A_{0}(N) \rightarrow A_{0}(M)
$$

and in some cases, $\left.f^{\prime}(C N]^{\text {nit }}\right)=[M]^{\text {vii }}$

- Siebent $[M]^{\text {viT }}=[\underbrace{S\left(E^{*}\right)}_{\substack{\text { segre } \\ \text { dass }}} \cap \underbrace{C_{F}(M)}_{\substack{\text { Fllton's } \\ \text { dass }}}]_{\text {V.d. }}$
- Gaber-Pandainidimes:

Taus T 2 M
Then $[M]^{\text {vir }}=$ somethy on fyed ponts T^{\top}

- (Kiem-li) (Cosection locelzction.)

Tulk \#3: DT-tye invarionts after Behrend Motivationd exeuple:
$x 3 c y$, smeeth / paysetive, $\omega_{x} \simeq \mathcal{O}_{x}$
$\mu_{S T}^{\alpha}:=$ moduli space of stable sheoves poper
can constueta POT on $\vec{r}_{S T}{ }^{\alpha}$
using the cy condition, this POT is symuretric
Definition: A peffert symmetic obst. th. (S, O,T) is a P.O.T $E^{\circ} \rightarrow L_{x}$ in $D(x)$
$+\exists$ quai-isomphism

$$
E \frac{\sim}{\eta} E^{v}[1]
$$

with $\eta^{2}[1] \simeq \eta$

Talk \#2, given P.O.T con constuet viztual find dess

$$
[X]^{\text {vin } \in A_{\text {RnE }}(X)} \begin{aligned}
\operatorname{Ru} E^{\circ}-\operatorname{au} \epsilon^{-1}
\end{aligned}
$$

Now: If E is clso symmetical, then

$$
\text { RUE }=R U E^{v}[1]=-R U E^{V}=-R K E
$$

\downarrow

$$
R u E=0
$$

since $M_{S T}^{\alpha}$ is proper we con define

$$
\text { DT-invariants } \left.:=\int \frac{1}{1}=d y\left[M_{S T}^{\alpha}\right]^{v_{S T}}\right]_{v i 2}
$$

ingenad, con define DT-type invarionts on any S.O.T

Behrend's Main result is the in fact we do not reed virtue fidarentil cases to do the counting:
Thu (Beheerd) X proper with S.O.T
then $D T(x)=\chi_{e}\left(x, \nu_{x}\right)=\sum_{i \in \mathbb{Z}} i x\left(\nu_{x}=i\right)$
when $\nu_{x}: x \rightarrow \mathbb{Z}$ is the Betrend fraction.

Main Results:

- IT invariants do not depend on the choice of the S.O.T
- This allows for a definition even when X is not proper.
- This leads to Joyce's categuification of DT-invarionts.

Exeple: when X is smocth with S.O.T then $[x]^{v^{i z}}=c^{\text {top }}\left(H^{\prime}(E)^{v}\right) \cap[X]$ is reymmetic obsT

$$
\begin{gathered}
H_{C^{0}(E)}^{1 S} \text { P.O.T। They } \\
H^{+0\left(U_{x}\right)}=\Omega_{x}^{1}
\end{gathered}
$$

In this case

$$
\begin{array}{r}
D T=\int_{[x]^{\text {vic }}} 1=\int_{x} c^{\operatorname{tap}}\left(\Omega_{x}^{\prime}\right)=(-1)^{\operatorname{dir} x} \int_{x} \operatorname{ctp}^{\operatorname{tap}(\pi x)} \\
=(-1)^{\operatorname{dir} x} \underbrace{\chi(x)} \\
\text { Gauss-BoneT } \underbrace{}_{\text {Eubr-chnocthist }}
\end{array}
$$

Locd moale fo Betrend's couputation

$$
\underset{\sim_{\operatorname{uir}(f)}^{x}}{x} u \stackrel{f}{l} \phi
$$

This has a rotud S.O.T if
$T_{u}=\left(\Omega_{0}^{1}\right)^{2}$ Symmety comes fen the symmedy of the Hecsicn

$$
\begin{aligned}
{\left[\pi_{u} \xrightarrow{H f}\right.} & \left.\Omega_{x}^{\prime}\right] \\
& \left(\pi_{u} \xrightarrow{v} \xrightarrow{\Delta f_{0}^{\prime}} \operatorname{Re}_{u}^{\prime}\right)
\end{aligned}
$$

Behend's finction:
step 1

$$
\begin{aligned}
& \text { Ein } \theta \\
& x=\cos ^{-}(f) \\
& \phi
\end{aligned}
$$

$p \in \operatorname{ar} f:$

$$
\frac{\nabla f}{\nu_{x}}(p):=[1-x(\Pi F(p))](-1)^{\operatorname{din} U}
$$

Exuples: $\phi^{2} \xrightarrow{f} \phi \quad x^{2}+y^{2}$

$$
\operatorname{cirf}=0 \quad{\underset{\substack{m i n}}{\min }(f, 0)=s^{1}}_{\min }^{c}
$$

$$
V_{x}(0)=1
$$

Eaple

$$
\operatorname{cut} f=\{0\}
$$

$x \longmapsto \frac{x^{3}}{f} \prod_{5}^{9}$

$$
f^{\prime}=3 x^{2}
$$

9 schere the entizals

$$
{ }^{11}\left(\frac{4[\varepsilon]}{3 x^{2}}\right)
$$

In this cart

$$
\begin{aligned}
& \operatorname{MF}(0)=3 \text { points }\left(\begin{array}{c}
\text { nots }) \\
\nu_{x}(0)=(-1)^{\text {dinin } \phi}[1-3]=2 \\
3 \text { cunvested }
\end{array}+\begin{array}{l}
\text { is corts }
\end{array}\right.
\end{aligned}
$$

ν_{x} counts the point O but with multiplicity 2 (which is also in this core the scterve thematic multiplicity $\operatorname{spen}\left(h(\varepsilon) / \varepsilon^{2}\right)$

Step 2: Relation to vanishing cycles
show
vanishes is actually spurted on the citicd lows via six
options

$$
\begin{aligned}
& \cdot H^{k}\left(\left.\phi_{f} Q[d i \sim u)\right|_{p} \simeq H^{\circ}(M F(p), Q)\right. \\
& \cdot V_{x}(p)=x\left(\left.\phi_{f} Q[\operatorname{dinu}]\right|_{p}\right)
\end{aligned}
$$

$$
=\sum_{n \in 2!}(-1)^{n} \operatorname{dim}\left(t^{k}\left(\phi_{f} Q(d u l)\right)\right.
$$

foyce etd: These penvere sheoves glue on x to a gloholly difine parwere shef.
bach to or exeypes
exeqle

$$
\begin{aligned}
& x^{2}+y^{2} \\
& \phi_{f}=Q_{0}
\end{aligned}
$$

exeuple x^{3}

$$
\phi_{f}=\underline{Q}_{0}^{2}
$$

exuple: $u \xrightarrow{\text { ofretion }} \mathbb{C}$

$$
v_{x}(p)=(-1)^{\operatorname{dim} M}
$$

The General construction

local model:

Definition: Gtabd definition of V_{x}

$$
\nu_{x}:=E_{s}\left(c_{x}\right)
$$

this is very confusiy becaure we don't seem
Poperties to need the S.O.I to defu ayy of ths.
(1) This agus with load moded by denved aitel lows.
(2) If $p \in X$ and X sneeth at p

$$
\nu_{x}(P)=(-1)^{\operatorname{din} x}
$$

(3) $x \xrightarrow{f} y$ Smeeth mphism then $f^{x} \nu_{y}=(-1)^{\operatorname{din} x / y} \nu_{x}$

Ideas cbout the prod:
(1) Singulz Gaws-Bonnet
(Mcpherson's theoen)
For, $\int_{x \in Z(x)} \underset{\text { chem-rothr }}{e^{M}(x)}=x(x, E v(v))$
chem-rothe
dass
difined in tems ρ The "Nash "
(1)
$A(X)$

Preposition (Betreed)

$$
[x]_{v i i}=\oplus_{T O H}^{!}(c)
$$

whe $C=\frac{C}{x} / M$ in the loal mode.
(3) commutetivity of
(x)

Finclly: The commuttinty of (xb) implies

$$
D T(x)=\int_{[x]^{v i 2}}^{1}=\int_{\substack{\text { Betheds Thewer }}}^{1} \int_{0_{T v M}^{1}[c]}^{d}=\int_{x} c^{\pi}\left(c_{x}\right)
$$

in partials

$$
x\left(x, \frac{E_{u}\left(C_{x}\right)}{\nu_{x}}\right)
$$

S.0.T is needed to define $\underbrace{\underline{Q J^{v i z}} \text { : }}$
but one con slow that in fact The revet is independent of The S.O.T

Talk \#4: Holompphic casson invarionts
Plan:

1) Defanation of sheoves, stetch of modubi pertlem.
2) Stability for skeaves
3) skatch \& $D T$-invariants for ey 3 folds

PaT1: X a smooth scheme $/ \Varangle$

$$
F_{0} \in \operatorname{coh}(x)
$$

A defurnation of F_{0} is a shef F on $X \times \mathbb{D}$ whe $1 D=\operatorname{spee}\left(\Phi[t] / t^{2}\right)$ meh theT $\left.F\right|_{X \times 304} \simeq F_{0}$, and such thet F is flat/ID.

More ginerelly, a Bfornily of whent sheas in X is a shey on $X \times B$ flat ovn B.

Proposition: $F_{0} \in \cos (x)$. Then
\{infinitesivel defenetirs $\} \sim E \times T_{x}^{1}\left(F_{0}, F_{0}\right)$ $\& F_{0}$
sketch of proof:
suppose we hove a defervetion F on XxII. with F flat /D. Then we have on excel sevence on $\operatorname{cch}(X X I D)$

$$
\begin{aligned}
& F \xrightarrow{\cdot t} F \longrightarrow \pi^{\circ} F_{0} \longrightarrow 0 \\
& \pi: I D \times X \rightarrow X \\
& 0 \rightarrow \pi^{b} F_{0} \rightarrow F \rightarrow \pi^{v} F_{0}-0 \\
& \text { on } \operatorname{chh}(x \times 1 D) \\
& \pi_{*}=c^{*} \\
& i \pi^{2}=i d \\
& \downarrow \text { restriction } \\
& 0 \rightarrow F_{0} \rightarrow F \rightarrow F_{0} \rightarrow 0 \text { on } X
\end{aligned}
$$

given an element in $\underset{x}{\operatorname{ExT}}\left(F_{0}^{\prime}, F_{0}\right)$

Conversely: Given

$$
\left[0 \rightarrow F_{0}{ }^{\wedge}-F \frac{R}{F_{0}}-0\right] \in \underset{x}{X-1}\left(F_{0} F_{0}\right)
$$

Then F_{0} is an O_{x}-module: wont to upgrade to gre F_{0} the structure of $O_{x \times 10}$

Let t act by $i o n$

$$
O_{x}{ }^{11} d \pi / t^{2}
$$

- module
and we are due. $\quad\left(\frac{i R i k}{0}\right)=0$.
\qquad
\qquad
obstructions: F defers F_{0} over D.

$$
\text { let } D^{\prime}:=\operatorname{spee}\left(\Phi[T] / t^{3}\right)
$$

Answer: obstuections are classifud by

$$
E \times T_{x}^{2}\left(F_{0}, F_{0}\right)
$$

\downarrow
suppose F is a $1^{\text {sT }}$ add defamation of F_{0}. and F^{\prime} is an extension to D^{\prime}

$$
\begin{aligned}
& x \xrightarrow[F_{0}]{x} \cos \\
& 2 \\
& I D-\frac{F}{F}, \prime \\
& 2, F^{\prime} \\
& D^{\prime}, F^{\prime}
\end{aligned}
$$

Then we get a shat expect sepunce on $\operatorname{coh}(x \times D)$

$$
0-t^{2} F_{0} \rightarrow F^{\prime} \rightarrow F-0
$$

but we also hove another

by restriding to x we get a^{2} dass in

$$
E \times T_{x}^{\prime}\left(F, F_{0}\right)
$$

which rusticts to the class of $F \in \underset{X}{G T^{\prime}(F, F)}$

this is part of a long exact sequeve P GXT grops:

$$
\begin{aligned}
& E x T^{\prime}\left(F, F_{0}\right) \rightarrow E x T_{x}^{\prime}\left(F_{0}, F_{0}\right) \rightarrow E_{x} T_{x}^{2}\left(F_{0}, F_{0}\right) \\
& \text { e طeue. }
\end{aligned}
$$

PA2T 2: stability

- X pogeotre smath / Φ
- choose ample line budly O_{x} (1)
- $H:=C_{1}\left(O_{x}(1)\right)$
associcted to any sheg we tove an hithent fraction

$$
P(F, t)=x\left(F \otimes O_{x}(t)\right)
$$

thy (semre) this is a polynonid. fon lage t,

$$
a_{N} t^{N}+a_{n-1} t^{n-1}+\cdots
$$

Dofrition: slope of the shef F
ij

$$
\mu_{H}(F)=\frac{a_{n-1}}{a_{n}}
$$

Fact:

$$
\begin{aligned}
& \mu_{H}(F)=\frac{e_{1}(F) \cdot H^{n-1}}{\operatorname{rank} F} \\
& \text { comes fom Hizzehuch -Riemon-Roch }
\end{aligned}
$$

Definiton: F is slope Semi-stebe iff \forall shout exact sepuncs (non-tivid)

$$
O \rightarrow A \rightarrow F \rightarrow B \rightarrow 0
$$

then

$$
\mu_{H}(A) \leqslant \mu_{H}(F)
$$

(if $\operatorname{dim} F=d i=B$) Then This is an equlun.

Propartics
(1) Slope semi-stable \Rightarrow tasion fue
(2) semi-stability is an open condition.
(3) "schuz property" ("scolu endaryhisnss)
\downarrow
supase $F, 6$ steble with sore nonk the save dorn class then $\operatorname{Hom}(F, G)= \begin{cases}0 & F \neq G \\ \text { d.Id } F & F \simeq G\end{cases}$

Proof: suppore we have $\phi: F \rightarrow G$. we con fucth os

$$
0 \rightarrow \text { Krine } \phi \rightarrow F-\operatorname{In} \phi-0
$$

Since F is stzele

$$
\mu_{H}(F)<\mu_{H}(\operatorname{Im} \phi)
$$

but we also hove

$$
0 \rightarrow \operatorname{Im} \phi \rightarrow G \rightarrow \text { Cotan } \phi-0
$$

Then

$$
\mu_{H}(\operatorname{Im} \phi)<\mu_{H}(G)
$$

but we hove assume $F \& G$ with the save slope \Rightarrow contradiction.
\Downarrow
Eth $\phi=0$ or ϕ is an is orphism

Property: The moduli of stable sheaves is
SEparated:
Prog!: Let F and G on $X \times\left. A\right|^{\prime}, F_{t}, G_{t}$ stable $\forall t$
with $F_{t} \simeq G_{t}$
Then $F \simeq G$ for all $\binom{$ in patiale }{$t=0}$
\& computation
$\pi_{*} \operatorname{Hom}(G, F)$ is a lis bindle (become of the previas ult) amoy fern 0 .
but $\operatorname{Hom}(6, F)$ is talion flee
So π_{*} How (G, F) is tasion-fue hence a line bundle on AI, but all line bulls on All ore trivia.

Pick $\phi \in \Gamma\left(\operatorname{Al}^{\prime}, \operatorname{Hom}(G, F)\right)$. non-ranishing.

Parts Holomphic Casson inv.

- X smooth pryealue CY
- Fix rank R, if $R>0$ fix a line bale L
- Fix $c_{i} \in H^{2 i}(x, \phi)$

Then we hove a moduli space of semi-stable shears as a Actin stacte
$M_{L}\left(x, c_{i}\right)$ of renk R
$\sim M_{L}\left(x, c_{i}\right)$
Thm (Hoy brechts) $\operatorname{de} T F=L$ (fxed detemennet)

$$
c_{i}(F)=c_{i}
$$

Dufinition: G and F on $\operatorname{chs}^{\text {sem-stable }(x \times 5)}$ are equelart if $\exists P$ a line bndle on S wo such thet

$$
\begin{aligned}
& G \simeq F \otimes \pi^{6} P \\
& \pi: x \times s-5 .
\end{aligned}
$$

claim: The tungent complex of $\mu_{L}\left(X, c_{i}\right)$ at F is gren by the exT-complex

$$
\underline{E X T}_{x}(F, F)
$$

Serene duclity: $\frac{\text { conect: } \frac{R H_{0}}{x}}{x}\left(F_{0}, F_{0}\right)$

$$
\begin{aligned}
& E_{x} T_{x}^{i}(F, G) \simeq \operatorname{Ci}_{x}^{n-i}\left(\sigma, F o \omega_{x}\right)^{v} \\
& +C_{y} \omega_{x} \simeq O_{x}
\end{aligned} \begin{gathered}
\text { dudsiy } \\
\text { shag }
\end{gathered}
$$

So: $\quad E_{x} T_{x}^{\prime}\left(F_{0}, F_{0}\right) \simeq E x T^{2}\left(F_{0}, F_{0}\right)^{v}$
\sqrt{V} by the P.O.T famelism of tolk \#2
can defire

$$
\left[M_{L}\left(x, c_{i}\right)\right]^{V_{i}}
$$

Taek\#5 DT-invariants in CY 4-foeds.

Let M be a moduli space of stable $=$ semistable sheoves on a cy ufold x
$f \mathcal{E}$ onivend sheave

$$
\begin{aligned}
& X \times M \\
& \downarrow \pi \\
& M
\end{aligned} \quad \text { [Hoybuchts - Thomas] }
$$ hos non-uro Fense of Betuend-Fentechi h^{2} term

NoT quasi-smreeth, buT pefeet in dygee $[2,0]$

- Fer $[F]=x \in \pi$

$$
\begin{array}{ll}
\downarrow \\
& h^{-2}\left(\left.E_{M}\right|_{x}\right)=T_{M, x}=E_{X} T_{x}^{\prime}(F, F) \\
& h^{-1}\left(\left.E_{M}\right|_{x}\right)=\Delta b^{*}=E_{x} T_{x}^{2}(F, F)
\end{array}
$$

Following Li-tiamm / Behernd-Fontechi's idea, if M is smocth, then wecon define
$[M]^{\text {viz }}=e\left(G T^{2}\right)$ as they are budles.
$\int_{\text {But this is unang. Why? }}$
exp. dimensin $=e x t^{\prime}-e x t^{2}$ may not be constent in gernel.

Serere duclity: $E X T^{\prime} \simeq\left(E x T^{3}\right)^{2}, E X T^{2} \simeq\left(E X T^{2}\right)^{2}$
(More precisely $E_{M} \frac{\sim}{\theta} E_{M}^{v}[2] \quad \theta=\theta^{v}[2]$)
Resider of a (-2)-shifted
symplectic foun

- Using this, if $R n k\left(G x^{2}\right)$ is even, then

$$
\begin{aligned}
& E \times T^{2} \stackrel{\text { locdly. }}{\sim} \Lambda \oplus \Lambda^{t} \\
& 15 \geqslant \text { sfid locdly } \\
& \left(E x T^{2}\right)^{v} \simeq \Lambda \oplus \Lambda^{*} \text { this exists }
\end{aligned}
$$

Then, the canst one is
in this case

$$
\begin{aligned}
\exp \cdot \operatorname{dim} & =e x t^{1}-\frac{1}{2} e x t^{2} \\
& =\frac{1}{2}\left(e x t^{1}-e x t^{2}+e x t^{3}\right) \\
& =\frac{1}{2}(-x(F, F)+2)=\text { constant }
\end{aligned}
$$

why is This correct? \rightarrow because of carve counting Theny (GW)

$$
\left[\mathrm{CaO}_{7} \text { lung }\right]
$$

Example:
Let $C=\mathbb{P}^{\prime} \longrightarrow \underbrace{X}_{C y 4 \text { fred. }}$ with idea $I_{C}=: F$ Then we claim cyl 4 fold.

$$
\begin{gathered}
E x T^{\prime}\left(I_{c}, I_{c}\right) \simeq H^{0}\left(C, N_{C x}\right) \\
E_{x} T^{2}\left(I_{c}, I_{c}\right) \simeq \underbrace{H^{\prime}\left(C_{1}, N_{C x}\right) \oplus} H^{H^{\prime}\left(C, N_{C_{(x}}\right)} \underbrace{V}_{I_{x x}}
\end{gathered}
$$

Prod
Since x is cy, $h^{i}\left(x, O_{x}\right)=0 \quad i=1,2,3$ and $\quad h^{0}\left(O_{x}\right)=h^{4}\left(O_{x}\right)=1$

$$
\begin{aligned}
& h^{i}\left(X, O_{c}\right)=h^{i}\left(C, O_{C}\right)=0 \quad i=1,2,3,4 \\
& h^{0}\left(c, O_{C}\right)=1
\end{aligned}
$$

$u \operatorname{sing} \quad 0 \rightarrow I_{C} \rightarrow O_{x} \rightarrow O_{C}-0$
we have

$$
\begin{aligned}
& \ldots \operatorname{ExT}^{i}\left(I_{c}, I_{C}\right) \rightarrow \operatorname{ExT}^{i}\left(I_{c}, O_{x}\right) \rightarrow \operatorname{ExT}^{i}\left(I_{C}, O_{C}\right) \\
& G T^{i+1}\left(I_{c,} I_{c}\right) \\
& \text { F } i=1 \\
& E x T^{\prime}\left(I_{c,} O_{x}\right) \simeq \operatorname{ExT}^{3}\left(0_{x}, I_{c}\right)^{2} \\
& E x T^{i+1}\left(I_{y} Q_{x}\right) \\
& ! \\
& H_{\substack{4 \\
H^{3} \\
0}} \rightarrow \mathrm{H}^{2}\left(\mathrm{O}_{\mathrm{C}}\right)=0 \\
& H^{2}(0 c)=0
\end{aligned}
$$

$$
\begin{aligned}
E \times T^{2}\left(I_{c}, O_{x}\right) & \simeq H^{2}\left(I_{c}\right)^{v}=0 \\
E_{x} T^{\prime}\left(I_{c}, O_{c}\right) & \simeq E \times T^{2}\left(I_{c}, I_{c}\right) \\
i=0: \quad E x T^{0}\left(I_{c}, O_{x}\right) & \simeq H^{4}\left(I_{c}\right)^{2} H^{4}\left(O_{x}\right)^{v} \\
0 & =H^{3}\left(O_{c}\right)^{v} \\
E_{x} T^{0}\left(I_{c}, I_{c}\right) & =\varnothing
\end{aligned}
$$

Hence: $E_{X} T^{0}\left(I_{C}, O_{x}\right) \rightarrow E T^{0}\left(I_{c}, O_{C}\right)$ is URO

So: $\operatorname{ExT}^{0}\left(I_{c}, O_{C}\right) \simeq E \times T^{\prime}\left(I_{C}, I_{C}\right)$

Similarly: we con slow that

$$
\text { - } E_{X} T^{\prime}\left(I_{c}, O_{c}\right) \simeq E_{X T} T^{2}\left(O_{C}, O_{C}\right)
$$

So it remains to relate $E X T^{2}\left(O_{c}, O_{c}\right)$ and $E \times T^{\prime}\left(O_{C}, O_{C}\right)$ to GW-numhers:
\downarrow
Couputation:

$$
E_{x T^{*}}\left(O_{c}, O_{c}\right) \simeq H^{*}\left(x, \underline{E x T}^{\star}\left(\theta_{c}, 0_{c}\right)\right)
$$

IS adjndios fanule

$$
\begin{array}{ll}
L: C \rightarrow X & H^{*}\left(X, L_{*} \wedge^{\infty} N_{C \not X}\right) \\
& \int S^{x} \\
& H^{*}\left(C, \Lambda^{*} N_{C / x}\right)
\end{array}
$$

\Rightarrow when $x=1$

$$
E_{x T^{\prime}}\left(O_{c}, O_{c}\right) \simeq H^{\prime}(C, N c / x) \oplus \underbrace{H_{0}^{\prime}\left(O_{c}\right)}_{0}
$$

when $x=2$

$$
E_{x} T^{2}\left(O_{C,} O_{C}\right) \simeq H^{2}\left(C_{1} \Lambda^{2}\left(N_{C / x}\right)\right)
$$

(using KoszuL muschution) \rightarrow IS

$$
H^{0}\left(\Lambda^{2} N\right) \oplus H^{\prime}(N) \oplus H_{\pi_{0}}^{2}\left(\theta_{C}\right)
$$

using $\Lambda^{2} N \otimes N \rightarrow \Lambda^{3} N=w_{x} \circ \omega_{c}^{-1}$

$$
H^{0}\left(\Lambda^{2} N\right)=H^{0}\left(N^{\vee}\left(\omega_{c}\right)\right.
$$

is serre dudity

$$
H^{\prime}(N)^{v}
$$

So : $\epsilon_{x} T^{2}\left(O_{c}, \sigma_{c}\right) \simeq \underbrace{H^{\prime}(N)^{V}}_{\Lambda^{2}} \otimes \underbrace{H^{\prime}(N)}_{\Lambda}$

RmX: There is also a Gange thenetic Reason see (Joye-Borisor). They use diffenticl gemrety to find a decoppostion

$$
E \times T^{2} \simeq \frac{E \times T_{\mathbb{R}}^{2}}{\Lambda} \oplus i E_{X} T_{\mathbb{R}}^{2}
$$

and define

$$
C M]^{M V^{i 2}} \in H^{B M},(M]^{n_{2}}=\operatorname{euh}\left(E X T_{R}^{2}\right)
$$

Brief idea of Baisov-Joyce
using symplectic deuved gravety we get a locd modre (Daboux Lemma!)

$$
\begin{aligned}
& (E, q) \\
& \pi \downarrow) \quad q(5,5)=0 \\
& M \supseteq u \underset{s^{-1}(0)}{\longrightarrow} A \\
& \text { pen } S^{-1}(0)
\end{aligned}
$$

Reme
given such a loced madil we get a cononical Δ and Δ^{*} as chove!
such that

$$
\left.\left[T_{A \mid v} \xrightarrow{d s} E \left\lvert\, \frac{(d s)^{*}}{u} \Omega_{A \mid v}\right.\right] \underset{\text { bacd moall }}{\simeq} E_{n}\right|_{U}
$$

bacd moall of the corbuction theny.
using decaposition

$$
E \simeq E_{\mathbb{R}} \oplus i E_{\mathbb{R}}
$$

we hove $\quad(A, \underbrace{\left.E_{\mathbb{R}}, s_{+}\right)}$j $s_{+}: A \rightarrow \epsilon \rightarrow \epsilon_{\mathbb{R}}$
Joyce calls These μ-Kunanishi chats of r

Joyce uses this to define

$$
[M]^{v i 2} \in H^{B M}(M)
$$

suppose $R=2 n$. then

$$
\wedge C E \rightarrow E_{\mathbb{R}} \quad \text { is } \underset{\mathbb{R} \text {-iso }}{=} \text { of }
$$

f
we chook an aientation on E such thaT The induced aientetion on Λ and $E_{\mathbb{R}}$ are couptibl.

Algemaic construction
(finding a lift to chow)

Need coefficients containing $\frac{1}{2}$.
\rightarrow Need correction localzation:

$$
\begin{aligned}
& (V, F, t) \leadsto(u]^{v i z} \in A_{\infty}(u)
\end{aligned}
$$

buT with the extra data of σ,

$$
(V, F, t, \sigma) \leadsto \exists[U]_{\sigma}^{v i z} \in A_{+}\left(U \cap Z\left(\sigma^{v}\right)\right)
$$

mach that the purfuned alloy the indusion

Recovers [U]जय?

In the languger of pufere obs: th.

$$
\begin{aligned}
& E_{M} \xrightarrow{6} O_{M}[-1] \\
& \{\phi \downarrow \\
& \text { producs }[N Y]^{v i z} \\
& \text { so tole } Z=0 \mathrm{M} / \mathrm{Im}_{\mathrm{m}} h^{\prime}(\sigma) \\
& \text { dosed substicle } \\
& \text { of } r \text {. }
\end{aligned}
$$

but addiy $\sigma,(\phi, \sigma) \leadsto$ produces

$$
[M]_{\sigma}^{n i T} \in A_{i}(z)
$$

whase pustifenel to M gres becle (M) $)^{\text {vir }}$

Now lets retorn to M : in or locd model

$$
\begin{gathered}
(E, q)=\left(\Lambda \oplus \Lambda^{\downarrow}, q=\text { paining }\right) \\
\downarrow^{-1}(0) s
\end{gathered} \text { then } s=\left(s_{1}, s_{2}\right)
$$

$\Lambda=$ mexind isctrpic
then: This gres a new locel model \quad (locd model

$$
\uparrow
$$

\longrightarrow we obtain

$$
\begin{gathered}
s_{2}^{-1}(0) \cap s_{1}^{-1}(0) \\
11 \\
s^{-1}(0)=0
\end{gathered}
$$

$$
\begin{gathered}
\square U]_{S_{1}^{D}}^{\text {vir pushfound }} \longmapsto
\end{gathered}
$$

we define

$$
[v]_{\text {DT4 }}^{\text {viLT }}:=(-1)^{n}[0]_{O^{*}}^{\text {vint }}
$$

Poposituw: EM is repesented by

$$
\begin{aligned}
& \text { funheT?) } \\
& \Lambda^{\infty} \xrightarrow{s_{1}^{x}} 0_{A} \\
& \downarrow)_{2} \\
& S_{2}^{-1}(0) \longrightarrow A
\end{aligned}
$$

Now we fove

$$
\begin{array}{ll}
p^{x} E=\Lambda^{\infty} & C \\
\downarrow j r=\text { tandolgice } & \lambda^{\nu} p
\end{array}
$$

$$
\tau^{-1}(0)=M C C
$$

τ is isotopic

Talk \#6 - Critical Viztud ranifolds (CVM)

- semi Pot's.
(fllowing Kier-Li)
Question: (Jayce - Song)
- X moduli of stable sheoves on Y dos the exists $P \in \operatorname{Par}(x)$ on $x^{a n}$, locelly isomuphic to sheof of vanishing cycle of f holomphic.

Positve answer: when y is cy-3 fold, if $X^{\text {red }}$ is of finite tye
 and if admits a tuntolgical? fornily
(lite polling bock the univend fourily along)

$$
\left.x_{\text {rd }} \leftrightarrow x\right)
$$

Defrition: an LG-pair (Landau-Ginzbung) is a pair (V, f)

Complex
manifeld
\uparrow holomphic function.

$$
v \rightarrow \Phi
$$

wheh thet ony aiticd value is 0

Definition: $A \subset V M$ is a $\frac{\text { arectic }}{\text { space }} X$ with en open covering $\left\{X_{\alpha}\right\}$ and for each α, an LGpair $\left(V_{\alpha}, f_{\alpha}\right)$ and embeddily

$$
X_{\alpha} c_{1} V_{\alpha}
$$

such thet

$$
x_{\alpha} \simeq \operatorname{CiT}\left(v_{\alpha}, f_{\alpha}\right)
$$

bibolomphism. (as ancytic spues)
and far evey intinsection α, β, the slould exists

with

$$
\varphi_{\alpha \beta}=\varphi_{\beta \alpha}^{-1}
$$

$$
\varphi_{\alpha \alpha}=i d
$$

No cocycle condition. otherwise we could glue vanishing cycles directly without problem.
$\underset{\text { for CVM }}{\text { Notation: }}: \quad X=\left(x_{\alpha} \stackrel{\varphi_{\alpha}}{\longrightarrow} V_{\alpha} \xrightarrow{f_{\alpha}} \Phi\right)$

Examples:
(i) complex manifolds $V \quad(V, f=0)$
(ii) $Z(s)$ when smooth (? how)
(iii) moduli of stable shaves
(iv) Joyce d-aitical loci
(v) analytic space associated to (-1)-shifted denver scheme.
\oint orientability

- X a CVM

Set $K_{\alpha}^{\nu}=\left.\left(\varphi_{\alpha}^{\gamma} \operatorname{det} T_{V_{\alpha}}\right)\right|_{x_{\alpha}^{\text {Red }}}$.
The $\varphi_{\alpha} \beta^{\prime} s$ induce $\begin{gathered}\text { via } \\ \text { (shat exact sg ems) }\end{gathered}$

$$
\left.K_{\alpha}^{v}\right|_{X_{\alpha \beta}}{\underset{\varepsilon_{\alpha \beta}}{\text { red }}} K_{\beta}^{v} \mid X_{\alpha \beta}^{\text {ned }}
$$

Phoposition: Set $x_{\alpha \beta \gamma}=x_{\alpha} \cap x_{\beta} \cap x_{\gamma}$
the

$$
\varepsilon_{\alpha \beta \gamma}:=\varepsilon_{\gamma \alpha} \varepsilon_{\beta \gamma} \varepsilon_{\alpha \beta}
$$

are locelly constan with valer $\{ \pm 1\}$
we heven a-coycle with valus in (2122)
リ

$$
\varepsilon=\left\{\begin{array}{l}
\left.\varepsilon_{\text {ppy }}\right\} \text { defins an deunt } \\
\text { in } H^{2}\left(x, \mathbb{Z}_{2}\right)
\end{array}\right.
$$

Definition: X is aientable if $\varepsilon=0$
In this case, \exists local codhain $\mu=\{\mu \alpha \beta\}$ with valus in $\mathbb{Z} / 2 \mathbb{Z}$ such thet

$$
\varepsilon_{\alpha \beta \gamma}=1
$$

These coyly glue $\left\{K_{\alpha}^{2}\right\}$ into a K_{X}^{v} line bide on $x^{\text {red }}$

$$
\left(K_{x}^{v} \otimes K_{x}^{v}=\underset{\text { of the dived }}{\underline{=}}\right. \text { covid bide) }
$$

ie : K_{x}^{V} is a square root of The conomicd bundle of X devin. So in this case this K_{X}^{V} squares to the determinant of the perfect obstruction thenar!
ie: ${ }^{\prime \prime} K_{x}^{v}=\sqrt{\operatorname{deT}(P O T)}$
$\oint^{\text {semi }}\left(\frac{1}{2}\right) P O T: X$ analytic space with $\operatorname{com}\left\{X_{\alpha}\right\}$ Wis is 1 with $\frac{1}{2}$ POT's E_{α} on ecol X_{α}. $\underset{\text { semi }}{2}$
0 if wividul.
con be glued to a $\frac{1}{2}$ POT on X if:
(i) $\forall \alpha, \beta$

$$
\exists \psi_{\alpha \beta}:\left.\left.H^{\prime}\left(E_{\alpha}^{K}\right)\right|_{\mathbb{x}_{\alpha \beta}} \sim H^{\prime}\left(E_{\beta}^{V}\right)\right|_{x_{\alpha \beta}}
$$

mech that

$$
\begin{aligned}
& \text { that } \psi_{\alpha \alpha}=i d, \psi_{\alpha \beta}^{-1}=\psi_{\beta \alpha} \\
& \text { and } \psi_{\beta \gamma} \psi_{\alpha \beta}=\psi_{\alpha} \gamma
\end{aligned}
$$

(ii) Via $\psi_{\alpha \beta},\left.E_{\alpha}\right|_{\alpha \alpha \beta}$ and $\left.E_{\beta}\right|_{\chi_{\alpha \beta}}$ define the save obstruction assignment

Rmks
(i) $\Rightarrow \exists \underbrace{}_{x} \operatorname{obs}_{x}$ gluing $\left\{\operatorname{ob}_{{S_{x_{\alpha}}}}=H^{\prime}\left(E_{\alpha}^{v}\right)\right\}$ obstuction shey
(ii) $[B F]$ Definition: infinitesinal Lifting puoblem of x at x.
$(x) 0 \rightarrow I \rightarrow B \rightarrow \bar{B} \rightarrow 0$
of Artin loced rings ($I \cdot m_{B}=0$)
$(x) \bar{g}: \operatorname{spee} \bar{B} \longrightarrow X$

$$
m_{\bar{B}} \longmapsto x
$$

SeT $(-)=\operatorname{spec}(\bar{B})$
then \bar{g} lifts to Δ iff $\omega(\bar{g}, B, \bar{B})=0$
whre

$$
\begin{aligned}
& \omega(\bar{g}, B, \bar{B}):=\left(\bar{g} \psi_{x}^{x} \rightarrow \psi_{\bar{\Delta}} \cdots \psi_{\Delta}\right. \\
& \theta \\
& E_{x} T^{\prime}\left(\vec{g}^{\prime} \|_{x}, I\right)
\end{aligned}
$$

Len: if $\phi: E \rightarrow \Delta_{X}$ is a POT The obstuction assignment is
$\operatorname{ob}_{x}(\phi, \bar{g}, \bar{B}, B)$ is a couposition

$$
\left.\left(\bar{g}^{x} E \xrightarrow{\omega} I(1]\right) \in H^{\prime}\left(E^{v}\right)\right|_{x} \otimes I
$$

curcial result in BF poer.

Defintion: A semi-POT $\left(\frac{1}{2} P_{0} T\right)$ is symmetic if all ϕ_{α}^{\prime} s are (as pufect ob. assigments)

+ all $\psi_{\alpha \beta}$ are identities on

$$
\Omega_{x^{\alpha}}^{\prime} \simeq 0 b_{x_{\alpha}} \xlongequal{\text { seen } y \text { day }} \begin{aligned}
& \text { in talk } 4
\end{aligned}
$$

Proposition: $X=\left(x_{\alpha}{ }^{\varphi_{\alpha}} V_{\alpha} \xrightarrow{f_{\alpha}} \phi\right)$ CV
with $\frac{1}{2}$ PoT's $=\left\{E_{\alpha}=\left[T_{\alpha_{\alpha}} \xrightarrow{H f_{\alpha}} T_{V_{\alpha}}^{x}\right]\right\}$ admits a semi-pufect ob. They in

$$
b_{x} \simeq \Omega_{x} . \frac{\text { independent }}{\text { of the chats }} .
$$

More precisely: given two merentatis of X as a CVI, we geT the sane obs. assignment

Rile: $\left\{E_{\alpha}\right\}$ do not due $\left(" \varphi_{\alpha \beta \gamma} \neq i d\right)$
4 bur they glue in the derived catecy
\downarrow dbecene there oe the toyent coplox

Back to DT-inVariants
$[B F]$
of the denved enhancemet of X
$X \longrightarrow M$ couplex manifold
Canogtic space with $\frac{1}{2}$ 恧 $\left\{E_{\alpha} \rightarrow 4_{\alpha \alpha}\right\}$
inthinsic normel core $G_{x_{\alpha} / u}=\left[\begin{array}{c}C_{u / y} \\ T_{Y / u}\end{array}\right]$
$u \subseteq X$ open

$$
\forall u c x_{\alpha}
$$

locd \quad embeding \mathcal{Z}
y smoeth

$$
\left.\vartheta_{x_{\alpha}} c \eta_{x_{\alpha}}:=h^{1} / h^{0}\left(L_{x_{\alpha}}^{v}\right) \rightarrow h_{h}^{1} / E_{\alpha}^{v}\right)
$$

- Considr a locol resolution in $D\left(X_{\alpha}\right)$

$$
\left.\underset{\substack{\text { locdly } \\ \text { flue }}}{F} \longrightarrow E_{\alpha}^{v}[1]\right]_{u}
$$

obstuction cone

$$
\begin{aligned}
& \zeta_{F} \longrightarrow F \\
& \underbrace{}_{x_{\alpha} \mid u} \sim h^{\prime} /\left.\rho_{0}\left(E_{\alpha}^{v}\right)\right|_{u}
\end{aligned}
$$

hoposition: [Behend + gluing] $\exists!\zeta_{M} \subseteq \Omega_{\pi}^{1}$
such thet $\forall u, \forall F, \forall$ lift

$$
\stackrel{\eta}{\left.\Omega_{m}\right|_{u}} \rightarrow \stackrel{F}{\downarrow} \Omega_{u}
$$

we here:

$$
\left.G_{M}\right|_{U}=\eta_{\substack{\text { puTof } \\ \text { the } \\ P_{0} T \text { dota }}}^{-1}\left(G_{F}\right)
$$

we heve
better:

$$
G_{M} \in \underset{\text { subgoup spanned }}{\mathcal{L}_{X}}\left(\Omega_{M}\right)
$$ by eonical lagrayean cycls with suppatin X.

Definition:
X compact \leadsto

$$
\begin{aligned}
& {[x]^{v i 2}=0_{\Omega_{M}}^{!}\left[G_{M}\right] \in A_{0}(x)} \\
& D T:=\operatorname{deg}[x]^{v i 2}
\end{aligned}
$$

Some facts: $*$ indipendent fion $X \hookrightarrow M$
where

* $\quad \zeta_{\pi}=l\left(c_{x}\right)$

Then $W \subseteq M$
$(l(w)=$ closure of conamel

$$
\text { of } W^{5 m} \subseteq \Omega_{\pi}
$$

extends to

$$
\begin{aligned}
Z_{x}(M) & \stackrel{e}{\longrightarrow} \mathscr{L}_{x}(M) \\
\searrow_{A_{0}(x)} & L 0!
\end{aligned}
$$

hm: X a $C V M$, compact, $C M$ along with its $\frac{1}{2}$ PoT. Then

$$
D T(x)=x\left(x, v_{x}\right)
$$

only depends on the coptic stuctre of x

Tark\#7 categuifying DT-invarionts on C.V.M (Taek \#6) of pervanse sheoves of vanishing cycls.
(Kiem-Li)
Pas
(土) couplaxes of vanishing cycls.

1) Construction

- $D \subseteq A 1^{1}$ a small (ancytic) disk anound 0 .
- V a complex manifold.

$$
f: V \rightarrow D \subseteq A^{\perp}
$$

Definition Let $D^{x}=D \backslash\{0\}$ and $\omega: \begin{gathered}\omega: \widetilde{D^{x}}-D^{x} \\ \text { coveral }\end{gathered}$

Then we fum:
the fanctor of vanishing cyces is

$$
\begin{aligned}
& \text { of vanishhing cyces is } \\
& \psi_{f}:=i^{b} \bar{\omega}_{f *} \bar{\omega}_{f}^{\prime}: D_{c}^{b}\left(\tilde{Q}_{V}\right) \\
& \downarrow \\
& D_{c}^{b}\left(Q_{V}\right)
\end{aligned}
$$

Raposition At $x \in V_{0}$
and $\forall \mu \in D_{c}^{b}\left(Q_{x}\right)$

$$
\forall u \in \mathbb{Z}
$$

we hove $H^{4}\left(\psi_{f} \mu\right)_{x} \simeq \mathbb{R}^{4} \Gamma\left(\Pi_{x}, \mu\right)$
whe $M F_{x}=$ rilnor fibr $=V_{x}^{x} \cap B_{\varepsilon}(x)$
whe $B_{\varepsilon}(x)$ is a bell centened at x of Radius $\varepsilon \ll 1$
Such tho T Radius of $D^{x} \ll \varepsilon$

Poposition: (Goresky - MacPherson)
\exists retiaction $s p: V \rightarrow V_{0}$ and an
Topolgicoly this is easy!
equilonce

$$
\begin{aligned}
\psi_{f} M \simeq & \operatorname{spx}_{x}\left(M \mid V_{s}\right) \\
& \left(V_{s} \text { generic fiter }\right)
\end{aligned}
$$

Rimle: Descciption of $S_{P_{*}}$ and $s p^{*}$ in cohamelgy since D is smal enolgh $V \underset{\substack{\text { equt }}}{\sim} V_{0}$
write $i: V_{\Delta} \rightarrow V \sim V_{0}$
Then $S_{p}: H^{\circ}\left(V_{0}, Q\right) \simeq H^{*}(V, Q)$

$$
H^{\downarrow}\left(v_{s}, Q\right)
$$

Note thet the notud honsfanation

$$
S_{p}^{x}: i^{\nu} \longrightarrow i^{i} \bar{\omega} \bar{\omega}_{+} \bar{\omega}^{*}
$$

induced by tre unit η of $\bar{\omega}_{f x}+\bar{\omega}_{f}^{x}$ inducs the aboue ofter applying it to Q_{V} and taking cohomelgy of globl sedions.

Definition the vanishing cyles factr ϕ_{f} is the coffor of s_{p}.

IT fallows theT

$$
\begin{aligned}
& H^{k}\left(\phi_{g} \mu\right)_{x} \simeq \mathbb{R}^{k+1} \Gamma(\underbrace{\left.B_{\varepsilon}(x), \Pi F_{x} ; M\right)}_{\begin{array}{c}
\text { Reletre } \\
\text { cohomelsy }
\end{array}} \\
& \text { antioula, }
\end{aligned}
$$

IN particula, with $M=Q$, we get

$$
\tilde{H}^{k}\left(M F_{x}, Q\right)
$$

since $B_{\varepsilon}(x) \cap V_{0}$ is contractible..
\rightarrow As a consequence, the suppent of ϕ_{f} is contained on the ariticd loms of f.

Alternete constuction (used by Kiem-li)
write $\left.V_{\geq 0}:=\{x \in V \mid \operatorname{Re}(f(x)))>0\right\}$

$$
\underbrace{V \backslash V \geqslant 0}_{\substack{!!\\ V<0}} \underset{\substack{!!}}{\longrightarrow} V
$$

Define Γ_{z} as the fibe g the seguence

$$
\Gamma_{z} \rightarrow i d \rightarrow j<_{x} j<i
$$

So it is the denved fractu of

$$
\mu \longmapsto \underbrace{\mathbb{R}^{\circ} \Gamma_{z}} \boldsymbol{M}
$$

explucitaly given by
then

$$
\phi_{f}[-n]=i^{-1} \Gamma
$$

Notation

$$
\begin{aligned}
& P_{\substack{\text { Penvence } \\
\text { shef of nenby cycls }}}=\psi_{f}[-1] \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } P_{f}:={ }^{P_{\phi_{f}}}(\underline{Q}[\operatorname{dimv}])
\end{aligned}
$$

Codllyy: At any $x \in \operatorname{CiT}(f)$

$$
\begin{aligned}
& x\left(P_{f}\right)_{x}=\sum(-1)^{n} H^{n}\left(P_{f}\right)_{x} \\
&=(-1)^{\text {dinv }}\left(1-x\left(M F_{x}\right)\right) \\
&=\nu_{\text {Bethend }}(x) \\
& \text { gnution }
\end{aligned}
$$

$$
x\left(\Gamma_{c}\left(\operatorname{air}(f), P_{f}\right)\right)=D T_{\text {invainats }}
$$

upshoT : on a locel aiticd chat Pf is a categuification of the Bemend function.

ParT II Propentics \& P_{f}
Preposition the factors ${ }^{{ }^{\psi_{f}}} e^{P_{\phi f}}$ commute with Varia duality, ie

$$
\operatorname{PD}\left({ }^{P_{\phi}}\right)=P_{\phi(I D(-))}
$$

Rm: the shits $\rho[\operatorname{dimV}]$ in the definition were made to hove this conpchbility on the nose.

Lemma: $\pi: W \rightarrow V$ proper anabatic mophism $, g=f_{0} \pi, \pi_{0}: W_{0}-V_{0}$ the recticition. Then

$$
\left(\pi_{0}\right)_{\lambda}\left({ }^{P} \phi_{g}\right) \simeq\left(P_{\phi f}\right)(\pi, *)
$$

and by
By adjunction:

$$
p_{\phi_{g}} \pi^{x} \sim \pi_{0}^{x} \phi_{f}
$$

Proof: (Diagram chase. + proper base chare.

IN PARticula, when π is an horreomoglism (so dim $W=\operatorname{dim} V$), we get

$$
\Sigma: P_{g} \sim \pi_{0}^{*} P_{f}
$$

fondly: $X=\left(X_{\alpha} \xrightarrow{4_{\alpha}} V_{\alpha} \xrightarrow{f} A 1^{\prime}\right)$

$$
\delta a C \cdot V \cdot M .
$$

$\forall \alpha$ we get a $P_{\alpha}=\varphi_{\alpha}^{x} P_{f, \alpha}$
Recall the of vanishes on the civil points So $P_{p, \alpha} \in \operatorname{Perr}\left(V_{\alpha, 0}\right)$
and con be palled boche

$$
x_{\alpha} \subseteq\left(V_{\alpha}\right)_{0}
$$

and $\forall \alpha, \beta$

Proof: The $\varphi_{\alpha \beta}: V_{\alpha \beta} \xrightarrow{t} V_{\beta \alpha}$ are compatible with the f_{α}, so $\sum: P_{f_{\alpha}} \simeq \varphi_{\alpha \beta}^{p} p_{\beta}$

Finally, apply $\varphi_{\alpha}{ }^{*}$ to geT

$$
P_{\alpha}:=\varphi_{\alpha}^{\alpha} P_{f_{a}} \simeq \underbrace{\varphi^{\nu}}_{\varphi_{\beta}^{\gamma} P_{f_{B}}^{x} \varphi_{\alpha \beta}^{\nu} \rho_{\beta}}
$$

V P_{β}

Part III: Gluing the penvese shedles
Defnition: $\mathcal{M} \in D_{c}^{b}\left(Q_{x}\right)$
with X anaytic spou
then M is a pervera sheg if
(1) supput condition:

$$
\operatorname{dim} \operatorname{syp} H^{i}(M) \leqslant-i \forall_{i}
$$

(ii) Cossyput condition

$$
\operatorname{dim} \operatorname{syp} H^{i}(\mathbb{D}(M)) \leqslant i \quad K_{1}
$$

There 2 conditions define a t-stuctrue on $D_{c}^{5}\left(Q_{x}\right)$ and we defr.

$$
\operatorname{Par}(x):=D_{c}^{b}\left(Q_{x}\right)^{Q}
$$

Cordly: $D_{c}^{b}\left(Q_{x}\right)^{8}$ is an abelion categy.

Proposition: on on LG-paiz $\left(V_{j} f\right)$ The finctus ${ }^{P_{\psi}} \Psi_{f}$ and ${ }^{P_{\phi_{f}}}$ are t-axed

So Induce

$$
{ }^{P} \psi_{f},{ }^{p} \phi_{f}: \operatorname{Panv}(V) \rightarrow \operatorname{Par}\left(V_{0}\right)
$$

Thu : $u \longmapsto \operatorname{Perv}(u)$ define a stacle on X (When X is Reduced... Why do we need this hypothesis?)
In particular, this meas the if $X_{\alpha} \subseteq X$ is a covering, then

$$
\operatorname{Parv}(x) \simeq \operatorname{lin}\left(\operatorname{Par}\left(x_{\alpha}\right) \geq \operatorname{Penv}\left(x_{\alpha \beta}\right) \overrightarrow{=}\right)
$$

ie: to define a pavane shaef on X all we reed is

$$
\text { - } \forall \alpha, \quad P_{\alpha} \in \operatorname{Rev}\left(x_{\alpha}\right)
$$

- $\forall{ }_{\alpha, \beta} \quad \sigma_{\alpha \beta}:\left.P_{\alpha,}\right|_{\alpha \beta} \simeq P_{\left.\alpha\right|_{\alpha \beta}}$
- $\forall_{\alpha, p, \gamma}$ $\sigma_{\gamma \alpha} \sigma_{\beta \gamma} \sigma_{\alpha \beta}=i d$
only this data is missing to finish granter
The gluing in or case
we will core back to this in future tuetes
this gluing is possible if we have a square Root of the canonicd bundle

Proposition : Let $P \& P^{\prime}$ be such gluings.
then the exists a $\mathbb{Z} / 2$-locd system $\rho \in H^{\prime}\left(x, z_{2}\right)$ and then $P^{\prime}=P \otimes \rho$.

Proposition : Let $\left\{\varepsilon_{\alpha p \gamma}\right\}$ be the data we saw this manning \rightarrow the 2 -coycle obstruction of the gluing of the $K_{\alpha}{ }^{v}$ (tack \# 6)

Then this coycle coincides with the ones of this tuck:

$$
\left\{\varepsilon_{\alpha \beta \gamma}\right\} \simeq\left\{\sigma_{\alpha \beta \gamma}\right\}
$$

Main lemma of the paper
: $(V, f) L G-$ pair

- CuT $(f) \subset U_{\text {gun }}^{c} V$
- $\varphi: U \rightarrow V$ biholmptric onto its inge.
with $f \circ \varphi=f$ and $\left.\varphi\right|_{\mathrm{ar}}(f)=$ id
then the 15 anrphism \sum f φ
is equal to $\operatorname{det}\left(d \varphi \int \operatorname{cut}(f)\right)$.id

Finely:

Main thenem: X aientible. then the localy difined sheoves of ranishiy oycls glue, in a unigut way up to a twist by a $21 / 221$ - Local systom.

If we $f x$ a paticuler aientaion, then the gluing is unig-e!

TaOK \# 8 Motivic DT-invariants
(Kontrevich-soibelman)

Ks
starting point:

$$
\text { I: } \operatorname{DT}(x)=\int_{[x]^{\nu_{\beta}}} \widetilde{\widetilde{\nu_{\beta}}}
$$

KS: Replace all these things by their motivic andgue.

$$
[x]^{m o t} \& V_{B}^{m o T}
$$

Ks input: stant with a calcbr-you categny instecd of a cy 3 foeld. tunguleted

Exemple: (Q, ω) a Quive with potenticl $\}$
Girgburg alyebra of $(Q, \omega)=G(Q, \omega)$

abe. Reprerentation cot. I The jacabi alyebra

IN or case, we fake
(2) $M=$ moduli npace of dojects in b $M=$ moduli space of Quiver with potenticl.
(3) stability conditions

$$
Z: K_{0}(\zeta) \longrightarrow \Phi
$$

Exeuple:

$$
\widetilde{G}=\underbrace{\left\langle E_{1}, E_{2}\right\rangle}_{\text {genmeted by } 2 \text { objects }}
$$

$$
\begin{align*}
& \text { inthis } \tag{1}\\
& \text { case extensions } \\
& 0-E_{1}-E_{12}-\epsilon_{2}-0
\end{align*}
$$

stability conditions are given by

conditions DT-invariants.

KS consider sectors

and to each secth KS associcte

$$
\underbrace{\zeta_{v}}_{l} \subseteq \zeta
$$

genenotus gren by semi-ndble obech in V.
(4) $A_{V} \in H\left(\zeta_{v}\right)$ motivic Hell a geiha.

$$
K^{\hat{\mu}}\left(\frac{\text { stacs off }}{\mu_{Q}}\right)-?
$$

chnacteristic

$$
\begin{aligned}
& \text { hnartaistic } M_{C V} \\
& \text { aycls of }
\end{aligned}
$$

(5) Integation mop (osing motvic vanishlyy)

$$
\begin{aligned}
& \text { I: } H\left(C_{V}\right) \longrightarrow \underbrace{R}_{\text {motivic }_{\text {tows. }}^{R}} \text { cucas } \\
& D T\left(C_{V}\right):=I\left(A_{V}\right)
\end{aligned}
$$

$$
\underbrace{\substack{\oint \\
\text { given by a squave } \\
\operatorname{nod} \rho}}_{E \in \bar{b}} \begin{aligned}
& \sqrt{\operatorname{det}(E \pi(E, E))}
\end{aligned}
$$

the polnt
in the moduli d a ajects)
Part II Motres
invorimb:
obseerction: $\chi_{\text {sing }}$, serne polynomicl, \#

1) $x \simeq y$ then $x(x) \simeq x(y)$
2) $x(x \times y) \simeq x(x) \cdot x(y)$
3) If. $A \subseteq X$ then

$$
x(x)=x(A)+x(x \backslash A)
$$

Definition: A genenabed Euls chanctristic is a reing homomphism

$$
\oplus \mathbb{Z}![x] \longrightarrow R
$$

$[x] \in \pi_{0}\left(V_{a r}\right)$
if it ratisfis 3)
The Ductiont

varetics. its elements ane colled "motves".

Rmu: one can also do a Reletve vusion of this $K_{0}(\operatorname{Van} / x)$

Exeuple: $\quad K_{0}(\operatorname{Van} / x) \longrightarrow \operatorname{ConsT}(x, 2)$ of gronefed euberchn:

Exeple

$$
\begin{aligned}
& \quad\left[\left.A\right|^{\mid}\right]=: L \quad\left[\mid P^{\perp}\right]=[L]+1 \\
& {\left[\mid P^{N}\right]=\left[\mid P^{n-1}\right]+\left[\left.A\right|^{n}\right]=\sum_{i=0}^{n} L^{i}}
\end{aligned}
$$

Poposition $f: z \rightarrow y \xrightarrow{g} W$
then

$$
\begin{aligned}
& f^{x}[x \rightarrow y]=[z x x \rightarrow x] \\
& g_{x}[x \rightarrow y]=[x \rightarrow y \rightarrow w]
\end{aligned}
$$

Generalyztion: M Actin stach of fitype.
wecon also difire these, Guthendiech rings

$$
K_{0}\left(\frac{\text { stack }}{\mu}\right)
$$

More over, if we assume thet Misa commutative monold in stacts (such as B6u)
then we hove a new ring spectre

$$
\left[\begin{array}{c}
x \\
j \\
M
\end{array}\right] \cdot\left[\begin{array}{c}
y \\
j \\
M
\end{array}\right] \longmapsto\left[\begin{array}{c}
x \times y \\
j \\
M \times M \\
\vdots m \\
\hbar^{m}
\end{array}\right]
$$

can iso do symmetric powers
(rake $K_{0}(/ m)$ a λ-Ring)
can also include Gequavionce

$$
\begin{array}{r}
K^{G}(-/ r)= \\
\begin{array}{l}
\left\langle[x-y \rightarrow \pi]-1_{0}^{R}(y-n]\right. \\
x \text { vech bod } \varphi \\
\text { our } y \text { an none } R .
\end{array} \\
\end{array}
$$

Preposition $K^{G}($ stack $\left./ m) \xrightarrow{d /} K^{G}(V a / r)\left[G l_{n}\right)^{-1}\right]$

Proof: unclean Inertia stage?

Motivic vanishing cyus
Slogan: "Vanishing cycle $=\left[f^{-1}(0)\right]-\left[f^{-1}(1)\right]$
Monochoncy: $M: H^{\nu}\left(M F_{x} Q\right) \rightarrow H^{\nu}\left(\Pi F_{a}, \varphi\right)$ (Eigenvalues are roots φ) unity

Defaritow the monochoncy Gothendied Ring is $K^{\hat{\mu}}\left(v_{a z}\right)=\operatorname{colim}_{n} K^{\mu_{n}}\left(V_{a r}\right)$

Given this we can construct the motivic vanishing cycle

Construction: $x \stackrel{\&}{\Delta}$ Ar
$\varlimsup_{\text {smith }} f^{-1}(0)$
$\pi: y \rightarrow x$
smeeth and proper

$$
y \backslash \pi^{-1}\left(x_{0}\right) \rightarrow x \backslash x_{0} \quad, \quad \pi^{-1}\left(x_{0}\right)=U \epsilon_{i}
$$

dhvisise with
Namel coossing aossings.

$$
E_{I}^{0}=\bigcap_{i \in I} E_{i} \backslash U E_{i}
$$

assume muptiplicity $\operatorname{mult}\left(E_{i}\right)=\mathrm{mi}$ $V \subseteq Y$ such thet foo $\pi=\mu Z^{m_{I}}$ invastle

$$
m_{I}=\sum_{i \in I} m_{i}
$$

Constuet a cover

$$
\begin{aligned}
& E_{I}^{0} \cap V \\
& \tilde{E}_{I}^{0} \cap V=\left\{(z, \omega) \in A I^{\prime} \times\left.\left(E_{I}^{0} \cap V\right)\right|_{n} ^{m \pi}\right\}
\end{aligned}
$$

$$
\begin{aligned}
M_{f}^{m o t}:=1-\sum & (1-L)\left[\mid \underline{E_{I^{0}}} \rightarrow x_{0}\right] \\
& \in K^{\mu}\left(v_{a} / x_{0}\right)\left[\left[^{-1 / 2]}\right]\right.
\end{aligned}
$$

Exerple $A I^{\prime} \xrightarrow{Z^{n}} A I^{\prime}$

$$
\begin{aligned}
\hat{E}_{0} & =\left\{(z, \mu) \in A A^{\prime} \mid z^{n}=1\right\}=\mu_{n} \\
M F_{z^{n}} & \left.=[1.0-3.07]-\left[\mu_{n}-1.04\right]\right) \\
& \left.=1-\left[\mu_{n}\right]\right]
\end{aligned}
$$

back to Betmend fraction

$$
f: x \rightarrow A_{1}^{\prime}, Z=[d f=0]
$$

Relatre viztud motve

$$
\begin{aligned}
\substack{[z]_{\begin{subarray}{c}{\text { pelative } \\
\text { viale }} }}} & L^{-\frac{1}{2} \operatorname{din} x}\left[M_{f}^{\operatorname{mot}}\right] \\
& \in K^{\mu}(\mathrm{vam} / \mathrm{z})
\end{aligned}
$$

Then the fibrwise Eubr chnactuistic of $[Z]_{\text {eal vit }}$ is the Behnend function.

Exeuple: back to the exemple of $\left(A^{\prime}, z^{\prime}\right)$ we get

$$
[207]_{R \text { Viat }}=L^{1 / 2}\left(1-\left[\mu_{n}\right\rangle\right)
$$

Tuek\#9 Motivic DT-invariants β O Ouivens with Potenticl.
(1) Quikens, facobicn akgeha and associcted moduli'
(2) Motivic DT-patition function

$$
\downarrow^{\prime \prime} \log "
$$

$B P S_{Q, w}$ invarionts
(3) Exuples: Hall agehua \& Integation
\Downarrow woll coossing
(1) $Q=$ aiented guph

11

a

with $C Q:=$ peth alectua.

We want to stody reperentatios $\rho C Q$.

Let $d=\left(d_{i}\right)$ be the "dimension vecth".

SeT $M_{d}(Q)$ be the moduli of reperentetions
11

$$
\left[\frac{\operatorname{Repd}(Q)}{G_{d}(Q)}\right]
$$

whe $\quad \operatorname{Repd}(Q)=\pi \operatorname{Han}\left(\Phi^{d_{i}}, \Phi^{d j}\right)$

$$
G_{d}(Q)=\prod_{i \in Q_{0}} G l_{d i}
$$

W of potenticl: $=$ linez combinetion of cycle elements

Exuple: $W=a c b d-a d b c$

If C is a cyclic element then $\frac{\partial c}{\partial a}=\sum c^{\prime \prime} \cdot c^{\prime}$

$$
a \in Q_{1} \quad c=c^{\prime} a c^{\prime \prime}
$$

This remains cycle if a is agile

Example

$$
W=x y z-x z y
$$

$$
\begin{aligned}
\frac{\partial w}{\partial x} & =y z-z y & \frac{\partial w}{\partial y}=(z, x] \\
& =[y, z] & \frac{\partial w}{\partial z}=[x, y]
\end{aligned}
$$

Then
Defintion Jaccbion algete $(Q, w)=\frac{C Q}{\left\langle\left.\frac{\partial w}{\partial a}\right|_{a \in Q_{1}}\right\rangle}$
then:
$M_{d}(Q, W)=$ moduli of neprentitis of $\operatorname{fac}(Q, \omega)$

Prepostion

$$
\begin{aligned}
& M_{d}(Q, w) \simeq\left[\frac{\operatorname{Cit}\left(T_{2}\left(W_{d}\right)\right)}{G L_{d}}\right] \\
& T_{R}\left(W_{d}\right): \operatorname{Repd}(Q) \rightarrow \phi
\end{aligned}
$$

Stability conditions:

$$
\varepsilon: \mathbb{N}^{Q_{0}} \longrightarrow \mathbb{Z}
$$

Notation: $\xi_{i}=\xi(0,0, \ldots, \underset{\underset{i}{1}}{\underset{\sim}{1}}, 0, \ldots)$
Definition: If V_{d} is a rep. of Q of dim $d=\left(d_{i}\right)$ Then we con define the slope

$$
\mu(V d):=\frac{\sum \xi_{i} d_{i}}{\sum d_{i}}
$$

We soy V_{d} is semi-strble if $\forall V \leqslant V_{d}$ we hove $\mu(V) \leq \mu\left(V_{d}\right)$
then we define

$$
M_{d}^{\varepsilon-\text {-smisthle }}(Q)=\operatorname{Rep}_{d}^{\varepsilon-5 s}(Q)
$$

$$
G_{d}
$$

and

$$
\mu_{d}^{\varepsilon-s s}(Q, w)=\frac{\operatorname{GiT}\left(t_{2}^{\varepsilon}(w d)\right)}{G d}
$$

heve.

PacT II : Motuvic DT-patition froction.

$$
\begin{aligned}
& \left.K^{\hat{\mu}}\left(V_{02}\right) u^{1 / 2}\right]
\end{aligned}
$$

If we dofine

$$
\left[\frac{x}{G}\right]_{R V}:=\frac{[x]_{R V}}{[G]_{R V}}
$$

and $\left[\frac{x}{G}\right]_{\text {virtue }} \in K^{\hat{\mu}}(s \operatorname{sch} / k)\left[\mu^{-1 / 2}, G L_{u}^{-1}\right]=: R$ then we con define the motric patition frection

$$
\begin{aligned}
& A(Q, w):=\sum_{d \in \mathbb{N}^{Q_{0}} \int_{\text {sincethis is }}\left[M_{d}(Q, w)\right]_{v 2} T^{d}} \\
& \begin{array}{l}
\text { agoul } \\
\text { quitient }
\end{array} \\
& \mathrm{cuT} / \mathrm{G} \\
& =\sum[\omega T / G]_{v_{i 2}} I^{d} \\
& =\sum \frac{\left[\omega_{T}\right]}{[G]} v_{i 2} I^{d} . \\
& R^{T}\left[\left[\left[\psi_{l \in Q)}\right]\right.\right. \text { foul gives }
\end{aligned}
$$

we hove

$$
\begin{gathered}
\left\{p \in R\left[\left[t_{i}\right]\right], P(0)=0\left\{\xrightarrow{\text { sym }}\left\{p \in R((T)]: \sum_{P(0)=1}\right\}\right.\right. \\
a \in R \quad \operatorname{sym}(a)=\sum_{i=0}^{\infty} \operatorname{sym}^{n}(c) \\
\operatorname{sym}\left(t^{d}\right)=\sum_{i} t^{i d} \\
\operatorname{sym}(0)=1 \\
\operatorname{syn}(f+g)=\operatorname{syn} f \cdot \operatorname{syn} g
\end{gathered}
$$

Definition
$\operatorname{BPS}_{d}(Q, \omega) \in R$ are unique eleunats such TReT:

$$
-\operatorname{Sym}\left(\frac{\left.\sum_{d \in \mathbb{N}^{Q_{0}} \mid 304} \operatorname{SPS}_{d}(Q, w) t^{d}\right)}{L^{1 / 2}-L^{-1 / 2}}=A(Q, \omega)\right.
$$

$$
\text { Sfer physics } \rho \text { BPS } \rightarrow \text { see [Dinofte-Gukov] }
$$

Naw weith stibility Conditions given ε, rlope μ

$$
A_{\mu}^{\{ }(Q, w)=\sum_{d}\left[M_{d}^{\varepsilon-s s}(Q, w)\right]_{v i 2} t^{d}
$$

$\int B P S_{d}^{\varepsilon}$ ae clso ofired to be the terns in the logrithm. of $A_{\mu}^{\xi}\left(Q, v^{\prime}\right)$

Question: is BPS $_{d}{ }^{\varepsilon}$ Reprented by Iore moduli space?

Exeuples
(1)

So in this cose:

$$
M F\left(\left.A\right|^{1}, x^{2}\right) \text { ? }
$$

$$
\left.\begin{array}{l}
B P_{S_{1}}=\mathbb{L}^{1 / 2} \\
B P S_{d}=0
\end{array} \quad \forall d>\right)
$$

$$
\begin{aligned}
& Q= \\
& W=0 \\
& A(Q)=\sum_{d \in \mathbb{N}}\left[M_{d}(Q)\right]_{V_{i 2}} t^{d} \\
& =\sum_{d \in \mathbb{N}} \frac{\left[\operatorname{Rep}_{d}(Q)\right]_{v i_{2}}}{\left[G_{d}(Q)\right]} t^{d}
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{sym}\left(\frac{L^{1 / 2} \cdot t}{L^{1 / 2}-L^{-1 / 2}}\right)
\end{aligned}
$$

Rmk: hove $M_{d}^{\text {steble }}(Q)=0$ if $d>1$
(2) $Q=Q^{z}, M_{d}^{s s}(\mathbb{Q})=A I^{\prime}$ ahen $d=1$
[Davison - Mendat] Modify the Quver by addiy apoint at ∞

Define

$$
U \subseteq \operatorname{End}\left(\Phi^{d}\right) \times \Phi^{d}
$$

$$
\left\{(A, V):\left\langle V, A V, \ldots, A^{d-1} V\right\rangle=\phi^{d}\right\}
$$

In this case

$$
\mathcal{M}_{(\alpha, d)}^{\text {faned }}(Q):=U / G L d \simeq H_{i l b}^{d}\left(A I^{د}\right)
$$

In this care the potential corns form.

$$
\begin{aligned}
& A \xrightarrow{H_{i l b^{d}}\left(\mathrm{Al}^{\prime}\right)} \xrightarrow{\operatorname{tace}\left(A^{n}\right)} \phi \\
& 1 \quad 1 \delta \\
& \left(\lambda_{12} \ldots, \lambda_{d}\right) \operatorname{sym}^{d}\left(A_{1}{ }^{\prime}\right) \\
& \left(z_{13} \ldots, z_{d}\right) \operatorname{sym}_{+}^{d}\left(z^{n}\right)
\end{aligned}
$$

we hove $z^{n}: A I^{\prime}$ - $A I^{\prime}$

$$
\begin{array}{r}
\operatorname{Symm}^{d}\left(A_{1}^{\prime}\right) \underset{\operatorname{syn}^{d}\left(z^{n}\right)}{\longrightarrow} A I^{\prime} \\
z_{1}^{n}+\ldots+z_{d}^{n}
\end{array}
$$

so

$$
\phi_{\operatorname{sym}^{d}\left(z^{n}\right)}=\operatorname{sym}^{d}\left(\phi_{z}\right)
$$

[Kontsevich-soibelman]
take (Q, W) Quiver with pottle
take

$$
\begin{aligned}
M_{:}:= & \prod M_{d} \quad \text { moduli } \\
& d \in \mathbb{N}^{Q_{0}}
\end{aligned} \quad \begin{aligned}
& \text { space } \\
& \text { all reperentions }
\end{aligned}
$$

and define the Indegection mp

$$
\begin{aligned}
& \text { Exeuple: }
\end{aligned}
$$

$$
[m=m \mathrm{~m}] \text { Then } \text { It hen }^{[m} \text { is } A(Q, \omega)
$$

$\left.\begin{array}{cc}(\text { becal } & p_{H}[-]_{R V} \\ \\ {[-]_{\text {vitae }}}\end{array}\right)$
con also do

$$
\left[m_{\mu}^{\xi-s t} \underset{f_{\text {get }}}{\stackrel{\xi}{m}}\right]_{\stackrel{I^{w}}{\longmapsto}}^{{ }_{\mu}^{w}} A_{\mu}^{\xi}(Q, w)
$$

Conment: In this case inffection mpp exists becaue we have a global patenticl

$$
\begin{aligned}
& {\left[M_{d}(Q) \times C^{d}\right]=\sum_{i=0}^{d}\left[r^{\text {fand }}-\pi\right] \cdot\left[M_{d_{-1}-m}\right]} \\
& \Rightarrow \text { ruplue } t \text { by } L t \\
& A(Q, w) \cdot(L . t)=\left(\sum \operatorname{syn}^{i}\left(\phi_{z^{n}}\right)\right) A(Q, r) \\
& \text { BASd }(Q, w)=\left\{\begin{array}{l}
U^{-1 / 2}\left[1 / \mu_{n} A=1\right. \\
0 \text { cthere }
\end{array}\right.
\end{aligned}
$$

Main thenen (Daivinsa)

$$
\overline{(B P S)}=\text { vanistug cohomely }
$$

tapk \#10 overview on Derived alg. Gearrety to moduli spaces

No Motivation: if you are here, you are alkeady motivalied!
(1) Derved schernes

Definition \quad edga ≤ 0
commurtatve differentid graded algenos

$$
\begin{gathered}
A=\bigoplus_{i \geq 0} A^{-i} \quad(\text { positivel guded) } \\
A^{-i} \times A^{-j} \rightarrow A^{-j-i} \text { multrlation } \\
A=\left[\cdots A^{-2}-A^{-1} \xrightarrow{d} A^{0}\right]
\end{gathered}
$$

with sign rule

$$
a b=(-1)^{|a||b|} b a
$$

where $a \in A^{-|a|} \quad b \in A^{-|b|}$ and $\quad d(a b)=(d a) b \pm a d b$
idea: cdga ≤ 0 are affine denved schems
IRspec (A)
Notation.
constuction $A^{0} / d A^{-1}=H^{0}(A)$ is a classicd Ring
$\operatorname{spec}\left(H^{\circ}(A)\right)$ is colled the thuncation of \mathbb{R} Spee (A)

Dofinition: A denved scleme $=$
\longrightarrow with 2 conditios:

- $\left(X, H^{0}\left(O_{x}\right)\right)$ is a dassicd scherve
- $H^{-i}\left(O_{x}^{\dot{x}}\right)$ is ${ }^{\alpha}$ quai-wherent over $H^{\circ}\left(O_{X}\right)$
$R_{m l}$ we fore closed immassions

$$
\begin{aligned}
& t^{0}(x) \stackrel{i}{\longleftrightarrow} x \\
& \left(x, H^{\prime}\left(O_{x}\right)\right)
\end{aligned}
$$

Exemple: Koszul complex

$$
\begin{aligned}
& { }^{E} j_{s}^{\text {vech budle }} \quad E=\operatorname{spec}\left(\operatorname{sym}_{\sigma_{x}}\left(\varepsilon^{V}\right)\right) \\
& X \text { smocth } \\
& \text { scheve } \\
& s: \operatorname{sym}_{0 x}\left(\varepsilon^{v}\right) \longrightarrow O_{x} \\
& \text { as } 0_{x} \text {-gins }
\end{aligned}
$$

$\Leftrightarrow \quad \varepsilon^{v} \xrightarrow{s^{\#}} O_{x}$

$$
\cos 0 x-\bmod
$$

can form the Koszul conple

$$
\Lambda^{\operatorname{ank}} \varepsilon^{v} \cdots \rightarrow \Lambda^{3} \varepsilon^{v} \rightarrow \Lambda^{2} \varepsilon^{v} \xrightarrow{i_{s}^{*}} \varepsilon^{v} \xrightarrow{s^{\#}} 0 x
$$

This is a shog of codga's $/ X \quad \operatorname{Kos}(E, 5)$
If we compute the turnction

$$
H^{0}=\underbrace{O x}_{I m} s^{*}=\underbrace{O_{z(s)}}_{\text {factiss in the uro }}
$$ lous of 5 .

\Downarrow

So $\mathbb{R} \operatorname{Spec}_{x}\left(K_{0}(E, s)\right)$ is a denved Scherve $\underbrace{\text { with timection. } Z(s)}$ denved zero loars.
(2) How to ecoshrect denved soleme? $L 3$ canonicd ways corma
(A) fibr roducts (denved) of usut scens
(B) denved ropping spaces (Kaszul Renolutins) of usul sclens
$h=$ honatopical file prodet.
(A)

$$
\begin{aligned}
t_{0}\binom{x x^{h} y}{z}:= & \text { usud } \\
& \text { fibor } \\
& \text { podect }
\end{aligned}
$$

campute $O_{\substack{x \times y \\ z}}^{\text {dassil }}=\mathcal{O}_{x} \underset{\mathrm{O}_{z}}{\substack{\text { dassicl }}}$

$$
\mathcal{O}_{x \times y}^{h}:=O_{x} \stackrel{U}{\otimes z}_{\Delta}^{\Delta z}
$$

Y hove to derive the hove to dassicd.
frater prater ${ }^{8}$

Gauple (of the bundle)

is panticuck

$$
t(\mathbb{R} Z(s))=Z(s)
$$

Now we con compute

$$
\mathbb{R} z(s)=\mathbb{R S p e c}_{x}(\operatorname{Kos}(E, s))
$$

we con compote its tangent space

$$
\pi_{\mathbb{R Z}(s)}=\left[\left.\left.\pi x\right|_{z(s)} \stackrel{d s}{\longrightarrow} \varepsilon\right|_{z(s)}\right]
$$

Sbbexuple: Cniticd loci

$$
f: x \rightarrow A I^{\prime} \quad, \quad E=T^{2} x, s=d f
$$

then $\operatorname{RanT}(f):=\mathbb{R z}(d f)$

$$
\begin{aligned}
& \Pi_{\operatorname{RaiT}(f)}=\left[\begin{array}{cc}
T_{x} & H_{f} \\
0 & T^{\star} x
\end{array}\right] \\
& U_{\mathbb{R G U T}(f)}=\pi^{v}=\left[\begin{array}{cc}
T \times & { }_{-1}^{v} T^{v} x
\end{array}\right]
\end{aligned}
$$

and because $H_{f}^{2}=H_{f}$

$$
\int \uplus_{\mathbb{R a G T}^{2}(f)[-1] \simeq \pi_{R G u T}(f)}
$$

1 (-1) shifted syuplectic stucture
Deeper

$$
\begin{aligned}
& \mathbb{R G u T}(f) \longrightarrow X \\
& \downarrow^{\text {Jh }} \quad \mid d f \ltimes \operatorname{Tog}^{+x} \\
& x-\frac{T^{+} X}{0-\text { syuplecte }}
\end{aligned}
$$

Lyyion
Regult: Intersection of lagragions is symplactic with a shif T
slogen :

$$
x_{z}^{h} y=x_{z} x y+\operatorname{to}_{o_{z}}^{i^{\prime \prime}}\left(O_{x}, \theta_{y}\right)
$$

(B) Devived Mapping Spaces $x, y / s$ two dassied schens

Maps dassicl (x, y) con be mede into
an alyenanic spue.
 when $X \& Y$ are good.
prof: ware the gash to imbed into the
 Hilbert scheme
now we can also do a denved version of this

$$
\begin{aligned}
& \mathbb{R M a p}_{5}(x, y) \\
& \equiv \text { douve the fucter } \operatorname{Maps}_{5}^{d l}(x, y)
\end{aligned}
$$

claim \quad to (IRMep) $=$ Mop
slogan $\mathbb{R} M_{\text {ep }}=M_{o p}+{ }^{" E x T^{i} "}$
\rightarrow all examples of GW $\ell D T$ will be defined as open' in ${ }^{B M o p}$'s

Exempls GW thony
X smeath proj $/ \varnothing$

$$
\begin{aligned}
& \overline{\mathcal{M}}_{g, n}(x, \beta) \quad D M \text {-stuck } \\
& \left\{\left(c, x_{1}, \cdots, x_{N}\right) \stackrel{f}{\longrightarrow}, \quad \begin{array}{ll}
& f_{b}[c]=\beta \\
& c \text { nodd }
\end{array}\right\} \\
& \operatorname{AT}\left(c_{i}, f_{i}\right)<\infty
\end{aligned}
$$

difine

timation
$\mathbb{R M} \rightarrow \mathbb{R} M_{g n}(x, \beta) \backsim$ cononical

$$
M \underset{\text { open }}{\longrightarrow} \overline{M g i n}(x, \beta)
$$

We con also compute the tryent spere $\operatorname{IRM}_{p_{s}}(x, y) \quad\binom{$ Lurie neprentibility }{i thenem } \forall dued Actionsten \rightarrow Phd Thesis

$$
\begin{aligned}
& \Pi_{\operatorname{RMqgs}(x, y) / s}=p_{j_{x}} e_{v}{ }^{2} \Pi_{y} \\
& \text { where } \\
& \operatorname{RRMop}_{5}(x, y) \times x \xrightarrow{+2} y \\
& \downarrow \text { Poj } \\
& \operatorname{RMM}_{p_{5}}(x, y)
\end{aligned}
$$

In the case of stable curves

$$
\pi_{\mathbb{R} \bar{M}_{g_{n}}}(x, \beta) / \text { min }=\underbrace{p_{0} j_{i} e_{v}{ }^{\downarrow} \Pi_{x}}_{\text {PoT in BF }}
$$

Relation from DAG to POT
$M \stackrel{j}{\subseteq} \stackrel{\text { inaction }}{\mathbb{R} M}$ dived eshamant
Lemma: $j_{x}: G_{0}(M) \xrightarrow{\sim} G_{0}(R M)$
then by

$$
\begin{aligned}
& \text { Then by } \\
& \text { donation } \\
& {\left[O_{M}^{\text {ni 2 DAG }}=\right.}
\end{aligned}\left(j^{*}\right)^{-1}\left[O_{/ R I}\right]=\sum(-1)^{i} H^{i}\left(O_{R \Pi}\right)
$$

this sum is only well defined if the moduli Space is qusismeoth.

Poposition (Key) M C $C_{j} \mathbb{R} M$
(lurie) the

$$
\begin{aligned}
& \underset{\gamma}{\gamma} \Delta_{R M} \xrightarrow{D_{j}^{2}} \Delta_{M} \Leftrightarrow \mathbb{R M} \\
& \text { is a PoT } \\
& \text { quasi }
\end{aligned}
$$ smecth

\qquad
\qquad
Behrend- Eentechi constuction with the PoT $\delta^{2} \|_{B M} \rightarrow L_{M}$

anoth dured enhervent of M
claim
$\mathbb{R M}^{\text {POT }}$ \& $\mathbb{R M}$
are two denved enhancents of $M \quad j \quad j$ Pot $: M \subset M^{p a t}$

Thm:

$$
O_{B F, l e}^{v i z, P_{O} T}:=\left(d b^{P O T}\right)^{-1}\left(O_{B M}^{P O T}\right)
$$

the existince of a retenct tell us that the togent space of $1 R T^{\text {Pat }}$ splits

Prapositiow (Kapanov - Fontanine, schung -lowney)

$$
0^{V i L, D A G}=0^{V i z, P O T}
$$

$$
\text { in } G_{0}(M)
$$

(Rule: noT all PoT come form a derved erhoncent
(schrg)

Tack \# II Thtro to DAG

Basic blocks $\operatorname{cdga}_{\phi}^{\leq 0}$

$1)$

$$
x(\underbrace{0_{y, \omega} \stackrel{u}{\otimes} O_{z, \omega} O_{x, \omega}}_{\text {connective olga }})
$$

- when is this fuctur a shef?

Defnition: derived stacks: $=S L_{\infty}$ (dAff)

$$
\left\{v^{0} \rightarrow x\right\}, F(x) \simeq h_{0} \lim F\left(u^{0}\right)
$$

From classicd stuctes to higher stuctes to deved stacks

$$
G: \text { Aff }^{p} \longrightarrow \underset{\substack{\text { gropoid }}}{\substack{\text { tunction to }}} \text { S }
$$

tuncotion to
stack $\underset{\text { indusiow }}{\longrightarrow}$ derived stacks
$i \operatorname{dos}$ not commente with limits/neither with mopping stucks.

Quosi-whent sheoves

$$
Q \omega h(\mathbb{R} \text { spee } A):=\operatorname{dg}^{\operatorname{Mod}} A
$$

we take as a definition on any daved stude F

This is whe the cotagent complex

$$
\underset{\downarrow f}{\mathbb{R} \operatorname{spee}(B)} \leadsto \exists \Vdash_{B / A} \in \operatorname{dg} \operatorname{rod}_{B}
$$

IR Spee A whe we hove

$$
\begin{aligned}
& B \sim Q_{A}{ }^{B} \\
& A \sim \text { effert }
\end{aligned}
$$

$$
L_{B / A} \simeq \underbrace{\Omega_{Q_{A} B}^{1} \otimes B}_{\text {penuution }} Q_{A} B
$$

Def: $\Delta_{F} \in \operatorname{Qoh}(F)$ of B g A-module

Thum [Aramov]

$$
x \in \operatorname{Aff} 5 \operatorname{sch}_{/ \phi}^{f . t}
$$

either
$[-1,0]$ \& pafiet $\Leftrightarrow X l_{i}$ $\Psi_{x / \Phi}$ totelly vabonded.

RuKK:

$$
\cdot H^{0}\left(U_{x}\right)=\Omega_{1}^{x}
$$

can use Dold-Ken to B,
$L_{B / A}=$ tate simplicid renolution by fue offetes, apply Ω^{1} leveluise and apply Dold-Hm

Popprties
(1) Base change
(2)

$$
\begin{aligned}
& \text { effor squeme }
\end{aligned}
$$

Exemples

$$
\begin{aligned}
& \underbrace{\Phi\left(x_{1, \ldots}, x_{n}\right)}_{\text {Regule squere }} \underbrace{}_{B}
\end{aligned}
$$

want to compute the cotegent complexes

$$
\left\|_{y} / A I^{n},\right\|_{y} / C
$$

Compute $Q_{B} A:=$ take the Hognl coplex

$$
\begin{gathered}
\Omega_{Q_{B} A / B}^{1}=Q_{B} A \delta_{e_{1}} \oplus \ldots \oplus Q_{B} A \delta_{e_{R}} \\
\left\{\begin{array}{l}
-\otimes A \\
Q_{B} A
\end{array}\right. \\
\mathbb{U}_{y / A 1^{n}}=\left(A \delta_{e_{1}} \oplus \ldots \oplus A \delta_{e_{R}}\right)[1] \\
\simeq I / I^{2}[1]
\end{gathered}
$$

Now we want to compute $U_{y / \Phi}$

$$
Q_{B} A \simeq B\left[e_{1}^{-1}, \ldots, e_{R}^{-1}\right]
$$

then

$$
\begin{aligned}
& e_{\phi} \\
& Q_{\phi} A=\Phi\left[\begin{array}{llll}
0 & x_{1}, \ldots, x_{n}, & e_{1}, \ldots, & e_{R}
\end{array}\right] \\
& d_{e_{i}}=f_{i} \\
& U_{A / \Phi} \simeq \Omega_{Q_{\Phi} A / \& Q A}^{1} A=
\end{aligned}
$$

$$
\begin{aligned}
& =\left(Q_{\phi} A \delta_{x_{i}} \oplus \ldots \oplus Q_{4} A \delta_{e_{i}}\right)_{Q_{4} A} A \\
& =\left[A^{\oplus R} \longrightarrow A^{\oplus n}\right] \\
& \delta_{c i} \longmapsto d f_{i} \\
& \simeq\left[I / I^{2} \underset{\text { Jacobin }}{\longrightarrow} i^{i x} \Omega_{A I^{n} / \Phi}^{1}\right]
\end{aligned}
$$

\checkmark it would be easier to just compute directly faun the delved firm product

Exuple 2

Find Resolution of A_{1} over B \downarrow Kosyul complex
\Downarrow

$$
\begin{align*}
& \text { then } H^{P}(C)=\left\{\begin{array}{lll}
\phi & p \text { even } & \phi\left(T_{2}\right) \\
0 & p \text { odd }
\end{array}\right. \\
& \text { Then } \\
& C \stackrel{\dot{\sim}}{\underset{\sim}{2}} \Phi\left[t^{-2}\right] \quad \begin{array}{l}
\Delta \frac{\text { unbounded }}{\text { and }} \\
t_{0}(\operatorname{RSSpe}(C))
\end{array} \\
& \text { and } \\
& L_{c / \Phi}=\Phi[t] \cdot \delta_{t}^{-2} \tag{sece}
\end{align*}
$$

Exeeple3

$$
X=\underset{\substack{\text { spee } A \\
\text { smeeth }}}{ } \quad \begin{aligned}
& \text { repuch sequce }
\end{aligned}
$$

Then we con compute the self-intusection

$$
Z:=\mathbb{R} \operatorname{spec}(A / \underset{A}{\stackrel{\Delta}{A} A / \Sigma})=y \underset{x}{x y}
$$

So we reed a resolution of A / T on A
S since we are assuming newulh squere, we con use the tozel couphx
$K(A, I)$ as a neurlution.
We get

$$
A_{F_{A}^{E} A_{A}}^{4} \simeq\left(\operatorname{Sym}_{A_{A}}\left(I I^{2}[1]\right), 0\right)
$$

$$
\begin{aligned}
\|_{z / y} & =i^{2} \Delta y x \\
& \simeq c^{x} I_{I^{2}}[1] \simeq I_{/^{2}}[1] \otimes S \\
& \simeq S_{A / I}^{\infty k}[1] .
\end{aligned}
$$

Again this coelld be deduced fun.

So

Reletion with POT
$X \in S T, X^{d e}$ a denved ishoncemet

$$
x \stackrel{j}{\hookrightarrow} x^{d r}
$$

Poposition
(lurie) $\left(j^{v} \|_{X} d r \rightarrow \Delta_{x} \quad\right.$ has a cofiber whast chomedy is in degue $\geqslant-1$
$\overrightarrow{\text { if }} f: A \rightarrow B$ is n-conneetve then I_{f} is $(n+1)$-connectle.
clain when $X^{\text {dez }}$ is quaismoeth

$$
\gamma \mathbb{U}_{x} d n \longrightarrow \mathbb{U}_{x} \text { is a PoT }
$$

Fundrichity

Talk \# 12 shifted syoplectic stuctures classicol picture
symplectic manifold

$$
\begin{aligned}
& (x, \omega), \omega \in \Gamma(\underbrace{x, \Lambda^{2} \Omega_{x}^{1}}_{2-\text { form }}) \\
& \text { with } \begin{array}{l}
\text { d } \omega=0 \\
\text { doged }
\end{array} \quad \& \quad \omega^{6}: T_{x} \simeq T^{2} x \\
& \text { non-deg. } .
\end{aligned}
$$

Exaple M manifold with $91, \ldots, 9 N$ coadicets $X=T^{v} M$ with q_{i}, p^{i} condinats $\left\{\begin{array}{l}\text { exact } \\ \text { stuctre } \\ \text { gren by }\end{array}\right.$
$\omega=\sum d p_{i n}{ }^{2}$. $\omega=\sum d p_{i} \cap d q_{i}$

Dauboux If (x, w) is symplectic, then locelly

$$
(X, \omega) \underset{\rightarrow}{\sim}\left(T^{\infty} M, \omega\right)
$$

Rese resuelt is false fur affir sctemes?
? Ithink this is ture!

Pbecare this regun $w_{\text {w o d }}$ be be $e x a c t$!

Next tark \rightarrow Daboux fir (-1)-shiffed denved schems

Generalaction

want to hove

$$
\pi_{x} \frac{\sim}{\omega} \pi_{x}
$$

a mare generaly $\pi_{x} \simeq 4_{x}[n]$)
Defnition $A_{n} n$-shifted syuplectic stuntu on X is a closed n-shifted 2 form $\omega=\left(\cdots, w_{1}, \omega_{0}\right)$

$$
\begin{aligned}
& \text { Such thet } w_{0} \in M_{M_{D_{0}}(x)}\left(O_{x}, \Lambda^{2} U_{x}(n]\right) \\
& \approx M_{o p}\left(\Pi_{x}, \mathbb{L}_{x}[n]\right) \quad \text { spuce of n-shithd } \\
& \text { fars } \\
& A^{2}(x, n)
\end{aligned}
$$

Such_t $\rightarrow \omega_{0}: \pi_{x} \simeq \mathbb{H}_{x}[n]$ quasi-iso.

$$
\begin{aligned}
& A^{2, l}(x, n)=\text { closed } 2 \text {-ferns } \\
& \downarrow \\
& A^{2}(x, n)=\text { spuce of } 2 \text {-forms } \\
& \rightarrow \text { closone deta }=\left(, \ldots, \omega_{1}, \omega_{0}\right)
\end{aligned}
$$

is a data not a popenty
\rightarrow we will avoid gren the definition of $A^{2, \varphi}(x, n)$. Insted we will illustate it via an exemple

Exarple: $X=\operatorname{Spec}(R)$ affine daved sclerre

$$
L_{x}=\left[-A^{-1} \xrightarrow{d} B\right] \quad A, B
$$ Sree R-moduls

$$
\begin{aligned}
& \Delta U_{x}=\operatorname{symm}_{O_{x}}\left(\mathbb{L}_{x}[1]\right) \\
& =\operatorname{Symin}_{(O X)}\left(\left[A^{-2}-B\right]\right)
\end{aligned}
$$

ahomodyicl leve

what is a (-1)-shifted 2 -farm in this cose?

$$
\pi_{x} \simeq u_{x}[-1]
$$

The clasied stuchre

$$
\begin{aligned}
& \pi_{x} \simeq\left[\begin{array}{ccc}
0 & B^{v} \xrightarrow{d^{v}} & A^{v}
\end{array}\right] \\
& \downarrow ? \\
& L_{x}[-1]=\left[\begin{array}{lll}
A \xrightarrow{d} & 1 ? \\
0 & 0
\end{array}\right]
\end{aligned}
$$

$\omega_{0} \in A \otimes B$
Now we want to scy that it is deed ahomolyich leve

$\omega_{0}, \omega_{1}, \omega_{2}, \ldots$ closre deta
Exuple
what if X is a smoth offre scleme

In this cane we have

	\cdots	-3	-2	-1	0
0					$0 x$
1				$\Omega_{x}{ }^{4}$	
2			e_{x}^{2}		
3	Ω_{x}^{3}				

	\cdots	-3	-2	-1	0
0					
1					
2			ω_{0}		
3	$0 \longmapsto$	$d\left(\omega_{0}\right) \boldsymbol{}$			

no closure deta becane all relevant clasie deta is zero!

Hish Rocd to difine closine

$$
\underset{x}{\mathscr{L}} \underset{x}{\downarrow} \int_{x x x}^{x} \quad \mathscr{L} \simeq \operatorname{RM}_{c p}\left(s^{\prime}, x\right)
$$

HKR $:=p_{x} O_{y x} \simeq \wedge^{0} \mathscr{L}_{x}$

Defnition: functios on $\mathcal{L} X \longleftrightarrow$ forms S-eq. factions
on $2 x$$\longleftrightarrow$ closed fans.

Exeuples
Exemple 0: Derived critical lous

$$
\underset{\substack{\text { Smeoth } \\ \text { scuwe }}}{\mathcal{\&} A l^{\perp}}
$$

$$
\begin{aligned}
& \text { denved }
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{x} \simeq\left[\left.\pi_{y}\right|_{x} \xrightarrow[1]{\text { Hessing } f f} \underset{1}{\|\left._{y}\right|_{x}}\right]
\end{aligned}
$$

$$
\left.\left.L_{x}[-1] \simeq \underset{0}{\left[\left.\pi_{y}\right|_{x}\right.} \frac{H^{2}}{1} \mathbb{I}_{y}\right|_{x}\right]
$$

and $\Pi_{x} \xrightarrow{\sim} \mathbb{L}_{x}(-7)$ because of the symmety of the Hessian.

NexTtalk: all (-1) shifted denved schems are zaviski localy modelled on the's exemple.

Exeuple 1 all $T^{\infty}[n] X=\mathbb{R} \operatorname{spec}\left(\operatorname{sym}\left(L_{x}[-n]\right)\right)$ are n-shifted syuplectic
idea: use the lioville form
(Damien's poof)

Exeuple 2: $B G L_{n}=\left[x / G l_{n}\right]$
moduli'f $G l_{n}$-tassus \Leftrightarrow Vect budls of Ronk n.
clain this carries a 2-shifted symplectic foun:

$$
\Lambda_{B G l_{n}}=\operatorname{sym}\left(g l_{n}\right)
$$

$$
2 \text {-foums } \Leftrightarrow \operatorname{sym}^{2}\left(g l_{0}^{v}\right)^{G l_{n}-i n v .}
$$

ie, $\omega_{0} \leftrightarrow$ symmetic mep which is $G l_{n}$-eq.

$$
\begin{aligned}
& {[x / G \ln](s)=\left\{\begin{array}{l}
p \rightarrow G \ln \\
j \\
s
\end{array}\right.} \\
& =\left\{\begin{array}{ll}
E & \operatorname{nnkn} \\
J_{\delta} & \rho_{x} \Phi^{n} \\
G_{n}
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& U_{B G l_{n}} \simeq \operatorname{gln}^{v}[-1]
\end{aligned}
$$

Exuple $3 \mathbb{R} \operatorname{Per} f$ ru moduli stach of
 pefeat couplexs.

$$
\mathbb{R M}_{p}(x, \operatorname{Pen})
$$

dinud mapping stack
turns out 2-symplectic
Thm : X smeeth \& proper CY dim d

- F n-shifted symplectic
thn $\operatorname{RMap}\left(x_{1} F\right)$ is $(n-d)$-synyslectic
Exaple

$$
\begin{aligned}
\operatorname{RP} \in R F(X) & :=\operatorname{RMep}(X, \operatorname{RPif}) \\
X \text { cy } 3 \text { feld } & \Rightarrow(-1) \text {-symp. } \\
X \text { cy } 4 \text { fild } & \rightarrow(-2) \text {-symp. }
\end{aligned}
$$

sympledic stuectre indued by seerne drality
Lagangian structues $L \xrightarrow{f} x$

$$
f^{x} \omega \in A^{2, l}(L, n)
$$

we con defire a space of
isotopic stuedns on f

we say h is a Lagorgion stucting of the induced mp

$$
\pi_{\rho} \rightarrow L_{L}[n \rightarrow] \quad(* x)
$$

is an equrdence.
Exeuple:
Back to dassicd syuplectic gearrety:
\oint
$L \subseteq X$ is Lagyion chen $\omega L_{L}=0$

Conversely: if $N_{\text {amil }}^{L x} \xrightarrow{\sim} L_{L}$
Then L is Lagrayian.

This is exactly the paticulh care of defnition ($x *$) above, when $n=0$.
thm: The denved intrection of Cgyions in a n-shifted syuplectic is (n-1)Syuplectic.

Tack \#13 Daboux thenerm fer
(-1)-shifted syup. Sclemes.
all blackboads ar denved \mathbb{R}
(0) (-1)-shifted syuplectic (X, ω)

$$
\stackrel{\text { at } x \in X}{\pi_{X, x}}=\left[\pi_{t(x), x}^{z a} \stackrel{0}{\longrightarrow} b_{x, x} \rightarrow \ldots\right]
$$

couperx
of vectu space $/ k(x)$
ω_{x} non-deg.

Globd analoge π_{x} in tor-auplitede $[0,1]$
U_{x} in th amplitde $[-1,0]$
\Downarrow

$\$ 1$ Exact foums
$X=\operatorname{spec}(A)$ offire dured scherre.

$$
\psi_{1}^{\{ } \hat{d R}(x)=T_{0} T\left[A-{U_{A}}_{T}^{T} \wedge^{2} U_{A}-\ldots\right]
$$

Hodge completed de Rham cohonelyy. comes with the Hodge fetelion \downarrow can twek dboJ wejth 2 put

$$
\begin{aligned}
& U \widehat{d R} \geq 2(x)=T_{0} T^{\pi}\left(0 \rightarrow 0-\Lambda^{2} U_{A} \stackrel{d_{2}}{ } \Lambda^{3} U_{A^{-}}\right) \\
& H^{2+n}\left(\Delta \hat{d R}^{\geq 2}(x)\right)=\left\{\begin{array}{c}
\text { dotad } \\
\text { n-sitted } \\
2-\text { tams }
\end{array}\right\} \\
& L \hat{d r}^{\geq 2}(x) \leftharpoonup L \hat{d k}(x) \\
& \text { fibr } \\
& \stackrel{1}{L \hat{d}_{k} \leqslant 1}(x) \\
& {\left[A \xrightarrow{\prime \prime} \xrightarrow{d k} U_{A}\right]}
\end{aligned}
$$

What dos δ do?
on $(2+n)$-cycles doge f.

$$
\Phi \in A^{1+(\square)}, \theta \in L^{2+n}
$$

such the $\quad d_{A}(\Phi)=0 \quad d_{d_{R}} \Phi=d \theta$

$$
\begin{gathered}
\downarrow \delta \\
\left(d_{d} \theta, 0, \ldots, 0\right)=\delta(\Phi, \theta)
\end{gathered}
$$

Definition: A closed n-shifted 2 -tum is excepT if the is on hamate in
(Exemple)

$$
\begin{aligned}
& y=\operatorname{spec}(B) \quad \text { smoth } \\
& f: y \rightarrow A I^{\prime}
\end{aligned}
$$

dain: The cononicd
(-1) form on $\operatorname{Dat}(f)$
(A) (1) is exact
(B) (2) the mep $\operatorname{DauT}(f) \hookrightarrow y$ is a lograjion fibution (ie $\pi_{D u T f / y}$

$$
\begin{aligned}
& \text { is } \|_{\text {DuTff/y }} \\
& \text { is lagyyim subbinde) } \\
& \pi_{\text {DuT }}
\end{aligned}
$$

Proof: Exactress, eomes foon the lionile

- form on $T^{3} y . ?$
the 1-fam is preciscly the hanotys α in

- fo the Lagagion fibetion, this cams ferm the foot theT $T^{b} y \rightarrow y$ is a laggion fibetion.
$\oint 3$ Daboux therem (Brov -Bussi-Joye)
Thim: $X(-1)$-shitted symplectic. Then zanishi locdy

$$
\begin{aligned}
& x \simeq \operatorname{darit}(f \text { on } y \\
& \text { symooth }) \\
& \text { sylactic }
\end{aligned}
$$

Callay: X is quai-compuct (-1)-shifted symplectic scteme us can produce viztud critical manifold on $t_{0}(x)^{a n}$
idea: prog thet (A) \& B hold
zanishi locdly on $X=\mathbb{R} \operatorname{spec}(A)$.
step 1: locally uny (-1)-shifted form is exact (A)
\downarrow therem of (Bloom - Herrera
Deligne (Hodge III)

+ Gooduillie)
Thn: For ary finite tyre coga $\leq 0 \quad A, x=s p a A$
the cononicd mp

$$
\underbrace{H^{0}\left[H^{0}(A) \rightarrow \Omega_{H^{0}(A)}^{1} \Lambda_{H^{\circ} A}^{\rho^{\prime} l^{\prime}}\right]}_{\text {Hodge coupleted di Rhan } \underbrace{\operatorname{LdR}}_{\text {unduwid }}(x)}
$$

hos a retact

Poof: Uses resolution of siguluite's.

Consequence: The rep

$$
H^{\cdot}\left(L d R^{\geqslant 2}(x)\right) \longrightarrow H^{2}(L \hat{d R}(x))
$$

is uR fo $* \leqslant 1$
Consquence: any ($-n$)-shifted closed α-fem

Proof of the Cadlay

$$
\begin{aligned}
& H^{*}(\mathbb{d} \hat{R}(x)) \xrightarrow[\pi]{\text { infede } f x \leq 1} H^{*}\left(A \rightarrow \mathbb{U}_{A}\right)
\end{aligned}
$$

Load properties of $\operatorname{Rspee}(A), \omega$
We con now assure w to be exocet

$$
\omega \sim d_{R}(\Phi, \phi)
$$

r almosT a critical locus.
Step 2 Find the smooth scheme on which the function is defined.
idea: tate $x \in X$
then we con pereseat $\pi_{\gamma, x}$ as a 2 tam
couplex
$\pi_{x, x}$ has a logranjian subspce

$$
\begin{gathered}
11 \\
\Omega_{t(x), r}^{1}[1]
\end{gathered}
$$

\# Nakayama teide
locelly around $x \in X$

$$
\pi_{x}:=\left[E^{0} \xrightarrow{d} E^{\prime}\right]
$$

ruch that $d=0$ at x
this has a comonicd lageion subbund φ

$$
\underbrace{\mathcal{L}:=E^{\prime}[-1]}_{\text {is lagagion distibution }} \rightarrow\left\{\begin{array}{l}
\text { whetis } \\
\text { integrabicity } \\
\text { condition }
\end{array}\right\}
$$

Madly \mathcal{L} is an integuble distibution we want to take $y=x / 2$ lef" \downarrow
Hiey do indegebility condition
by sying the since π_{x} smooth is in $[0,1]$, there fand sctere The integrebility conditurs vanishes.
need rice cdga modil.

Mre Hends-on- approoch $\quad x \in X$ $t^{\circ}(x) \underset{\text { chocse }}{C} U$ smerth C embiddiy offie.
con metue factuze

$$
\begin{gathered}
T_{x, x}^{2 n} \sim T_{x / y} \\
\left(\operatorname{Rispee}^{2 n}(A), w\right) \quad \operatorname{local} y \\
w \sim d_{R}(\Phi, \theta)
\end{gathered}
$$

Rspee $A \subset$ Sper B

$$
+H^{\circ}\left(T_{x} x\right) \simeq H^{\circ}\left(T_{x} y\right)
$$

\Downarrow consegrence
use Lurie-Quillen [conrectivity estimates]

$$
H^{-1}\left(L_{A / B}\right)=H^{0}\left(f^{\prime}(B \rightarrow A)\right) \otimes H^{H^{0} A}
$$

locdy fue

$$
\frac{H^{H^{\circ}(B)} \text { did } H^{\circ} \text { did }(B-A)}{}
$$

on generetus
\cup

$$
e_{1}, \ldots, e_{n}<\cdots g_{1}, \ldots, g_{n}
$$

and is a clued
inmorito $\Rightarrow X \longleftrightarrow Z(g)$ tétcle
is a connected component.
localy $A \simeq$ Kosgle copplx $\left(B, g_{1, \cdots, S \omega}\right)$

$$
\begin{aligned}
& \omega=d_{R}(\Phi, \theta) \\
& B=\left[B \leftarrow E^{v} \leftarrow \Lambda_{B}^{-1}\right. \\
& \left.A=\epsilon^{v} \leftarrow \cdots\right] \\
& L_{A}^{-1}=A^{-1} \otimes \Omega_{B}^{1} \oplus d_{d R}\left(\epsilon^{v}\right) \\
& \omega \\
& \theta=\theta_{1}+d_{R}(\eta)
\end{aligned}
$$

Now: $(\Phi, \theta) \sim(\underbrace{\substack{A_{Q} \\ B}}_{\substack{\Phi-d \eta \\ f \in B}} \Omega_{B}^{\prime}$
Such thet

$$
d \theta_{1}=d_{R}(f)
$$

- θ_{1} is édle
- and is cloed immereion

$$
\text { is }{ }^{18}
$$

$$
x \stackrel{g}{\sim} \operatorname{Dart}(f: y \rightarrow A i)
$$

$f=$ exact stuche - isotpic studure
tank \# 14 huperbalic localzations of $2 T$ parrvases staf

Gm.

$$
\rightarrow X^{0}=\frac{11}{\pi \in \pi} x_{\pi}^{0}
$$

$$
X^{0}=\frac{11}{\underset{\sim}{\pi \in \pi}} X_{\text {Rexd coppreats. }}^{0}
$$

Behend: $e^{v i z}(x)=\sum_{\pi}^{f} \pm e^{u_{i z}}\left(x_{\pi}^{0}\right)$
we will eaupte th fennule for X smeath and exterd
X smooth: to $X(-1)$-suplectic

$$
x^{+}: y \longmapsto \operatorname{Hom}^{\Phi^{*}}\left(\text { Al' }^{\prime} y, x\right)
$$

$$
x^{0}: y \longmapsto \operatorname{Hom}^{\Phi^{x}}(y, x)
$$

$d^{\#}:=\{$ conducting repelling weighs

$$
\begin{aligned}
& \text { in }\left.T_{x}\right|_{x^{0} \pi} d^{+} \text {din }
\end{aligned}
$$

$$
\begin{aligned}
& \text { eigenvectors } \\
& \text { fo the } x^{x} \text {-action. }
\end{aligned}
$$

Now

$$
\begin{aligned}
& \sum_{\Phi^{*}}^{\text {Now }} x-(-1) \text {-shifted sypplectic } \\
& \text { with aviontation } K_{x}^{/ 2}
\end{aligned}
$$

$$
K_{x_{\pi}^{0}}^{2}=\operatorname{det}\left(L_{x_{\pi}^{0}}\right)
$$

$P_{x}=$ perverse shed of vanishing gals
$p!\eta^{\prime} \sim$ six queneters foe delved stuectre on $x^{+} \& x^{\circ}$
and
Driffeld: $X^{0} \& X^{+}$are schemes

$$
\begin{aligned}
& P!\eta^{x} P_{x}=\oplus_{\pi \in \pi} P_{x_{\pi}^{0}}[-\operatorname{lnd} \pi) \\
& \text { whe }\left(\operatorname{lnd} \bar{\pi}=\left.\operatorname{dim} \rho \pi_{x}\right|_{\times \frac{0}{}}\right) \\
& \operatorname{din} \mathcal{H}_{c}^{6}\left(x, P_{x}\right)=\sum_{\pi \in \pi} \operatorname{dim} H_{c}^{*-i n \pi}\left(x_{\pi}^{0}, P_{x_{\pi}^{0}}\right) \\
& +\operatorname{din} H_{c}\left(X_{\perp} \eta(x), P_{x}\right)
\end{aligned}
$$

(1) hypertolic localzations farmeles

$$
\begin{aligned}
& C^{x-\text { quai-sep }} \Rightarrow \mathbb{C}^{x} \text {-action étzle } \\
& \text { locclly linengble. }
\end{aligned}
$$

fofete

var Jader dulaty
Chypartolic localedion fint $]$
$G_{m}=\mathbb{C}^{x}$ action on X smooth,X^{0} smocth

$$
\begin{aligned}
& I C_{x}:=Q_{x}[\operatorname{dim} x] \\
& I C_{x_{\pi}^{0}}:=Q_{x_{\pi}^{0}}\left[\operatorname{dim} x_{\pi}^{0}\right] \\
& P!\eta^{*} I C_{x} \simeq{\underset{\pi \in \pi}{ }}_{\oplus}^{I C_{x_{\pi}^{0}}^{0}\left[-d_{\pi}^{+}+d_{\pi}^{-}\right]}
\end{aligned}
$$

Heperbolic localzation \& vanishing cy cls
 f Al

$$
\mathbb{e}^{2} U_{0} \rightarrow U_{0}^{+} \longrightarrow U^{0,0}
$$

Then, we con apply

$$
\begin{aligned}
& \varphi_{f} P_{u}^{+}!\left(\eta_{u}^{+}\right)^{\prime}(A) \rightarrow\left(P_{u_{0}}^{+}\right)!\left(\eta_{u_{0}}^{+}\right)^{b} \varphi_{f}(A) \\
& \text { IS vadislity } \downarrow 5 \\
& \varphi_{f_{0}} P_{u}^{-}\left(\eta_{u}^{-}\right)^{n}(A) \leftarrow\left(P_{u_{0}}^{-}\right)\left(\eta_{u_{0}}^{-}\right)^{n} \varphi_{f}(A)
\end{aligned}
$$

$$
\begin{aligned}
& \left(p_{2}\right)!\eta_{R}^{\infty} c^{x} \simeq\left(i^{0}\right)^{*}\left(p_{0}\right)!\left(\eta_{0}\right)^{*} \\
& P_{R}=i^{*} Y_{f} I C_{u}
\end{aligned}
$$

Thm $\left(P_{2}\right)!\left(\eta_{2}\right)^{\lambda} P_{R}=\underset{\pi \in \pi}{\oplus} P_{R_{\pi}^{\circ}}[-$ ind $\pi]$

Rmle: U^{0} is smaeth becouce the fixed pinnt of a C C^{x} action on a smeath scheve will be smeath.

Gluing (lite in foyce):

$$
\begin{aligned}
& \mathbb{C}^{x} \text { 2RX (-1)-symplectic } \Rightarrow d \text {-aitl chats. } \\
& \text { equvamint. } \\
& R \stackrel{\text { élle }}{c} x \quad t(R X)=x \\
& 2 i \\
& U \text { smath , } I_{R, U} \text {. } \\
& 0 \rightarrow \underbrace{S_{x \mid R}}_{\text {doye shef }} \frac{i^{-1}\left(O_{U}\right)}{I_{R, u^{2}}^{d}}-\frac{i^{-1}\left(T^{u} U\right)}{I_{R, U} T^{T} U} \\
& S=f+I_{R, 0}^{2} \text { unch thet } d f / R=0 \text {. }
\end{aligned}
$$

we hove a shech S_{x} on X
$s \in \Gamma\left(S_{x}\right) \Leftrightarrow s_{R}=f+I_{R, u}^{2}$ with

$$
d f /_{R}=0
$$

s is a d-citicd stuctre if f each $x \in X$ we con find an étole reighhahood such thet

$$
\left\{\begin{array}{l}
f+I_{R,} v^{2}=s_{R} \\
R=\operatorname{ait}(f)
\end{array}\right.
$$

Rastidion of chats:

$$
R^{\prime} \subset u^{\prime} f^{\prime} \Phi
$$

\checkmark nat enayh to
 compre witul chats
need stabigation to compare chants

$$
\begin{aligned}
& (R, u, f, i) \quad(S, V, g, j) \\
& \searrow \downarrow \\
& \frac{\text { upto sitile }}{\text { nesticion }} \\
& \left(R, U \times \mathbb{C}^{n}, f ⿴ q, i \times 30 \varepsilon\right) \simeq\left(S, V \times \mathbb{C}^{n}, g \boxplus q, j \times 200 \delta\right) \\
& \text { stondut } \\
& \begin{array}{l}
\text { sonductete } \\
\text { gorm }
\end{array}
\end{aligned}
$$

dariticl scheme + finiteness conditios \Rightarrow critical viztul manifgld.
(2) How to obtain C.V.M with equravint aiticed chats.
$X \quad(-1)$-shifted sumplectic
\Downarrow
Φ^{x}-invariant
d-aniticd chat
claim: Given $x \in X \Rightarrow \exists$ offre \mathbb{C}^{2}-invant
Halper?

con be chosen

$$
\begin{aligned}
& \begin{array}{c}
\text { Con be Chosin } \\
\text { mich thoT } \\
i
\end{array} \\
& x \in R \stackrel{f}{\hookrightarrow} \cup \subset \\
& \left\{\begin{array}{l}
S_{R}=f+I_{R, U}^{2} \\
d f=0
\end{array}\right. \\
& i(R)=\operatorname{cut}(f)
\end{aligned}
$$

clain $\exists \mathbb{C}^{0}$-equrunt upper bousd
 equvanut quachetic foim (nat the stundud ore!)

Dohcldson_thomas in Aussois

My trek: ongoing project with
Benjamin \& Julian Hulstion.
So far
Thu (Jape et d) $X(-1)$ shifted symplectic derived scheme. locally $X \simeq \operatorname{dait}(f$ on U) syrup.
If $\exists L+L \otimes L \simeq \operatorname{deT}\left(\pi_{x}\right)$ then the lime bud le
local defined $P_{u, f} \in \operatorname{Par}(\operatorname{cit}(f))$ glue to $P_{f} \in \operatorname{Par}(X)$

Problems:
: Joyce strategy only
works because:
(1) Par is a discrete eategay
(2) ho use of the derived stuctue on X
(3) gluing by hand

What we want: genend gluing Mechanism that
(1) explains Joyce
(2) wats for other types of loco invanionts of singularities.
step 1: Vanishing cycles depends on load model

$$
\begin{aligned}
& S \subseteq X \\
& S \underset{\text { open }}{\sim} d a u T(u, t) \hookrightarrow U^{\text {sump }}
\end{aligned}
$$

Idea: look at the moduli space of choices of local models.

Naive: Consider The assignment idea

Problem: this is not even finctrid because

$$
\begin{aligned}
& S
\end{aligned}
$$

Solution: Re-defind whet we mean by LG-pains:

PRoof since $\hat{u} \underset{\substack{\text { étde }}}{\rightarrow} \overrightarrow{\text { is étile }}$ with the same function リ iso of dented
Example: Replue $\left(\left.A\right|^{\prime}, x^{2}\right)$ by $\left(\hat{A l}^{\prime}, x^{2}\right)$. schemes.
claim: the assignment,
is Functricl.

Prof:
own

Condusiow: what this teach us is the not only the assignment is functuid on $S \subseteq X$ opens, it also wakes for étale mys $s \xrightarrow{\text { et }} X$.
clain the assignment

$$
\left\{s_{\delta_{X}^{e}}\right\} \longrightarrow{ }^{(\infty-)} \text { goopeids }
$$

smdl ét site
(a) is a stach.
we call it the Daboux stack of X
Dabx x

OUR Main strategy: Vanishing cycls CNST. constuction is defired without ambignity as a maphism of stacks on $X_{e T}$:

$$
\operatorname{Danb}_{x}^{P} \xrightarrow{\underbrace{\text { Par }} x} \begin{gathered}
\text { stack of } \\
\text { paveute on on } \\
\text { shes }
\end{gathered}
$$

on each $s \xrightarrow{e T} x$, given by

The Question is why dor it descend to $*=$ find defect in $\operatorname{sh}\left(X_{E T}\right)$

$$
\operatorname{Dab} x \xrightarrow{P} P_{\text {av }}
$$

My tale : explain YeT anatter descuiption of Dubx and haw it also oppens in 4 folds ((-2) shifted cose $)$

Benjamin's tulh : Explain (x)
Rmk: easy to see why ($*$) is appecling: can replace P by any other tope of invaiant and glue.

Part II Deeived Lagorgicn folictions
Back to locd models and to the algebraic (non-fermol ease!)

$$
\begin{aligned}
& S \xrightarrow[\sim]{\sim} \operatorname{dat}(f) \subset U \\
& \text { (1) syuplactic } \\
& \underbrace{f}_{\substack{\cup \\
\text { smeoth } \\
\text { sdore }}} A I
\end{aligned}
$$

claim: The derived fibers of The indusion

$$
\operatorname{duT}(f) \stackrel{i}{\longleftrightarrow} u
$$

are lagyions.
Proof:

$$
\begin{aligned}
& \begin{array}{l}
\text { Relative } \\
\text { turgoT coupbrix }
\end{array} \pi_{h} \longrightarrow \quad 0 \\
& \Pi_{d \operatorname{duT}(f)}=\left[\begin{array}{c}
i \pi_{u} \\
\downarrow H_{f} \\
i \Omega_{u}
\end{array}\right] \xrightarrow{D i} \quad i \pi_{u}
\end{aligned}
$$

What we need to stow

$$
\pi_{i} \rightarrow \pi_{\text {dat }} \frac{\sim}{\omega} \operatorname{L}_{\text {daw }}(-1) \rightarrow L_{i}(-1)
$$

but $\pi_{i} \simeq \Omega_{u}[-1]$

$$
\Delta_{i} \simeq \pi_{u}[1]
$$

So the composition is just *
1 Safhanov (Gametic
$\begin{aligned} & \text { honest oof } \rightarrow\end{aligned} \left\lvert\, \begin{aligned} & 1 \\ & x \leqslant x^{x} \mid \log \cdot b^{2} x\end{aligned}\right.$

Idea: Think of the fibers of i as a foliation of $\operatorname{dNuT}(f)$. because the fibers are lagrion, This is a Laguyim foliation.

Recall in differentia gamely $\quad \begin{aligned} & X \\ & \frac{1}{2} \\ & y\end{aligned}$
Then we con consider

$$
\begin{array}{ll}
\text { We con consider } & \text { a friction of } X \\
F:=\left\{\left.\pi^{-1}(y)\right|_{y \in Y}\right. & \text { (not secs. meath) }
\end{array}
$$

but we con actucly reave π by setting

$$
\begin{aligned}
X / F:= & x \sim x \text { if they are in the } \\
& \text { same leaf. }
\end{aligned}
$$ same leaf.

clam: This construction moles sense in dgenety but whet we get

$$
\begin{aligned}
& \text { en we get } \text { is not } U \\
& \operatorname{dout} / f_{i}
\end{aligned}
$$

but the fart completion $\quad \underset{\text { daT }(f)}{v}=u$
exactly whet we needed t consider for the functuiclity of the Dub.

Preposition

$$
\frac{\operatorname{dut}(t)}{F_{i}} \simeq \operatorname{duT}(f)^{u}
$$

Proof: Baghev-Bulit/Carlsson.
Another imputant fact :
Proposition the symplectic form on darT f has a canonicd exact stuectre

Proof: the syuplectic form on daT (f) comes form the one of $T^{*} \cup$, which is
exuct because of the lioville fan.
Finally
Thm (Toin-Puntev) $S=\operatorname{spec}(A)(-1)$-sympledic

$$
\begin{aligned}
& u:=\underbrace{S / F}_{\text {smoth }} \\
& \text { fomel schere } \\
& f=\theta \text { - isotopic } \\
& \text { stuctre }
\end{aligned}
$$

Deffintion S an n-shifted denved stach

$$
\operatorname{Dab}(S):=\operatorname{Exact}(s) \times \log f 0 l(s)
$$

Exemple

$$
\begin{aligned}
& \text { - } n=-1 \rightarrow \operatorname{Dub}(s) \simeq \text { locelmodes } \\
& n \operatorname{Dab}(s):=\left\{\begin{array}{c}
\alpha \text { excat shuct } \\
+
\end{array}\right\} \\
& \mathcal{F} \text { leg.ploctin } \\
& \text { IS } \\
& \begin{array}{l}
\text { dassicd } \\
\text { Daboux }
\end{array}\{\text { identificatios of } \\
& \text { Dabould } \\
& s \simeq \tau^{\circ} u \\
& \text { with } u \simeq s / 5
\end{aligned}
$$

claim $n=-2$
then locally we hove

However
not all lagigions of π_{x} are necessary non-degenetad quathetic in tor-arplitich $[0,1]$, but we can from on E_{1} restrict to those that are: far instance
we can cession lyosions of the fear
in this case

$$
\begin{aligned}
& P-E \text { is a lagayin } \\
& \text { in the made }(E, q) \Rightarrow E / P \simeq P^{2} \\
& \text { Slogan: } \\
& \text { differenT } \longrightarrow \text { Log:pliction } \\
& \text { lond } \Longleftrightarrow+\text { expect studue } \\
& \text { models }
\end{aligned}
$$

Lagugion distibutions in (-2)-shittad stedts
$(X, \omega)(-2)$-shifted symplatic
then locally we hove

$$
\pi_{x}=\left[\begin{array}{c}
E_{0} \\
1 \\
E_{1} \\
\vdots \\
\epsilon_{2}
\end{array}\right]-1 \begin{gathered}
0 \\
-2
\end{gathered}
$$

$$
U_{x}=\left[\begin{array}{c}
E_{2}^{2} \\
1 \\
E_{1}^{v} \\
1 \\
E_{0}^{v}
\end{array}\right]_{0}^{2}
$$

$$
\int \operatorname{shi} t
$$

\Downarrow

$$
\begin{aligned}
& E_{0} \simeq E_{2}^{v} \\
& E_{0} \simeq E_{1}^{v} \\
& E_{1} \simeq E_{1}^{v}
\end{aligned}
$$

non-degeneted quatatic fam on E_{1}

$$
\Rightarrow \pi_{x} \simeq\left[\begin{array}{l}
v \\
\downarrow \\
E \\
\downarrow \\
v^{v}
\end{array}\right]_{2}^{0}
$$

However:
not all lagaians of π_{x} are necessary in tor-ar-plitich $[0,1]$, but we can restrict to those the are: for instance we can consider Legions of the few

in this case
$P-E$ is a lagangin
in the bundle $(E, q) \Rightarrow E / p \simeq P^{v}$

$$
E \simeq \text { Р由 } P
$$

So ther the data of a lagugin fouction gues all [0,1]-folictios gue such a perentation

$$
\pi_{x} \simeq[v \rightarrow \underbrace{P \oplus p^{v}}_{E} \rightarrow v^{v}]
$$

So we con ask what is a mphism of loguyich distibutrs:

Remnen:

$$
L_{1} L_{2} h s \text { - necter } T
$$

$\Rightarrow N$ camies a farm

$$
\begin{array}{lll}
N^{v}[-1] \rightarrow 0 \\
1 & N^{v}[-1][1] \simeq N[-1] \\
0-N(1)[-2) & N^{v}[-1][2] \simeq N
\end{array}
$$

Taek \#16 (Benjamin)
$X(-1)$-symplectis
Recal: scheme

Dabx: $x_{e t}^{\text {oft }} \longrightarrow \infty-8$ paids

$$
\begin{aligned}
& x_{e \cdot t} \longrightarrow \infty-\delta p i u s \\
& s \longmapsto\left\{\underset{\text { syup. }}{\simeq} \text { dwilf) } u \frac{f^{\prime}}{} A_{1}{ }^{\prime}\right\}
\end{aligned}
$$

isomphisum?:

$$
+u_{\text {Red }} \simeq x_{\text {add }}
$$

This commutativity Requires an homolopy becase S is a douved schene:

Today how to glue?

$$
\begin{aligned}
& \text { Dab }_{x} \longrightarrow \stackrel{P}{\longrightarrow} \text { Pave } \\
& \text { uff } \longmapsto \text { Pojf. }
\end{aligned}
$$

Exemple: rienor number

$$
\begin{aligned}
\text { Dabd }_{x} & \longrightarrow \mathbb{Z} x \\
\downarrow_{x}, & =-\infty \text { gehel section }
\end{aligned}
$$

$$
\Leftrightarrow \text { Behrends finction. }
$$

Main thenem (we want to expeain)

$$
\overline{(K L}-B R e v-B u s s i-D p o n T-j y c e-s z e n d a i) ~
$$

Given a square noot of $K_{x}:=\operatorname{det}\left(L_{x}\right)$ then there exists a canonied factayction

$$
\begin{aligned}
& \xrightarrow{\text { Dub }} \xrightarrow{P} \text { Pavx } \\
& \text { This componds to a } \\
& \text { global section of } \\
& \text { Pav}{ }_{x} \\
& \text { ie } P_{x} \in \operatorname{Penv}_{x}(x) \\
& \text { " } \\
& \operatorname{Par}(x)
\end{aligned}
$$

I) comparing locd models

$$
\begin{aligned}
& U, f \in \operatorname{Dab}(S) \underset{x}{\operatorname{con}}\left(U \times A_{1}^{n}, f+x_{1}^{2}+\cdots+x_{n}^{2}\right) \\
& \text { add } \\
& \text { varicbls and } \\
& \text { add quadtatic fou }
\end{aligned}
$$

- Same Milnar number
- ony isomphic prvause shaves.

$$
\begin{aligned}
P_{u, f} & \simeq P_{u \times A^{N}}, f+\underbrace{x_{1}^{2}+\cdots+x_{1}^{2}}_{9} \\
& { }_{\text {Non-canmicd. }}
\end{aligned}
$$

- canonical isomeplism

$$
\operatorname{danT}(U, f) \frac{\sim}{\text { symplectic }} \operatorname{dauT}\left(U \times A I_{U}^{N} f+q\right)
$$

\Downarrow
Cannot glue Pop without some recitiond data.

IN General
Quad $_{X}^{\nabla}$: $=$ stack on $X_{\text {eft }}^{\text {aft }}$ of non-deg does not on quachetic bundles depend on paved denied sucre with compotible flat connection

$$
\begin{aligned}
& (Q, 9, \nabla) \text { on } 5 \\
& \text { U, } f \text { on } S
\end{aligned} \quad \Rightarrow s_{\text {Red }}=U_{\text {ned }}
$$

then: can form Q_{u} a non-dy. quad.

$$
\begin{aligned}
& \text { ? sing the } \\
& \text { connection. } \\
& u
\end{aligned}
$$

there is an action

$$
\underline{\operatorname{Dab}}_{x} \times \underline{\text { Quad }} \times \operatorname{Dar}_{x}
$$

$\left.(u, f), Q^{\nabla} \longmapsto\left(\widehat{Q}_{u}^{\text {zero section, }} f 0 \pi+q\right)\right)$
action of the Monoid Qucd x^{8}
(sum of quechatic bindles)

Ambujuity:

$$
\begin{gathered}
P_{Q_{0}, f} f+q \\
\sim P_{u, f} \otimes P_{Q u, q} \\
\text { thom-sehasticni }
\end{gathered}
$$

Exeuple:

Fix an arientution fo the circle.
$P_{\widehat{Q}_{w}, 9}$ is a line budle or U with
thansition functios in $\mu_{2} \subseteq \$_{s m}$.
is a μ_{2}-bundle.

Examples of a μ_{2}-Grebe:
fix L a line bundle.
look at the stack of square roots of L
if we know that we have a factzation

then the composition
a tuvialgaion of this gerbe goes

$\tilde{\theta}$ is oor parese sheg.
\rightarrow Rmle: Pavx $/ B \mu_{2}$ classifies twisted parvere shof.
the arentation data is reasseny to lift the thist. Now whe want to puoduce the factugation:

Naive idra: prove thet

equvaluuce. But this is not turee.
the (BBDY 5)
the action of Qued ${ }_{x}^{\nabla}$ on Dabx is tonsituree. (ie, the stultes of Drbx Deved $_{x}$ are connected). "
Proofoid:"

Everything is offine and $U_{\text {rod }}=S_{\text {reed }}=V_{\text {red }}$
Uned $=$ Sred, V farely smeath \downarrow
\exists liftry

but it dos not
 recenalily compute with fractions.

॥
Can locale to assure the \mathbb{H}_{u} cams fam \mathbb{L}_{v} ie, $\exists \widetilde{T}_{u}$ mech the $\otimes^{*} \widetilde{T}_{u}=T_{u}$
then fam a quechetic bundle

$$
Q_{v}=\widetilde{T}_{u} \oplus \widetilde{T}_{u}^{v} \text { with }
$$

eanonicd paining.
have

This dos not preserve the fuectias

tecnicd pont: using Legayion folictins: idea, modify the function and the homotapis

Lemma we con modify the Lagragion foliction stucture coupending to $s \backsim \theta_{V}$ with furction $g+g$ so theT eruything commutes.

W no longer a puim Lave a/Quadratic bindle but $\operatorname{dant}(h) \simeq S$.

+ fand rase lemma:

$$
h=g+q g
$$

$W \cong N_{v / w}$
$W \simeq$ Nu/w

Duab
loccly conreoted
/Qucdx but it is not contactible.

Issue with π_{1} : There con be auterghisms

$$
x \simeq \operatorname{dout} f c U^{2 \theta} \frac{A l^{\prime}}{f}
$$

that do not carre fam autoybisms of
the arechatic bundle.

dos not come form an aubomphism of quodetc fam.
idea: add a t :

$$
h_{t}:=\sqrt{1-t 3 x^{2}-t^{2} 3 x y^{2}-t^{3} y^{4}}
$$

φ is Ai-hametpic to the identity
claim Need to mod ouT AI'-hanotpis and Quechatic bundles.
the (BBDJ5) any automphism

$$
s c \operatorname{durt}_{v_{e}}<u \xrightarrow{f} A^{\prime}
$$

ary
φ is AI-hanolopic to an audanghism of the forn.

$$
\begin{aligned}
& U=U_{0}+\text { Quchatic budle } \\
& \qquad\left(\begin{array}{cc}
i d & 0 \\
0 & r
\end{array}\right) \quad r \in \theta(n) .
\end{aligned}
$$

Conollny $\left(\frac{D_{a b} x / \text { Qudd }^{\nabla}}{\text { OAl' }^{\prime}}\right.$ automplisms.

This + locdly connected implies that

$$
\tau \leq 1\left((\text { Dub } / \text { Quad })_{A I^{\prime}}\right)=*_{x}
$$

Back to or main reel:

and like this we construct P_{x}.

